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Abstract

Novel strategies are required to control mosquitoes and the pathogens they transmit. One attractive approach involves
maternally inherited endosymbiotic Wolbachia bacteria. After artificial infection with Wolbachia, many mosquitoes become
refractory to infection and transmission of diverse pathogens. We evaluated the effects of Wolbachia (wAlbB strain) on
infection, dissemination and transmission of West Nile virus (WNV) in the naturally uninfected mosquito Culex tarsalis, which
is an important WNV vector in North America. After inoculation into adult female mosquitoes, Wolbachia reached high titers
and disseminated widely to numerous tissues including the head, thoracic flight muscles, fat body and ovarian follicles.
Contrary to other systems, Wolbachia did not inhibit WNV in this mosquito. Rather, WNV infection rate was significantly
higher in Wolbachia-infected mosquitoes compared to controls. Quantitative PCR of selected innate immune genes
indicated that REL1 (the activator of the antiviral Toll immune pathway) was down regulated in Wolbachia-infected relative
to control mosquitoes. This is the first observation of Wolbachia-induced enhancement of a human pathogen in
mosquitoes, suggesting that caution should be applied before releasing Wolbachia-infected insects as part of a vector-
borne disease control program.
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Introduction

Efforts to control vector-borne pathogens have been hindered

by evolution of insecticide resistance and failing drug therapies.

Evidence suggests bed nets and indoor residual spraying with

insecticides are losing efficacy in developing countries [1,2]. To

improve the sustainability and efficacy of control efforts, alterna-

tive vector control strategies are being considered, including

methods that suppress the pathogen instead of the vector [3,4].

Wolbachia are a genus of maternally-inherited bacterial endosym-

bionts that naturally occur in numerous arthropod taxa [5].

Wolbachia can inhibit viruses and parasites in fruit flies and

mosquitoes [6–11] and influence reproduction of their host to

facilitate spread through populations [12]. Mosquito-borne disease

management programs that use Wolbachia are currently under

investigation [13]. In field trials in Australia, Wolbachia reached

fixation in naturally uninfected populations of Aedes aegypti [11] and

the DENV blocking phenotype has been maintained [14], but the

impacts of Wolbachia on reducing the incidence of disease are yet to

be investigated.

Pathogen interference conferred by Wolbachia depends on

various factors, including Wolbachia strain, pathogen type, infection

type (natural versus artificial) and host and is not a guarantee

[7,15,16]. For example, Wolbachia increases Plasmodium berghei, P.

yoelii and P. gallinaceum oocyst loads in Anopheles gambiae, An. stephensi,

and Aedes fluviatilis, respectively [17–19], and P. relictum sporozoite

prevalence in Culex pipiens [20]. These Wolbachia-mediated

pathogen enhancement studies suggest that careful examination

of Wolbachia is required, since the bacterium influences insect-

pathogen interactions in ways that may negatively impact

pathogen control efforts.

Few studies have investigated the effect of Wolbachia on

pathogen transmission by Culex mosquitoes, despite the fact they

transmit viruses impacting human health [9,21,22]. Culex tarsalis is

a mosquito species associated with agriculture and urban areas in

the western United States [23] and is highly competent for West

Nile virus (WNV), St. Louis encephalitis virus (SLEV) and western

equine encephalitis virus (WEEV) [24–26]. Cx. tarsalis are naturally

uninfected with Wolbachia [27]. We established Wolbachia infections

in this mosquito by intrathoracic injection of purified symbionts
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into adult females, characterized the extent of the infection by

fluorescence in situ hybridization and quantitative PCR, and

assessed the ability for Wolbachia to block WNV infection,

dissemination and transmission at multiple time points. We found

that, in contrast to other systems, Wolbachia infection enhanced

WNV infection rates 7 days post-blood feeding. This is the first

observation of Wolbachia-induced enhancement of a human

pathogen in mosquitoes and suggests that caution should be

applied before using Wolbachia as part of a vector-borne disease

control program.

Methods

Ethics statement
Mosquitoes were maintained on commercially available bovine

blood using a membrane feeder. WNV infection experiments were

performed under biosafety-level 3 (BSL3) and arthropod-contain-

ment level 3 (ACL3) conditions.

Mosquitoes, Wolbachia, and West Nile virus
The Cx. tarsalis YOLO strain was used for experiments. The

colony was originally established from Yolo County, CA in 2009.

