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Preface

Brain function relies on the ability of neurons to communicate with each other. Interneuronal

communication primarily takes place at synapses, where information from one neuron is rapidly

conveyed to a second neuron. There are two main modalities of synaptic transmission: chemical

and electrical. Far from functioning independently and serving unrelated functions, mounting

evidence indicates that these two modalities of synaptic transmission closely interact, both during

development and in the adult brain. Rather than conceiving synaptic transmission as either

chemical or electrical, this article emphasizes the notion that synaptic transmission is both

chemical and electrical and that interactions between these two forms of interneuronal

communication might be required for normal brain development and function.
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Introduction

Communication between neurons is required for brain function and the quality of such

communication is thought to underlie dynamic aspects of hardwired neural networks.

Functional interactions between neurons occur at anatomically identifiable cellular regions

called synapses. Although the nature of synaptic transmission has been an area of enormous

controversy (See Box 1), two main modalities of synaptic transmission are now recognised:

chemical and electrical. At chemical synapses, the information is transferred via the release

of a neurotransmitter from one cell that is detected by an adjacent cell1, whereas in the in the

case of electrical synapses the cytoplasm of adjacent cells are directly connected by clusters

of intercellular channels called gap junctions2. While these specializations for both forms of

transmission can be found at various neuronal sites (dendrites, somata, axons), chemical

transmission normally occurs between synaptic terminals along axons and the dendrite or

soma of a second neuron, a muscle fiber or gland cell. The presence of these two modalities

of synaptic transmission does not exclude the possibility that brain cells could also
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communicate via alternative mechanisms, such as volume transmission (diffusion through

the extracellular space of neurotransmitters that reach remote target cells)3 and by

generating electrical fields that are capable of influencing the excitability of nearby

neurons4.

Box 1

Communication between neurons: the debate over the nature of synaptic
transmission

Santiago Ramón y Cajal and Charles Sherrington, the fathers of modern neuroscience,

established that networks of multiple elementary units or “neurons”, communicate with

each other via functional specializations called “synapses”. Their seminal contributions

were followed by a bitter debate over the nature of synaptic transmission; was it mediated

by chemical or electrical signals? This controversy was known as the war of “Soup vs.

Sparks”166. Although several researchers, most notably T.R. Elliott167 and later Otto

Loewi168 demonstrated the existence of neurotransmitters with actions on postsynaptic

cells, there was still controversy over whether transmitter release could occur in a

fraction of a millisecond, the synaptic “delay” indirectly measured by Sherrington169.

Bernard Katz and colleagues demonstrated that synaptic transmission at the frog

neuromuscular junction was an electrically mediated, Ca++-dependent form of transmitter

release, which occurs within a fraction of a millisecond170. Such mechanism was showed

to also occur in the central nervous system, leading to a general agreement that synaptic

transmission was chemically mediated. But in 1958, David Potter communicated at a

“Monday night fight” of the Marine Biological Laboratory in Woods Hole (so called

because of the contentious nature of the scientific exchanges) the striking properties of

synaptic transmission in crayfish, which challenged all the criteria established for

chemical transmission. Postsynaptic signals reproduced the time course of presynaptic

signals, transmission was bidirectional and, surprisingly, voltage-dependent. The finding

provided the earliest evidence in support for the existence of electrical synaptic

transmission171 and was soon followed by seminal studies in teleost brain by Michael

V.L. Bennett and colleagues172 and David Robertson173 and Edwin Furshpan174, in

which physiological and ultrastructural analysis were combined. Their search for the

anatomical basis of electrical transmission greatly contributed to identifying the cellular

structures that we know today as gap junctions. The more recent demonstration of the

ubiquitous presence of electrical synapses in the mammalian brain led to the indisputable

conclusion that chemical and electrical transmissions co-exist in all nervous systems.

Electrical and chemical synapses are known to coexist in most organisms and brain

structures, but details of the properties and distribution of these two modalities of

transmission are still emerging. Most research efforts have focused on exploring the

mechanisms of chemical transmission, and significantly less is known about those

underlying electrical transmission. It was thought that electrical synapses were more

abundant in invertebrates and cold-blooded vertebrates and less prevalent in mammals.

However, a wealth of data now indicates a widespread distribution of electrical synapses in

the mammalian brain5. In addition to the retina, inferior olive and olfactory bulb, structures
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where electrical transmission was known to occur5, electrical synapses have been found in

disparate regions of the mammalian central nervous system and shown to constitute a

distinct phenotypic feature of inhibitory interneurons in general6–8.

Perhaps because the appreciation of each form of synaptic transmission occurred in a

sequential manner (at least in mammals), there is a widespread notion that electrical and

chemical synapses operate independently. This article will review the evidence that

chemical and electrical synapses functionally interact during development and in adulthood.

Rather than being a comprehensive review of the experimental evidence, here we focus on a

few examples that highlight the ability of chemical and electrical synapses to interact with

each other.

Are chemical synapses more sophisticated, than electrical synapses?

From the evolutionary point of view, chemical communication between cells preceded

electrical communication9. Communication with chemical signals occurs in unicellular

organisms such as bacteria10, mediating important phenomena such as quorum sensing11

(the mechanism underlying detection of bacterial population density). More specific

communication between individual cells requires cellular specializations between the

interacting partners, a characteristic that neuronal chemical and electrical synapses inshare

with immunological synapses between a lymphocyte and antigen-presenting cell.12 From

this point of view, chemical transmission requires sophisticated presynaptic molecular

machinery that regulates neurotransmitter release in a probabilistic manner when an action

potential invades the synaptic terminal1 (although at some contacts, release can also be

proportional to changes in resting membrane potential)13. A similarly complex postsynaptic

molecular machinery is required, including inotropic (ligand-gated ion channels) and

metabotropic receptors (G-protein coupled receptors that act indirectly through a secondary

messenger) (Fig. 1a), that are capable of detecting and translating this message into various

postsynaptic events, ranging from changes in resting potential (‘synaptic potential’) to gene

expression1. These features allow chemical synapses to adapt to diverse functional

requirements. The mechanisms and general properties of chemical synaptic transmission

have been extensively reviewed [see Ref. 1 for review].

