
Genome-Wide Data reveals Novel Genes for Methotrexate 
Response in a Large Cohort of Juvenile Idiopathic Arthritis 
Cases

Joanna Cobb, PhD1,^,#, Erika Cule, PhD2,^, Halima Moncrieffe, PhD3,^, Anne Hinks, PhD1, 
Simona Ursu, PhD3, Fiona Patrick, BSc3, Laura Kassoumeri, BSc3, Edward Flynn, MSc1, 
Maja Bulatović, MD4, Nico Wulffraat, MD PhD4, Bertrand van Zelst, BSc5, Robert de Jonge, 
PhD5, Marek Bohm, PhD6, Pavla Dolezalova, PhD6, Shashi Hirani, PhD7, Stanton Newman, 
D.Phil7, Pamela Whitworth8, Taunton R Southwood, MD8, Childhood Arthritis Response to 
Medication Study (CHARMS), Childhood Arthritis Prospective Study (CAPS), BSPAR study 
group, Maria De Iorio, PhD9, Lucy R Wedderburn, MD PhD3,10,*, and Wendy Thomson, 
PhD1,*

1Arthritis Research UK Epidemiology Unit and NIHR Manchester Musculoskeletal Biomedical 
Research Unit, Central Manchester University Hospitals National Health Service Foundation 
Trust, Manchester Academic Health Science Centre, The University of Manchester, UK 
2Department of Epidemiology and Biostatistics, Imperial College London, London, UK 
3Rheumatology Unit, UCL Institute of Child Health, 30 Guilford Street, London, UK 4Department 
of Paediatric Immunology, University Medical Centre Utrecht, Wilhelmina Children’s Hospital, 
Utrecht, The Netherlands 5Department of Clinical Chemistry, Erasmus University Medical Centre, 

Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
#Corresponding Author: Dr Joanna Cobb, Arthritis Research UK Epidemiology Unit, The University of Manchester, Oxford Road, 
Manchester, M13 9PT, UK, joanna.cobb@manchester.ac.uk, Tel: +44 161 275 1669; Fax: +44 161 275 5043.
^These authors contributed equally
*These authors made equal contribution as senior authors
British Society of Paediatric and Adolescent Rheumatology (BSPAR) study group:
Mario Abinum, A. Bell, Alan W. Craft, Esther Crawley, Joel David, Helen Foster, Janet Gardener-Medwin, Jane Griffin, A. Hall, M. 
Hal, Ariane L. Herrick, P. Hollingworth, Lennox Holt, Stan Jones, Gillian Pountain, Clive Ryder, Tauny Southwood, I. Stewart, Helen 
Venning, Lucy R. Wedderburn, Patricia Woo, Sue Wyatt.
Childhood arthritis prospective study (CAPS):
Eileen Baildam, Nick Bishop, Lynsey Brown, Joanne Buckley, Alice Chieng, Roberto Carrasco, Joanna Cobb, Lucy Cook, Joyce 
Davidson, Annette Duggan, Michael Eltringham, Helen Foster, Elizabeth Friel, Mark Friswell, Janet Gardner-Medwin, Paul Gilbert, 
Vikki Gould, Kelly Hadfield, Kimme Hyrich, Julie Jones, Sham Lal, Mark Lay, Gabrielle Lloyd, Olivia Lloyd, Carol Lydon, Natasha 
Makengo, Ann McGovern, Alexandra Meijer, Nicola Mills-Wierda, Theresa Moorcroft, Vicki Price, Liang Qiao, Kay Riding, Jane 
Sim, Tauny Southwood, Wendy Thomson, Maureen Todd, Susan Tremble, Katharine Venter, Debbie Wade, Peter Ward, Sharon 
Watson, Gwen Webster, Lucy R Wedderburn, Jadranka Zelenovic
Sparks-Childhood Arthritis Response to Medication Study (CHARMS):
Katrin Buerkle, Joanna Cobb, Catherine Cotter, Angela Etheridge, Paul Gilbert, Anne Hinks, Shashi Hirani, Laura Kassoumeri, Sham 
Lal, Laura Melville, Halima Moncrieffe, Kathleen Mulligan, Stanton Newman, Fiona Patrick, Tauny Southwood, Wendy Thomson, 
Simona Ursu, Lucy R Wedderburn, Pamela Whitworth, Patricia Woo.
CONTRIBUTOR STATEMENT
WT, LRW, M de I, HM, EC, and JC led the study. LRW established the CHARMS study cohort. LW, SU, HM, FP, LK, MB, NW, 
MB, PD, PW, and TRS collected samples and data. JC, EC, HM, LW and WT wrote the manuscript. JC and EF performed the 
genotyping. JC, EC, M de I performed the statistical analysis. All other authors contributed primarily to the patient ascertainment 
and/or data and sample collection and preparation. All authors reviewed the final manuscript.