Mosquitoes were reared and maintained at 27uC61uC, 16:8 hour

light:dark diurnal cycle at approximately 45% relative humidity in

30630630 cm cages. The wAlbB Wolbachia strain was purified

from An. gambiae Sua5B cells according to published protocols [28].

Viability and density of the bacteria was assessed using the Live/

Dead BacLight Kit (Invitrogen) and a hemocytometer. The

experiment was replicated twice; wAlbB concentrations were:

replicate one, 5.36109 bacteria/mL; replicate two, 1.361011

bacteria/mL. Two- to four-day-old adult female Cx. tarsalis were

anesthetized with CO2 and intrathoracically (IT) injected with

approximately 0.1 uL of either wAlbB or Schneider’s insect media

(Sigma Aldrich) as a control. Mosquitoes were provided with 10%

sucrose ad libitum and maintained at 27uC in a growth chamber.

WNV strain WN02-1956 (GenBank: AY590222) was originally

isolated in African green monkey kidney (Vero) cells from an

infected American crow in New York in 2003 [29] and amplified

in Aedes albopictus cells (C6/36) to a final titer of 5.06109 PFU/ml.

WNV was added to 5 mL defibrinated bovine blood (Hema-

Resource & Supply, Aurora, OR) with 2.5% sucrose solution.

Replicate titers were: replicate one, 8.06107 PFU/mL; replicate

two, 3.06107 PFU/mL. Seven days post Wolbachia injection

mosquitoes were fed a WNV infectious blood meal via Hemotek

membrane feeding system (Discovery Workshops, Accrington,

UK) for approximately one hour. Partially- or non-blood fed

females were excluded from the analysis.

Fluorescence in situ hybridization (FISH) and microscopy
To characterize Wolbachia infections in Cx. tarsalis tissues, we

performed fluorescence in situ hybridization (FISH) on mosquitoes

at 12 dpi according to published protocols [10] with slight

modifications. Briefly, mosquitoes were fixed in acetone, embed-

ded in paraffin wax and sectioned with a microtome. Slides were

dewaxed with three successive xylene washes for 5 minutes,

followed by two 5-minute washes with 100% ethanol and one

wash in 95% ethanol before treatment with alcoholic hydrogen

peroxide (6% H2O2 in 80% ethanol) for 3 days to minimize

autofluorescence. Sectioned tissues were hybridized overnight in

1 ml of hybridization buffer (50% formamide, 56 SSC, 200 g/

liter dextran sulfate, 250 mg/liter poly(A), 250 mg/liter salmon

sperm DNA, 250 mg/liter tRNA, 0.1 M dithiothreitol [DTT],

0.56 Denhardt’s solution) with Wolbachia specific probes W1

and W2 labeled with a 5-prime rhodamine fluorophore [30].

After hybridization, tissues were successively washed three times

in 16SSC, 10 mM DTT and three times in 0.56SSC, 10 mM

DTT. Slides were mounted with SlowFade Gold antifade

reagent (Invitrogen) and counterstained with DAPI (Roche).

Images were captured with a LSM 510 META confocal

microscope (Zeiss) and epifluorescent BX40 microscope (Olym-

pus). Images were processed using LSM image browsers (Zeiss)

and Photoshop 7.0 (Adobe) software. No-probe, competi-

tion probe and RNAse treatment controls were conducted

(Figure S1).

Author Summary

Current methods to control mosquitoes and the patho-
gens they transmit are ineffective, partly due to insecticide
and drug resistance. One novel control method involves
exploiting naturally occurring Wolbachia bacteria in
insects. Wolbachia are bacterial symbionts that are
attractive candidates for mosquito-borne disease control
due to their ability to inhibit pathogens infecting humans.
Additionally, Wolbachia affects insect reproduction to
facilitate its own transmission to offspring, which has
been exploited to establish the bacterium in naturally
uninfected field populations. Most Wolbachia pathogen
control research has focused on Aedes and Anopheles
mosquitoes, but Culex mosquitoes also transmit patho-
gens that affect human health. We evaluated impacts of
Wolbachia infection on West Nile virus (WNV) in the
naturally uninfected mosquito Culex tarsalis. Wolbachia
was able to efficiently establish infection in Cx. tarsalis but
contrary to other studies, Wolbachia enhanced rather than
inhibited WNV infection. Enhancement occurred in con-
junction with suppression of mosquito anti-viral immune
gene expression. This study indicates that Wolbachia
control strategies to disrupt WNV via pathogen interfer-
ence may not be feasible in Cx. tarsalis, and that caution
should be used when releasing Wolbachia infected
mosquitoes to control human vector-borne diseases.