Electrical transmission is mediated by gap junctions between neurons2, clusters of

intercellular channels that directly communicate the interiors of two adjacent cells (Fig. 1b),

directly allowing the bi-directional passage of electrical currents and small molecules (Ca++,

cAMP, IP3, amongst others). Gap junction channels are formed by the docking of two

hexameric connexin ‘hemichannels’ or ‘connexons’ contributed by each of the adjacent

cells14. Strikingly, although they assemble into almost identical structures connexons in

invertebrates and vertebrates are formed by two different multigene families of proteins:

connexins, which are unique to chordates, and innexins and pannexins, which are unique to

invertebrates, prechordates and some chordates2,14. In contrast to innexins, pannexins do not

seem to form intercellular channels in tissues and thus are thought to operate only as

unpaired hemichannels in vertebrates15. Such evolutionary convergence highlights the

functional relevance of gap junction intercellular communication. From a family of over 20

genes in mammals14, only a handful of connexins were found to be expressed in vertebrate
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neurons [See Ref. 15 for review]16. Because of its widespread distribution, connexin 36

(Cx36) is considered to be the main ‘synaptic’ connexin17. Several of the 25 members of the

innexin family have been identified in invertebrate neurons, mainly in fly18, leech19 and

worm20.

Although electrical synapses can act, to some extent, in a metabotropic fashion by allowing

the passage of small metabolites, they lack the ability to amplify and transform presynaptic

signals, as chemical synapses do. However, this does not mean that electrical synapses are

less sophisticated; their sophistication just relies on a different functional property, their bi-

directionality, which allows them to coordinate the activity of large groups of interconnected

neurons2. Based on this bi-directional and analogic (that is, they don’t require an action

potential) nature, electrical synapses are especially efficient in detecting the coincidence of

simultaneous subthreshold depolarizations within a group of coupled neurons, a

phenomenon that increases neuronal excitability and promotes synchronous firing21–25.

Electrical synapses are also very effective at mediating lateral excitation and increasing the

sensitivity of sensory systems, such of those observed in retina26 and primary afferents of

escape networks27–29. Gap junction-mediated lateral excitation has also been shown to occur

in a network of cerebellar interneurons, promoting the spread of chemically mediated

synaptic inputs between remote dendritic arborizations30. Because of their reliability

(transmission at electrical synapses is not probabilistic in nature) and absence of synaptic

delay (transmission occurs instantaneously), electrical synapses are also a usual feature in

escape response networks, in both invertebrates29,31,32 and vertebrates33. Thus, from the

functional point of view, no particular form of transmission is ‘better’ than the other one.

Rather, their individual mechanisms seem to be specifically adapted to rescue and

communicate different aspects of cellular processing and function.

Bolstered by the implicit molecular complexity of chemical transmission and its ability to

undergo plasticity, there was until recently the widespread notion that electrical transmission

is a rather simple, static and rigid form of neuronal communication. However, increasing

evidence suggests that electrical synapses are structurally more complex and functionally

more dynamic than previously anticipated. Far from being static, gap junctions were found

to be very dynamic structures when recombinant connexins were expressed in cell

expression systems and the turnover of gap junction proteins was monitored with imaging

techniques34–39. Recent data indicate that native neuronal gap junctions are also very

dynamic structures and that their channels are actively turned over40. More specifically,

ultrastructural and functional analysis at identified mixed (electrical and chemical) synapses

on the goldfish Mauthner cell (a large reticulospinal neuron in fish)33,41 revealed that gap

junction hemichannels are simultaneously added at the edges of gap junction plaques

(clusters of intercellular gap junction channels) where they dock with hemichannels in the

apposed membranes to form cell-cell channels and that intact junctional regions are removed

from the centre of these plaques into either presynaptic axon or the postsynaptic Mauthner

cell dendrite40. Moreover, electrical coupling was readily modified by peptides that interfere

with endocytosis or exocytosis, suggesting that the strength of electrical synapses at these

terminals is determined, at least in part, by a fast turnover of gap junction channels40. The

half-life of this turnover was estimated to be 1–3 hours40, a time consistent with that

observed for other ion channels and synaptic receptors42 indicating that this dynamic
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process could be involved in regulating electrical transmission (Fig. 2). Thus, as in

glutamatergic chemical synapses43–47, regulated trafficking of connexons and intercellular

channels could underlie modifications of gap junctional conductance. Furthermore, like their

chemical counterparts, electrical synapses are highly modifiable by the action of

neuromodulators such as dopamine and capable of activity-dependent plasticity [See Ref. 15

for review]16.

The existence of such dynamic structural and functional properties indicates that electrical

transmission must rely on more than the intercellular channels. Constitutive and regulated

trafficking of ligand-gated ion channels to and from the plasma membrane are important

processes for the maintenance of chemical synaptic function. At glutamatergic synapses this

requires interactions between the receptors’ carboxy-terminals and various cytosolic proteins

and scaffolding proteins46,48,49, mostly located at the postsynaptic density (PSD)50 (Fig. 2a).

Similarly, electrical synapses require the molecular machinery to mediate the turnover of

gap junction channels. Gap junctions are now considered to be part of multiprotein

complexes51–53. Electron dense areas similar to those of PSDs, referred as “semi-dense

cytoplasmic matrix”53, have been observed at neuronal gap junctions when explored by

electron microscopy (Fig. 2b). The detailed composition of these PSD-like structures is

largely unknown54, although several molecules are known to interact with Cx3655–58 and its

teleost homologs59, most notably zonula occludens one (ZO-1)56,57,59 and Ca++/calmodulin-

dependent kinase II (CaMKII)51,52. ZO-1 is a scaffold protein of the MAGUK family that is

known to associate to many connexins60, and that might have a similar role to PSD-95 at

glutamatergic synapses1. Conserved regions of the carboxy-terminus of Cx36 (and its two

teleost homologs)58,59,61 mediate interactions with ZO-1 and are required for the insertion of

new gap junction proteins into electrical synapses40,61. ZO-1 has been also proposed to have

an essential role regulating the transition from connexon to intercellular gap junction

channel formation in the periphery of Cx43-containing junctions62. In contrast to the

permanent structural role of ZO-1, CaMKII has been proposed to be a non-obligatory

component of electrical synapses and its association linked to synaptic activity (see

below)52. Such regulatory associated proteins seem to be crucial for innexin-based electrical

transmission as well, as the stomatin-like protein (unc-1) was shown to be required for

proper channel function at gap junctions formed by UNC-9 innexin in C. elegans63,64.