COMPETING INTERESTS
NW received an unrestricted grant from MEDAC Germany. PD received a research grant from Novartis .The other authors declare no 
competing interests.

Europe PMC Funders Group
Author Manuscript
Pharmacogenomics J. Author manuscript; available in PMC 2015 February 01.

Published in final edited form as:
Pharmacogenomics J. 2014 August ; 14(4): 356–364. doi:10.1038/tpj.2014.3.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Rotterdam, The Netherlands 6First Faculty of Medicine and General Faculty Hospital, Charles 
University in Prague, Praha, Czech Republic 7Centre for Health Services Research, School of 
Health Sciences, City University London, London, UK 8Institute of Child Health, Birmingham 
Children’s Hospital, Birmingham, UK 9Department of Statistical Sciences, University College 
London, Gower Street, London, UK 10Arthritis Research UK Centre for Adolescent 
Rheumatology, UCL Institute of Child Health, 30 Guilford Street, London, UK

Abstract

Clinical response to methotrexate (MTX) treatment for children with juvenile idiopathic arthritis 

(JIA) displays considerable heterogeneity. Currently, there are no reliable predictors to identify 

non-responders: earlier identification could lead to targeted treatment. We genotyped 759 JIA 

cases from the UK, Netherlands and Czech Republic. Clinical variables were measured at baseline 

and 6 months after start of treatment. In Phase I analysis samples were analysed for association 

with MTX response using ordinal regression of ACR-pedi categories and linear regression of 

change in clinical variables, and identified 31 genetic regions (P<0.001). Phase II analysis 

increased SNP density in the most strongly associated regions, identifying 14 regions (P<1×10−5): 

three contain genes of particular biological interest (ZMIZ1, TGIF1 and CFTR). These data 

suggest a role for novel pathways in MTX response and further investigations within associated 

regions will help reach our goal of predicting response to MTX in JIA.
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INTRODUCTION

Juvenile Idiopathic Arthritis (JIA) is a heterogeneous condition with variable outcome and 

considerable ongoing disease burden [1]. Studies indicate that functional disability and 

complications due to JIA are still common in many teenagers and young people with JIA, 

and that the effects of early, uncontrolled inflammation may cause irreversible damage to 

joints and other tissues [2-4]. Thus improving long-term outcomes of children with JIA 

remains a critical challenge. Recent studies in JIA have indicated that early control of joint 

inflammation correlates with much improved outcomes, suggesting an early ‘window of 

opportunity’ when disease control can translate to profound long-term benefit [5]. It is 

known that not all children respond equally well to any given therapy. Despite increasing 

availability of new therapeutic options for treating inflammation in JIA, clinicians have no 

validated tools to help predict likelihood of good response to a particular drug. Therefore the 

current treatment strategy is to offer disease-modifying drugs in a sequential approach, with 

choices typically driven more by cost or safety profile than by scientific evidence.