Table 1. Primers used for qPCR.

Primer Sequence 59-39 Reference

REL1-F GCGACTTTGGCATCAAGCTC This study

REL1-R GTTCGACCGGAGCGTAGTAG

REL2-F GTCGAGATGGCCAAAACGATG This study

REL2-R ACTCACTCATATTGTTGATGGCATT

CACTUS-F GACCTGTGCAAGAGTCTGCT This study

CACTUS-R ACGTATCACCATCGTCGTTC

DEFENSIN-F TTGTTTGCTTCGTTGCTCTTT This study

DEFENSIN-R ATCTCCTACACCGAACCCACT

DIPTERICIN-F CCCAGCGCTGCTTACTT This study

DIPTERICIN-R CATCATCCAGGCCGAGAAC

ALB-GF GGTTTTGCTTATCAAGCAAAAG [35]

ALB-GR GCGCTGTAAAGAACGTTGATC

ACTIN-F GACTACCTGATGAAGATCCTGAC [36]

ACTIN-R GCACAGCTTTTCCTTGATGTCGC

doi:10.1371/journal.pntd.0002965.t001
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Vector competence for WNV
Virus infection and transmission assays were performed as

described at 7 and 14 days post blood feeding [31–33]. Female

mosquitoes were anesthetized with triethylamine (Sigma, St. Louis,

MO), legs from each mosquito were removed and placed

separately in 1 mL mosquito diluent (MD: 20% heat-inactivated

fetal bovine serum [FBS] in Dulbecco’s phosphate-buffered saline,

50 ug/mL penicillin/streptomycin, 50 ug/mL gentamicin and

2.5 ug/mL fungizone). The proboscis of each mosquito was

positioned in a tapered capillary tube containing 10 uL of a 1:1

solution of 50% sucrose and FBS to induce salivation. After

30 minutes, the contents were expelled into 0.3 mL MD and

bodies were placed individually into 1 mL MD. Mosquito body,

legs and salivary secretion samples were stored at 270uC until

tested for WNV presence and Wolbachia titers. Mosquito bodies

and legs were homogenized for 30 seconds utilizing Qiagen

Tissue Lyser at 24 cycles/second, followed by clarification via

centrifugation for one minute. Mosquito samples were tested for

Figure 1. Fluorescence in situ hybridization of Wolbachia infection in Cx. tarsalis mosquitoes 12 days post injection. Confocal
microscopy of sectioned mosquitoes shows Wolbachia infection in diverse tissues after adult microinjection. A. Wolbachia localized in the abdomen
of Cx. tarsalis. B. Wolbachia infection disseminated to the head and nervous tissue. C. Wolbachia is present in the muscular tissue of the mosquito. D.
Wolbachia infection within and surrounding the ovarian follicles. Arrowheads denote infection within the ovarian follicle. The scale bar represents
50 um. OF; ovarian follicle, MG; midgut, FB; fat body, M; muscle, B; brain, O; omnitidia. Red = Wolbachia; Blue = mosquito DNA.
doi:10.1371/journal.pntd.0002965.g001
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WNV infectious particles by plaque assay on Vero cells [34].

Infection was defined as the proportion of mosquitoes with

WNV positive bodies. Dissemination and transmission were

defined as the proportion of infected mosquitoes with WNV

positive legs and salivary secretions, respectively. Proportions

were compared using Fisher’s exact test. The experiment was

replicated twice.

Quantitative real-time PCR (qPCR) of Wolbachia density
To evaluate Wolbachia density in individual mosquitoes from

vector competence experiments, DNA was extracted using DNeasy

Blood and Tissue kits (Qiagen) and used as template for qPCR on a

Rotor Gene Q (Qiagen) with the SYBR green PCR kit (Qiagen).

Wolbachia DNA was amplified with primers Alb-GF and Alb-GR

[35] and was normalized to the Cx. tarsalis actin gene [36] (Table 1).

Wolbachia to host genome ratios were calculated using Qgene [37].

PCRs were performed in duplicate. Comparisons of Wolbachia titers

between treatments were analyzed using Mann-Whitney U test.

Cx. tarsalis immune gene expression in response to
Wolbachia

To explore Wolbachia effects on mosquito immune gene

expression, one- to four- day old adult female Cx. tarsalis were

anesthetized with CO2 and injected as described above with

Wolbachia (wAlbB) or Schneider’s insect media as control.