Recent data suggests that, similar to pre- and postsynaptic sites at chemical synapses, one

side of an electrical synapse should not necessarily be considered to be the mirror image of

the other65. Molecular asymmetries in neuronal gap junctions suggest that electrical

synapses are functionally diverse. The intercellular channels at electrical synapses can in

some cases be constructed by apposition of two different connexins, forming “heterotypic”

(as opposed to “homotypic”) gap junctions14. Gap junctions at auditory mixed synapses of

the goldfish Mauthner cell are constructed by apposition of hemichannels formed by two

homologs of mammalian Cx3665; while Cx35 is restricted to presynaptic hemiplaques,

Cx34.7 it was found only in postsynaptic hemiplaques, forming heterotypic junctions65.

Heterotypic gap junction channels have been associated with rectification of electrical

transmission65–68, defined as the propensity of some electrical synapses to display

differential resistance to current flow in one vs. the other direction across the junction. Thus,

Pereda Page 5

Nat Rev Neurosci. Author manuscript; available in PMC 2015 April 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



such molecular asymmetry can support rectification of electrical transmission which, by

favoring the spread of membrane responses from the Mauthner cell to presynaptic endings,

promotes cooperativity between auditory afferents. This association was initially observed in

invertebrates66 and is also supported by a wealth of work on heterotypic channels formed by

recombinant connexins in cell expression systems67–69. Although asymmetry based on the

presence of two Cx36 homologs is restricted to teleost fish (teleost fish underwent an

additional genome duplication)70, the finding provided unambiguous evidence that

vertebrate electrical synapses can be asymmetric, and that such asymmetry might underlie

important functional properties. Molecular asymmetry in electrical synapses might not be

restricted to the existence of molecularly different connexons but could also result from

posttranslational modifications of individual connexins or differences in the complement of

gap junction-associated proteins forming the “semi-dense cytoplasmatic matrix”54,

endowing electrical transmission with more complex properties.

In summary, although chemical synapses seem structurally more complex and functionally

dynamic, emerging evidence indicates that electrical synapses might be similarly complex,

diverse and highly modifiable.

Electrical and chemical synapses interact during development

Gap junctional communication between neurons is developmentally regulated: it is initially

prominent but declines at later developmental stages71,72. In the mammalian brain, this form

of intercellular communication is widespread between postnatal days 5 and 12 and

dramatically decreases after postnatal day 16 to remain restricted to some cell types71,73–76.

The initial increase in coupling allows developing neurons to form functional domains that

exhibit coordinated patterns of spontaneous activity74,77,78. It has been proposed that the

formation of these transient domains and networks might serve as a developmental

blueprint, influencing a variety of developmental cellular phenomena, ranging from cell

contact inhibition, neuronal differentiation, migration, circuit formation and elimination of

chemical synapses72.

The formation of these transient gap junction networks is a common feature of

invertebrate79–82 and vertebrate71,72,75,76 nervous systems. In c. elegans, a transient network

formed by the innexin gap junction protein NSY-5 is required for the left and right olfactory

AWC neurons to create asymmetric patterns of gene expression during embryogenesis82.

NSY-5 mutants failed to establish this asymmetry, suggesting that intercellular

communication mediated by NSY-5 junctions is a critical developmental requirement82.

Similarly, transient gap junctions mediate avoidance of segmental homolog cell projections

during development in the leech83. Upon contact, the processes from AP neurons, two

identifiable homolog cells, stop growing and finally retract, thus defining the topography of

their neuronal arbors84–86. Recent data suggest that transient innexin 1 (INX-1) - containing

gap junctions that are formed between processes of homolog AP cells mediate this

developmental phenomenon83. Neurite growth arrest did not occur in animals in which

INX-1 was knocked down by expressing a short hair-pin interfering RNA, nor on those

expressing a INX-1 mutant transgene lacking open channel pore function but that retains the

adhesive cellular binding of gap junction channels83. These findings suggest that gap
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junctions serve as conduits for an unknown messenger molecule that mediates the effect.

Another well-established example of transient gap junction network occurs in the

developing mammalian spinal cord87–89. Developing lumbar motorneurons are

communicated by gap junctions, leading to synchronous patterns of nerve activity during a

period in which muscle fibers are innervated by axons originating from multiple

motorneurons87,89. The transition from multiple innervation to the characteristic single

innervation in muscle fibers occurs at late embryonic and early postnatal stages and is an

activity-dependent process, which results from competition between active synapses90. It

was shown that a transient gap-junction network modulates this developmental transition

from multiple to single fiber innervation91. Gap junctional coupling between motorneurons

disappears at late embryonic and early postnatal stages causing lack of correlated activity

between innervating axons (elimination cannot occur if synapses are synchronously

activated), which in turn paves the way for synapse competition and subsequent synapse

elimination in multiply innervated muscle fibers91. Reduction of gap junctional

communication with gap junction blocking agents disrupted synchronous patterns of nerve

activity and enhanced synapse elimination91. Consistent with this finding, acceleration of

synapse elimination was observed in Cx40 KO mice92, a connexin that is expressed in

developing motorneurons and that dramatically decreases after birth87, indicating a primary

role for transient gap junction networks in gating the transition from multiple to single fiber

muscle innervation.