Mosquitoes were provided with 10% sucrose ad libitum and

maintained at 27uC in a growth chamber. At 7 dpi, mosquitoes

were blood fed on bovine blood via glass membrane feeder. At

2 dpf, five mosquitoes per treatment were harvested and RNA

extracted using RNeasy mini kits (Qiagen). Extracted RNA was

DNase treated (Ambion #AM1906) and converted to cDNA using

Superscript III with random hexamers (Invitrogen #18080-51)

according to the manufacturers’ protocols. qPCRs were performed

using the Rotor Gene Q (Qiagen) and SYBR Green qPCR kit

(Qiagen) according to the manufacturer’s protocol. Five target

immune genes in the Toll and IMD innate immune pathways

(REL1, REL2, cactus, defensin and diptericin) were selected,

primers designed based on homologous genes in the Anopheles

gambiae, Aedes aegypti and Culex pipiens genomes and normalized to

host actin (Table 1). Gene expression was analyzed by calculating

ratios of target to host gene and tested for significance using Mann-

Whitney U test. All qPCRs were technically replicated twice.

Figure 2. Effect of wAlbB infection status on WNV probability
of infection in Cx. tarsalis. wAlbB infection significantly increases
WNV infection 7 days post-bloodmeal. Asterisk denotes statistical
significance (P = 0.04). N denotes sample size. Error bars represent 95%
binomial confidence intervals.
doi:10.1371/journal.pntd.0002965.g002

Figure 3. Comparison of WNV infection status and Wolbachia
titers in Cx. tarsalis. Wolbachia titers in mosquito bodies were
compared between WNV positive (black symbols) or negative (gray
symbols) bodies, legs and salivary secretions. (A) Infection, (B)
Dissemination, and (C) Transmission.
doi:10.1371/journal.pntd.0002965.g003
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Results

Fluorescence in situ hybridization (FISH)
Using fluorescence in situ hybridization, we observed that wAlbB

establishes an infection in both somatic and germline tissue in Cx.

tarsalis 12 days post injection. Wolbachia disseminated to various

tissues including the head, proboscis, thoracic flight muscles, fat

body and ovarian follicles (Figure 1). Cx. tarsalis appeared heavily

infected, suggesting that adult microinjection is an effective

method to experimentally infect this mosquito species.

Vector competence for WNV
We evaluated the vector competence of Wolbachia-infected and

uninfected Cx. tarsalis for WNV in mosquito bodies, legs and

salivary secretions to determine infection, dissemination and

transmission rates, respectively. Replicate results were similar,

and results from pooled replicates or analysis of individual

replicates were identical, so the pooled analysis is presented for

clarity; results from individual replicates are available as Table S1.

wAlbB-infected Cx. tarsalis displayed significantly higher WNV

infection rates 7 days post-feeding (dpf) (P = 0.04). A similar but

non-significant trend was observed 14 dpf (Figure 2). If mosquitoes

were infected, virus dissemination and transmission rates did not

differ statistically (Table S1).

Quantitative real-time PCR (qPCR) of Wolbachia density
To determine if there was a Wolbachia density effect on WNV

phenotype, qPCR was used to compare Wolbachia titers in

mosquitoes either positive or negative WNV. Wolbachia titers in

WNV-infected versus uninfected Cx. tarsalis did not differ

statistically; similarly, no significant titer differences were found

in individuals that disseminated versus non-disseminated or

transmitted vs. non-transmitted (Figure 3).

Cx. tarsalis immune gene expression in response to
Wolbachia

To elucidate the mechanism behind Wolbachia mediated WNV

infection enhancement in Cx. tarsalis, we evaluated mosquito

immune gene expression in response to Wolbachia using qPCR.

Unlike other systems [38–40], Wolbachia did not induce a

significant immune response in Cx. tarsalis females compared to

the control. In contrast, REL1 (the NF kappa B activator of the

antiviral Toll pathway) was significantly reduced in Wolbachia-

infected mosquitoes compared to controls (one-tailed P = 0.008)

(Figure 4).

Discussion

Caveats of this study
It should be noted that these experiments were performed with

mosquitoes transiently infected in the somatic tissues with

Wolbachia, rather than a stable maternally inherited infection. It

remains to be seen whether a stable wAlbB infection will enhance

WNV in a similar way. Wolbachia density in mosquito somatic

tissues (as opposed to germline) was found to explain differences in

virus infection in Aedes mosquitoes [41]. Thus, it seems likely that if

stable infection in Cx. tarsalis has a similar somatic tissue

distribution to a transient infection it may induce a similar virus

enhancement phenotype. However, this must be tested empirical-

ly. It is also unknown whether virus enhancement is limited to

WNV or occurs more broadly. Finally, we tested a single Wolbachia

strain, and it is unknown whether virus enhancement is specific to

wAlbB or occurs with diverse Wolbachia strains.