Remarkably, the formation and subsequent elimination of gap junction coupling between

neurons was found to be correlated with the emergence of chemical neurotransmission in

several species. This robust phenomenon was again observed at developing

invertebrate79,93,94 and vertebrate nervous systems95–97. Furthermore, several studies

indicate that gap junction proteins expressed during development are required for the

formation of chemical synapses. Flies containing mutations in the innexin genes Shaking B

and Ogre failed to establish appropriate functional synaptic connections in the visual system

of this organism, as evidenced by the absence or alterations in the electroretinogram98. This

developmental defect could be rescued by transgenic expression of the lost innexins during

pulpal development, but not at later stages98. More direct evidence of the relationship

between electrical synapses and the formation of chemical synapses was observed at

identifiable motorneurons of the snail Helisoma93. Manipulations that led to a reduction of

coupling between these snail motorneurons accelerated the formation of chemical synapses,

whereas, exposure to cholinergic antagonists (which block chemical neurotransmission at

these synapses) caused prolonged maintenance of electrical transmission93, suggesting an

inverse relationship between the establishment of chemical and electrical connectivity at

early stages of synaptic development. Such relationship between the formation of electrical

and chemical synapses was also observed in vertebrates. The presence of gap junction

coupling between developing spinal motorneurons also followed an inverse relationship

with the formation of chemical synapses95. The decline in motorneuron coupling that occurs

at late embryonic and early postnatal age is correlated with the formation of glutamatergic

synapses in these spinal circuits95. Furthermore, exposure to NMDA receptor antagonists

arrested the developmental decline in gap junction coupling between spinal motorneurons,

suggesting that the increase in glutamatergic synaptic activity that is generally associated
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with the onset of locomotion promotes the disappearance of gap junction-mediated networks

between developing motorneurons95. The exquisite relationship between the early presence

of electrical connections and the subsequent formation of chemical synapses has recently

been demonstrated in the leech. The sequential development of electrical and chemical

synapses between two types of identifiable neurons that participate in a behaviorally

relevant local-bending circuit offered the possibility of directly addressing this issue79.

Synaptic transmission between the P cell (that transduces pressure) and AP cell (a

motorneuron-like cell) is initially exclusively electrical and becomes predominantly

chemical in the adult animal. Although electrical transmission remains, it is considerably

weakened94. Silencing INX-1 in embryonic P cells when innexin-based gap junctions are

initially forming and chemical synapses are absent (~50% embryonic development),

prevented not only the establishment of electrical synapses but also the development of

chemical transmission94 (Fig. 3a), elegantly demonstrating the requirement of electrical

synapses for the formation of chemical contacts. Moreover, the development of networks

mediated by chemical synapses in the mouse olfactory bulb was arrested in Cx36 knockout

mice96 in which electrical transmission is greatly reduced, indicating that the early presence

of electrical synapses is also a prerequisite for the formation of chemical synapses in

mammals. This phenomenon was also observed in the developing neocortex. Consecutive

divisions of individual radial glial progenitor cells normally produce sister excitatory

neurons that lead to the formation of ontogenetic cortical columns that preferentially

develop specific chemical synapses with each other rather than with nearby non-siblings97.

Sister excitatory neurons are initially electrically coupled97 and blockade of this

communication impairs the subsequent formation of specific chemical synapses between

sister excitatory neurons in ontogenetic cortical columns97.

We have discussed the mechanistic relationship between the presence of electrical synapses

and the subsequent formation of chemical connections. However, conversely, receptors for

chemical neurotransmitters and chemical synapses have been shown to regulate the

emergence and disappearance of gap junctions during development99–101. In-vitro studies of

cortical and hypothalamic neurons indicate that, despite that chemical connections are not

yet formed, activation of specific receptors for chemical neurotransmitters regulate the

expression of Cx36 at early developmental stages100. Prolonged (two weeks)100 activation

of group II metabotropic glutamate receptors (mGluRs) leads to an increase in the

expression of Cx36 via a cAMP/PKA dependent intracellular pathway, whereas activation

of type A GABA receptors (GABAARs) leads to a reduction of Cx36 expression100 (Fig.

3b), indicating that the formation of gap junctional networks relies on the interplay between

these two types of receptors. Because GABAARs are depolarizing at these early

developmental stages, their effects are mediated via Ca++ influx and activation of PKC100.

This developmental regulation of Cx36 gene expression involves regulation of both gene

transcription (mGluR-dependent increase) and protein translation (GABAAR-dependent

decrease)100. These changes are thought to be specific for these receptors100.

Activation of glutamate receptors also reduces coupling observed at late developmental

stages and as mentioned blocking NMDA receptors delayed the formation of chemical

synapses in spinal motorneurons95, suggesting that the emergence of glutamatergic
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transmission regulates uncoupling. This is supported by findings in the rat hypothalamus99.

Activation of NMDA receptors at late developmental stages led to Ca++/cAMP response

element binding protein (CREB)-dependent down regulation of Cx36 gene expression99,

providing a direct mechanistic relationship between the emergence of chemical transmission

and the disappearance of neuronal gap junction coupling (Fig. 3b).

In summary, the development of neural circuits in disparate nervous systems seems to

critically rely on interactions between chemical and electrical synapses, which reciprocally

and dynamically regulate the emergence of these two forms of transmission (Fig. 3c).

Electrical and chemical synapses interact in the adult nervous system

The effects of a special type of neurotransmitters: neuromodulators on gap junction

communication represent a clear example of the interactions between chemical and electrical

transmission in the adult nervous system. Neuromodulators are released from presynaptic

terminals and activate specific metabotropic G-protein coupled receptors which trigger

signaling cascades that modulate synaptic communication between target cells (Fig. 4a).

Dopamine for example, has been shown to modulate gap junction communication at various

vertebrate and invertebrate cell types [See Refs. 16 and 102 for review]16,102, suggesting

that both connexin and innexin gap junction proteins are targets of its regulatory actions. At

electrical synapses mediated by Cx36 or Cx57, and its teleost homologs, activation of

dopamine can lead to either an increase or a decrease of gap junctional conductance between

neurons via a cAMP-dependent mechanism that involves the activation of PKA. That is,

dopamine was observed to enhance coupling at goldfish electrical synapses103,104 and to

promote decoupling of between retinal horizontal cells105,106,107. Two phosphorylation sites

in Cx36 and its fish homologs, Ser110 and Ser293 (Ser276 in teleost)107,108, seem to be

essential for the effects of dopamine on electrical synapses. Recent evidence indicates that

dopamine acting via D1/5 receptors, can either promote PKA-mediated phosphorylation of

Cx36 at regulatory sites, leading to an increase in coupling, or to decoupling via PKA-

activation of protein phosphatase 2A and subsequent de-phosphorylation of Cx36109, thus

providing a mechanism for bi-directional regulation of synaptic strength. Dopamine can also

act via activation of D2 receptors, which leads to a reduction of cAMP and PKA activation,

and increases coupling between rods and cones in vertebrate retina110. Other

neuromodulatory systems that regulate the strength of electrical synapses include

noradrenaline111, serotonin112,113, histamine114 and nitric oxide115,116.

Regulation of electrical coupling by neuromodulators can have profound functional

consequences. Chemical and electrical synapses co-exist at various circuits raising the

question of how these two networks interact to generate function117. In the rabbit retina rod

and cone inputs were shown to converge on cone bipolar cells102. In the case of the cones,

the connection is direct via ON bipolar cells, whereas for the rods, the connection is indirect.

This indirect connection specifically relies on electrical synapses between AII type amacrine

cells themselves and ON bipolar cells118. Both homologous and heterologous synapses are

regulated by dopamine (AII to AII gap junctions) and nitric oxide (AII to On bipolar gap

junctions), which efficiently reconfigure retinal circuits by switching between direct and

indirect pathways118,119.

Pereda Page 9

Nat Rev Neurosci. Author manuscript; available in PMC 2015 April 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Remarkably, it has been shown that fast, amino acid-mediated, chemical transmission also

interacts with electrical synapses. “Mixed” chemical and electrical synapses found at “Large

Myelinated Club endings”, or simply “Club endings”120 -- terminations of primary auditory

afferents on the teleost Mauthner cells -- provide a unique opportunity to study interactions

between these two modalities of synaptic transmission (Fig. 4b)120121. Activation of these

synapses with high-frequency bursts (500 Hz) of activity leads to long lasting potentiation of

both the electrical and glutamatergic components of the mixed synaptic potential evoked by

the activation of these terminals122,123. Thus, both forms of transmission at these contacts

exhibit activity-dependent plasticity. Strikingly, potentiation of both electrical and chemical

transmission were blocked by NMDAR antagonists122,123, suggesting that potentiation of

electrical transmission is initiated by the activity of the coexisting glutamatergic synapses.

The potentiations also required of an increase in postsynaptic Ca++ and the activation of

CaMKII124 (Fig. 4b). CaMKII activation was shown to lead to an increase in gap junction

conductance not only at goldfish Club endings, but also in Cx36-containing gap junctions

and cell expression systems125. Consistent with these findings, CaMKII was found to

phosphorylate Cx36 at retinal electrical synapses at sites that enhance coupling between

these cells126. CaMKII is an abundant component of the PSD at chemical synapses and has

been implicated in mechanisms of activity-dependent plasticity at chemical synapses50,127.

In similarity to its interaction with the NR2B subunit of the NMDAR at PSDs, CaMKII

interacts with Cx36 by binding to its cytoplasmic domains51,127. There are multiple

phosphorylation sites in Cx36 and its fish homologs Cx35 and Cx34.7 for the alpha subunit

of CaMKII51,52. Residues S315/ S298/ S300 in Cx36, Cx35 and Cx34.7, respectively,

constitute exclusive phosphorylation sites for CaMKII that are not shared with other

kinases51,52. In contrast, residues S110 and S293 in Cx36, S110 and S276 in Cx35, and

S110 and S277 in Cx34.7, are shared with PKA51,52.

Mixed synapses provided unambiguous evidence that glutamatergic and electrical synapses

interact. Because interactions occur postsynaptically (Fig. 4b), it is possible that that similar

interactions could also take place heterosynaptically, between neighboring glutamatergic

and electrical synapses (Fig. 4c). Supporting this possibility, ultrastructural evidence shows

the proximity of NR1-containing PSDs to gap junctions in the rat inferior olive and retina, at

distances that comparable to those observed in goldfish Club endings128,129. Indeed

NMDAR/CaMKII-dependent modulation of gap junction coupling was proposed to take

place in the inferior olive128,130 and shown more recently to occur in the retina126. That is,

presynaptic activity of glutamatergic ON bipolar cells increases phosphorylation of Cx36 in

amacrine AII cells126. Glutamatergic synapses were also shown to induce an increase in dye

coupling between hypothalamic neurons131. Moreover, glutamatergic transmission was

shown to promote activity-dependent long-term depression of electrical coupling, indicating

that interactions between glutamatergic and electrical synapses are diverse and widespread.

High-frequency activation of cortico-thalamic inputs triggered a long-term depression of

electrical transmission between thalamic relay neurons, which required the activation of

metabotropic glutamate receptors132.

Interestingly, the interactions between chemical and electrical synapses were Club ending-

specific and did not spread to neighboring Club endings133, suggesting that the mechanisms

of PSD-initiated interactions with gap junctions are short-ranged and take place within less

Pereda Page 10

Nat Rev Neurosci. Author manuscript; available in PMC 2015 April 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



than 5 microns, the usual distance from two neighboring Club endings in the smooth

Mauthner cell dendrite. Given that plastic changes triggered by glutamate are terminal

specific and Club ending afferents can be differentially activated by sounds, the gap

junctions at these contacts co-exist at different degrees of conductance on the Mauthner cell

dendrite133 These findings suggest that a single cell can be differentially coupled to its

neighbours based on the activity of chemical synapses located in the proximity of each gap

junction. Inferior olivary cells, which connect to up to 40 other inferior olivary cells, have

been shown to be differentially coupled with its partners. Such heterogeinity in coupling

strength has also been reported in the, rabbit retina109, and rat cerebellar cortex134. In

summary, by regulating nearby gap junctions, PSDs at glutamatergic synapses provide a

mechanism for fine tuning electrical coupling within networks of electrically coupled

neurons. This form of regulation can reconfigure networks and create functional

compartments of neurons with propensity to cooperate, by determining the probability with

which neurons interact with each other.