Previous studies have shown that pathogen suppression by

Wolbachia has the potential to be a novel method for controlling

vector-borne diseases [4,42–44]. Not all mosquito species are

naturally infected with Wolbachia, but non-infected species may

Figure 4. Cx. tarsalis immune gene expression in response to Wolbachia infection. Expression for each gene was normalized to the S7 gene.
Cx. tarsalis females were injected with Wolbachia or media as control, blood fed 7 days post-injection and harvested 2 dpf to assess expression of five
key immune genes. N = 5 per gene. REL1 expression in Wolbachia injected mosquitoes is significantly higher compared to control (one-tailed
P = 0.008; asterisk). Error bars represent standard errors.
doi:10.1371/journal.pntd.0002965.g004
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support infection once introduced and these novel infections often

effectively inhibit various pathogens [5,45]. Our experiments

indicate that following adult microinjection, Wolbachia is capable of

establishing both somatic and germline infection in Cx. tarsalis but

does not inhibit WNV infection, dissemination or transmission. In

contrast with other studies showing pathogen inhibition by

Wolbachia, our data suggest that Wolbachia may in fact increase

WNV infection rates in Cx. tarsalis, particularly at early time

points. Increased early infection has the potential to shorten the

extrinsic incubation period of the pathogen, which can dramat-

ically increase the reproductive rate of the virus [19]. It has

become increasingly clear that Wolbachia does not always suppress

pathogens in insects [46]. For example, the cereal crop pest

Spodoptera exempta is more susceptible to nucleopolydrovirus

mortality in the presence of Wolbachia [47]. In the mosquitoes

An. gambiae An. stephensi, Ae. fluviatilis and Cx. pipiens, Wolbachia

enhances Plasmodium berghei, P. yoelii, P. gallinaceum and P. relictum,

respectively [17–20]. Enhancement may be dependent on the

host-Wolbachia strain-pathogen system of interest, as Wolbachia

strains that block one pathogen yet enhance another have been

documented [9,17]. Wolbachia-mediated pathogen enhancement

may be a common yet often ignored phenomenon, which merits

attention when designing Wolbachia-based strategies for disease

control [46].

Intracellular infection with bacteria may alter the cellular

environment in multiple ways, including bacterial manipulation to

avoid host immune defenses [48]. Though the exact Wolbachia-

mediated inhibition mechanism is unknown, studies have suggest-

ed that Wolbachia indirectly modulates mosquito immunity [40,49].

Wolbachia can activate the Toll pathway, stimulating a cascade of

events that have been correlated with inhibition of dengue and

Plasmodium in mosquitoes [39,50,51]. In contrast, in Cx. tarsalis,

wAlbB infection significantly downregulated REL1 (the activator

of the Toll pathway), suggesting that in this system Wolbachia may

down regulate antiviral Toll-based immunity leading to increased

virus infection. However, while statistically significant, this

decrease in REL1 expression was modest, and further study is

required to determine the precise mechanism of Wolbachia-based

WNV enhancement in this system.

To our knowledge this is first study showing Wolbachia can

potentially enhance a vector-borne pathogen that causes human

disease. Our results, combined with other Wolbachia enhancement

studies [17–20,46–47], suggest that field deployment of Wolbachia-

infected mosquitoes should proceed with caution. Wolbachia effects

on all potential pathogens in the study area should be determined.

Additionally, several studies have shown that Wolbachia is capable of

horizontal transfer to other insect species which could have

unforeseen effects on non-target insects [52–54]. A lack of

understanding of Wolbachia-pathogen-mosquito interactions could

impact efficacy of disease control programs. Cx. tarsalis is a competent

vector for many human pathogens, and further studies that assess

alternative Wolbachia strains and viruses in Cx. tarsalis may elucidate

the importance of host background on pathogen interference

phenotypes in this medically important mosquito species.

Supporting Information

Figure S1 FISH controls. Red: Wolbachia, Blue: mosquito

DNA, Green: background fluorescence. Top row: positive (wAlbB)

control.

(PDF)

Table S1 Results from individual vector competence
replicates.

(PDF)
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