Heterosynaptic interactions between electrical and chemical synapses can be very complex

and both involve intricate interactions between glutamatergic synapses and neurotransmitter

modulators. High frequency stimulation of Club endings potentiates both electrical and

chemical transmission. This effect is dependent on the activation of mGLUR-1 receptors135

and the formation of endocannabinoids, which by acting on cannabinoid type-1 receptors

(CB1R) lead to the release of dopamine from varicosities located in the close vicinity of the

Club endings and Mauthner cell dendrites135. The release of dopamine from nearby

varicosities in turn leads to the potentiation of the electrical (and glutamatergic) synaptic

response via a cAMP/PKA-mediated postsynaptic mechanism135 (Fig. 4d). This mechanism

of potentiation clearly illustrates the complexity and possibilities of interactions between

chemical and electrical synapses. It also demonstrates that the local availability of dopamine

is not exclusively under the control of dopaminergic neurons, but that it is also determined

by local synaptic activity (both electrical and chemical).

Finally, the “shunting” effect of inhibitory synapses provides another example of

interactions between chemical and electrical synapses136–138. Chemical inhibitory synaptic

conductance often short-circuits the currents that are generated at adjacent excitatory

synapses by locally increasing membrane conductance136,138. Depending on the anatomical

arrangement, inhibitory conductances can dramatically reduce coupling if they are in the

proximity of electrical synapses by “shunting” electrical currents, before they have had the

chance to spread to a nearby neuron through the gap junctions (Fig. 5). [See Ref. 15 for

review]16 This form of interaction was shown to occur within the inferior olive

glomerulus136,137 and between expansion motorneurons of the mollusk Navanax138, where

quick and transient decoupling sculpts clusters of functionally related neurons involved in

phasic behaviors. Further emphasizing the functional significance of these fast interactions,

reciprocal electrical and inhibitory synapses organize networks of mammalian GABAergic

interneurons139. Modeling one of these interneuron networks in the cerebellum suggested

that combining fast inhibitory synapses and electrical coupling can promote synchronized

gamma oscillations139, which have been associated with cognitive processing and are

affected in some pathological conditions140.
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Are interactions between electrical and chemical synapses involved in

brain dysfunction?

The strong developmental interrelationship between electrical and chemical synapses

suggests that its disruption might underlie neurological conditions that are acquired during

development. Lack or dysfunction of electrical transmission could lead, as shown in

neocortex97 and the Cx36 KO mice96, to subtle deficits in the formation of mature neural

circuits that may cause or contribute to neurological or behavioral conditions. Interestingly,

the Cx36 gene has been associated with juvenile myoclonic epilepsy, a generalized form of

epilepsy with onset in early adolescence141,142 but the exact mechanistic linkage remains

unknown. It has been suggested that some single nucleotide polymorphisms may influence

Cx36 gene expression and contribute to the pathogenesis of this disease by affecting the

normal formation of neural circuits141. In addition, dysfunction of glutamatergic

transmission, which via NMDAR activation triggers the developmental decline in gap

junctional communication99, could result in abnormal levels of electrical coupling in some

brain regions that might lead to increased neuronal synchrony and seizures143.

As previously mentioned, Cx36-mediated electrical synapses are a feature of inhibitory

interneurons in the adult mammalian brain, including neo-cortex, thalamus and

hippocampus6–8,132. Inhibitory interneurons are crucial for various brain processes, as they

contribute to the generation of gamma-frequency oscillatory activity (30–80 Hz), which has

been associated with cognitive processing140,144. High-frequency network oscillatory

synchronizations appear to be crucial in defining the conscious state145, and for “associative

binding” for learning and memory. Strikingly, these cortical gamma oscillations are

impaired in Cx36 knockout mice146 suggesting a role for electrical synapses in generating

this rhythm. Alteration of oscillatory activity has been proposed to contribute to the

pathophysiology of schizophrenia144,147, Parkinson’s disease148 and autism spectral

disorders149. Moreover, dysfunction of glutamatergic150–152 and dopaminergic153,154

transmissions, are involved in these conditions, suggesting that dysregulation of electrical

coupling could contribute to the underlying pathophysiological processes. The investigation

of these possibilities could lead to the identification of novel therapeutic opportunities for

treating these conditions.

Recent data suggest that the interactions between chemical and electrical synapses that are

observed during development have an important functional role after brain insult. Strikingly,

networks of electrically coupled neurons identified during development can reappear after

brain injury. Adult cat spinal motorneurons become re-coupled by gap junctions after

peripheral nerve injury155, reestablishing the transient gap junction network observed during

development. Gap junction coupling was proposed to play a beneficial functional role by

helping to maintain the viability of axotomized motorneurons until synaptic connections

with their muscle fiber targets are reestablished155. Although it is unclear if this axotomy-

induced spinal network disappears after nerve regeneration, glutamatergic transmission was

shown to increase expression of Cx36 and gap junction communication in in-vivo and in-

vitro models of ischemic stroke and traumatic brain injury101. The increase in Cx36

expression occurs about 2 hours after injury and is likely to be triggered by the massive
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release of glutamate from injured neurons101. As observed during development100,

activation of group II mGluRs was also shown to mediate this increase in gap junction

communication156.

These interactions between glutamatergic and electrical transmission are thought to control

death and survival mechanisms in injured neurons156. A wealth of data indicate that

activation of NMDA receptors mediate the glutamate toxicity that occurs in the injured

brain157. Interestingly, electrical synapses seem to be involved in this phenomenon. The

death of forebrain neurons evoked by intraperitoneal injection of NMDA was greatly

attenuated by gap junction blockers and in Cx36 KO mice158,159, suggesting that gap

junctional coupling could have a deleterious effect for neuronal survival. It has been

suggested that neurodegenerative signals could be passed to other and undamaged neurons

(neurons adjacent to the lesion or “penumbra” area) as a result of the increase in neuronal

coupling triggered by the activation of group II mGluRs160 (Fig. 6a).

Conclusions

Electrical synapses have proven to be more widespread in the mammalian brain than

originally anticipated. Thus, networks of electrically and chemically coupled neurons are not

restricted to invertebrates but seem to be a feature of all nervous systems. Such realization

emphasizes the need to further explore the functional properties of electrical synapses (of

which we know significantly less) as well, based on the evidence reviewed here, their

interactions with chemical synapses.

Mixed synapses provide unambiguous evidence that rather than unconnected lines of

communication electrical and chemical synapses cooperate and extensively interact, and that

the speed and reliability of electrical transmission can be combined with the ability to induce

plastic changes that is characteristic of chemical transmission. Mixed synapses are

widespread in cold-blooded vertebrates120 but they seem to be less numerous in mammals,

perhaps because of the much-improved speed of transmission observed at mammalian

chemical synapses161. However, there is growing evidence of their presence in the

mammalian nervous system including the spinal cord162, a subset of hippocampal mossy

fibers163,164, and, interestingly, between dendrites of hippocampal inhibitory

interneurons165.

Interactions between electrical and chemical synapses are complex and diverse, and occur at

all stages of brain development. While during development interactions between electrical

synapses are critical for the formation on neural circuits, interactions in the adult brain result

in dynamic reconfiguration of hardwired networks. These interactions are likely to have

important pathological implications (Fig. 6b). Recapitulation of some developmental

interactions between chemical and electrical synapses after brain injury indicates that, rather

than exceptional, these interactions constitute basic and necessary mechanisms of

communication in the nervous system. Furthermore, the interactions between dopaminergic,

glutamatergic and electrical synapses that have been observed in the adult brain highlight

their importance for reconfiguring neural circuits and their dysregulation could contribute to

cognitive impairment. Future studies are likely to confirm the intimate relationship between
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these two modalities of synaptic transmission and shed further light on their contribution to

disease states.
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Glossary terms

Lateral excitation The term lateral inhibition refers to the ability of an excited

neuron to inhibit or reduce the activity of its neighbors. Lateral

inhibition following activation of a sensory afferent is thought to

increase spatiotemporal perceptual discrimination. Lateral

excitation, a less appreciated property of sensory and cortical

networks, refers to the ability of an excited neuron (or sensory

afferent) to excite its neighbors. While reducing discrimination,

lateral excitation greatly enhances input sensitivity

Escape networks Neural networks found in invertebrate and vertebrate nervous

systems that seem optimized to mediate fast escape behaviors.

They usually contain a small number of cells and include sensory

and motor neurons

Mauthner cell The Mauthner cells are two large reticulospinal neurons found in

teleost fishes that mediate (amongst other functions) tail-flip

sensory evoked escape responses

Postsynaptic density
(PSD)

Originally named after its identification by electron microscopy,

the term refers to a macromolecular complex that supports

postsynaptic function at chemical synapses. Better characterized

at glutamatergic synapses, the PSD is formed by a large number

of proteins that include neurotransmitters receptors, scaffolding

proteins and regulatory signaling molecules

Electroretinogram Extracellularly recorded electrical response that reflects the

activation of various cells in the retina (including photoreceptors,

inner retinal cells, and the output ganglion cells) in response to

visual stimulation

ON bipolar cells Retinal cell that functionally link photoreceptors (cones and rods)

with ganglion cells. ON bipolar cells are excited by the release of

glutamate from photoreceptors while OFF bipolar cells are

instead inhibited

All type amacrine
cells

Amacrine cells represent a class of retinal interneurons that

represent the main input to ganglion cells, the output neuron of

the retina. Amacrine cells also regulate bipolar cells, which

represent the other source of input to ganglion cells. The AII is a
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type of amacrine cell that relays rod-driven information through

the ON-center cone bipolar axons to ON-center ganglion cells via

electrical synapses

Associative binding The term refers to tasks of episodic memory that require the

associative binding of distinct components into a compound

episode. They commonly include the binding of two items or a

single item with a specific context
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At-a-glance Summary

1. There are two main modalities of synaptic transmission: chemical and electrical.

Although chemical synapses are perceived as structurally more complex and

functionally dynamic, emerging evidence indicates that electrical synapses

might be similarly complex, functionally diverse and highly modifiable.

2. Far from functioning independently and serving unrelated functions, these two

modalities of synaptic transmission closely interact. Rather than conceiving

synaptic transmission as either chemical or electrical, this article emphasizes the

notion that synaptic transmission is both chemical and electrical and that

interactions between these two forms of interneuronal communication are

required for normal brain development and function.

3. The development of neural circuits in disparate nervous systems (both vertebrate

and invertebrate) seems to critically rely on interactions between chemical and

electrical synapses, which reciprocally and dynamically regulate the emergence

of these two forms of transmission.

4. While during development interactions between electrical synapses are critical

for the formation on neural circuits, interactions in the adult brain result in

dynamic reconfiguration of hardwired networks. The strength of electrical

synapses is regulated by neurotransmitters modulators such as dopamine and by

glutamatergic synapses in an activity-dependent fashion.

5. Interactions between electrical and chemical synapses are also likely to have

important pathological implications. Recapitulation of developmental

interactions between chemical and electrical synapses was observed after brain

injury and dysregulation of electrical synapses by neurotransmitters could

contribute to cognitive impairment.
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Figure 1. The two main modalities of synaptic transmission
a, Chemical transmission requires sophisticated presynaptic molecular machinery that

regulates neurotransmitter release in a probabilistic manner upon depolarization of the

presynaptic terminal, in this case by the arrival of an action potential. A similarly complex

postsynaptic molecular machinery is also required. This includes the presence of inotropic

and metabotropic receptors that are capable of detecting and translating the presynaptic

message (neurotransmitter) into various postsynaptic events, ranging from changes in resting

potential to gene expression. b, Electrical transmission is mediated by clusters of

intercellular channels called gap junctions that communicate the interior of two adjacent

cells, directly allowing the bi-directional passage of electrical currents carried by ions

(arrows), as well intracellular messengers and small metabolites (not illustrated here).

Electrical synapses are bi-directional in nature: when a “presynaptic” action potential

propagates to the “postsynaptic” cell, the membrane resting potential of the “postsynaptic”

cell simultaneously propagates to the “presynaptic” cell (arrows).
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Figure 2. Trafficking of channels at chemical and electrical synapses
a, Glutamate receptors are trafficked in and out of synapses. Postsynaptic densities provide a

scaffold that helps to regulation this trafficking. PSD-95 and CaMKII are both abundant

components of postsynaptic densities. Regulated trafficking of AMPA receptors (blue) is

thought to underlie the modification of synaptic strength at glutamatergic synapses. b, Gap

junction channels at electrical synapses turnover. New connexons are trafficked to the

membrane in vesicles as unpaired hemichannels, where they are inserted at the periphery of

the gap junction plaque and dock with hemichannels in the apposed membrane. They are

internalized as small clusters of entire channels (green) into either of the coupled cells from

regions near the center of the plaque. Proteins in the “semi dense cytoplasmatic matrix” act

as scaffold. ZO-1 is a structural component whereas CaMKII seems to be a non-obligatory

component of the macromolecular complex with functions that might be similar to those at

postsynaptic densities of chemical synapses.
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Figure 3. Electrical and chemical synapses interact during development
a, Blockade of electrical synapse formation in leech embryos perturbs the formation of

chemical synapses. Chemical synaptic potentials in an AP cell in response to a single spike

in a P cell (marked by the gray bar on the AP recordings) under control conditions

(uninjected, sham, scrambled) and after injection of double-stranded RNA (RNAi) that

interferes with the translation of INX-1 in embryonic P cells, at a developmental time (~50%

embryonic development) at which innexin-based gap junctions are forming but chemical

synapses have not yet formed. [Data from Todd et al., 2010 (figure will be redrawn by the

journal’s graphic art department).] b, Effect of signaling through GABAA receptor

(GABAAR), metabotropic glutamate receptor mGluR) and NMDA receptor (NMDAR) on

gap junction communication during development. Red line represents the increase (upward

phase) and decrease (downward phase) in the amount of neuronal gap junction

Pereda Page 27

Nat Rev Neurosci. Author manuscript; available in PMC 2015 April 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



communication (GJC) and expression of connexin 36 (Cx36) during development. Blue

arrows show the direction of the change in gap junction communication after activation of

the receptor. P1 and P15 indicate postnatal days 1 and 15. [Taken from Belousov and Fontes

et al., 2013 (figure will be redrawn by the journal’s graphic art department)] c, Modalities of

interactions between electrical and chemical synapses during development.
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Figure 4. Modalities of interactions between electrical and chemical synapses in the adult
nervous system
a, Neurotransmitter modulators released by nearby synaptic terminals (orange) regulate the

synaptic strength of chemical and electrical synapses via activation of G-protein coupled

metabotropic receptors. Regulation at chemical synapses could occur pre- or

postsynaptically. b, Electrical and chemical synapses co-exist at mixed synapses.

Glutamatergic synapses regulate the strength of electrical synapses via a postsynaptic

mechanism that includes the activation of NMDA receptors (NMDAR) and CaMKII. c,

Regulation of electrical synapses by glutamatergic transmission could also be

heterosynaptic. Nearby glutamatergic synapses can regulate electrical transmission via
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NMDAR or mGLUR activation. d, Another mechanism of interaction at goldfish mixed

synapses results when synaptic activity leads to mGluR activation, which in turn triggers

endocannabinoid (eCB) release from the postsynaptic cell, and activates cannabinoid type-1

receptors (CB1Rs) on nearby dopaminergic fibers. CB1R activation leads to dopamine

release that, by activating postsynaptic dopamine D1/5 receptors (D1/5R) and increasing

PKA activity, is responsible for simultaneous enhancement of electrical and glutamatergic

synaptic transmission.
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Figure 5. Interactions between electrical synapses and inhibitory chemical synapses
a, Inhibitory GABAergic synapses are often located in the vicinity of gap-junctions between

dendro-dendritic processes (spines) of two neurons. b, By locally increasing membrane

conductance, inhibitory synaptic chloride conductances (gCl−) produced by activation of

GABARs briefly shunt excitatory currents to temporarily reduce effective electrical

coupling between two coupled neurons.
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Figure 6. Interactions between chemical and electrical synapses and pathological processes
a, Chemical and electrical synapses interact after injury. Release of glutamate from injured

neurons causes neuronal damage via NMDAR activation and Ca++ overload at the site of the

lesion. Simultaneous enhancement of coupling via mGluR-dependent increased expression

of Cx36 extends neuronal damage by facilitating the passage of ‘death signals’ to neurons

adjacent to the lesion or “penumbra” area (from Belousov and Fontes et al., 2013). b,

Summary of potential interactions of chemical and electrical synapses during pathological

processes. The lack, or dysfunction, of gap junction channels at early developmental stages

might lead to defective formation of critical neural circuits formed by chemical synapses,

underlying developmentally-related neurological conditions. During adulthood, release of

glutamate from compromised neurons after injury or stroke enhances coupling which leads

to neuronal death in uncompromised areas adjacent to the lesion. Dysregulation of electrical

synapses strength by neurotransmitters might contribute to cognitive disorders.
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