The first line disease-modifying agent for JIA is methotrexate (MTX). Although MTX has 

proven efficacy in randomised trials and a good long-term safety record, response to MTX 

displays considerable heterogeneity in JIA with a significant ‘non-response’ rate of 35% or 

more of cases [6]. Additionally, consensus concerning level of ‘response’ that is considered 
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acceptable has shifted, with a target of complete control of inflammation now being 

advocated [7]. These developments combined with ever increasing availability of newer 

biologic treatments, provide further imperative for the discovery of biomarkers to aid the 

identification of children who require early aggressive therapy, compared to those who can 

achieve clinically inactive disease on MTX alone.

Response to treatment is thought to be a complex trait involving multiple genetic variants 

and environmental factors [8]. However, to date genetic studies of MTX response have been 

limited for both JIA and rheumatoid arthritis (RA) and have only utilised a candidate gene 

approach, focussing largely on genes affecting MTX transport and metabolism, enzymes 

influenced by MTX and adenosine pathways [9-16], recently reviewed in [17].

Given that the mechanisms of action of MTX in JIA are poorly understood, candidate gene 

studies may miss key pathways of mechanistic importance. Pharmacogenetic studies in other 

diseases have shown that genes other than those directly involved in known drug pathways 

often play key roles in variation of drug response [18]. In order to capture the genetic 

component more comprehensively, we brought together an International Consortium of 

investigators (the CHARMS-JIA GWAS International Consortium), and employed a 

genome wide approach to study response to MTX in a large cohort of children with JIA.

METHODS

Study Population

A cohort of children was recruited for the SPARKS-CHARM (CHildhood Arthritis 

Response to Medication) Study which has the overall aim to improve understanding of the 

variability in response to treatment observed in children with JIA and ultimately define a 

multifactorial model of response outcomes [14], and through the CHARMS-JIA GWAS 

International Consortium. All cases fulfilled the International League of Associations for 

Rheumatology (ILAR) criteria for JIA and were about to start new MTX treatment for active 

arthritis [14]. The study had full ethical approval and was fully compliant with the 

Declaration of Helsinki; parents provided fully informed consent, and patients provided age-

appropriate assent. Samples and data were collected using the same inclusion and exclusion 

criteria at Great Ormond Street Hospital London, Birmingham Children’s Hospital, 

Department of Paediatrics and Adolescent Medicine Charles University Prague, Wilhelmina 

Children’s Hospital and University Medical Centre Utrecht, and also as part of the 

Childhood Arthritis Prospective Study (CAPS), a prospective inception cohort study of JIA 

cases from five centres across the UK [19].

A total of 759 individuals were included from all subtypes of JIA, classified according to 

ILAR criteria [20]. Demographic and clinical data were collected at baseline (up to 4 weeks 

before beginning MTX treatment) and again after 6 months (median 6.2 months, range 4–8 

months) of MTX treatment. MTX was given orally or subcutaneously at 10–15 mg/m2 per 

week (median 11.3 mg/m2 per week). No other DMARDS were taken concurrently. Steroid 

treatment was recorded if administered at any point between baseline and follow-up. 370 

children received at least one form of steroid medication: this comprised oral prednisolone 

in 204 children, pulsed iv methylprednisolone was taken by 99 children, while intra-articular 
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joint injections were given to 204 children. Despite patients coming from different regions 

in Europe, the indications and protocols for use of MTX in JIA were the same across 

centres.

Clinical data included the six core set variables; erythrocyte sedimentation rate (ESR), 

childhood health assessment questionnaire (CHAQ) 0-3 [21], active joint count (AJC), 

limited joint count (LJC), physician’s global assessment on a visual analogue scale 

(PhysVAS) 0-10cm, and the parent/patient global assessment (ParVAS) 0-10cm. As this is 

an observational study, missing data differed for each core set variable. These variables were 

used to categorise patients according to the American College of Rheumatology paediatric 

(ACR-pedi) 30, 50, and 70 improvement criteria, or as non-responders [22]. Note that all 

children who reach ACR-pedi70 automatically also reach ACR-pedi30 and 50, while those 

who achieve ACR-pedi50 also achieve ACR-pedi30. In order not to count any child more 

than once, we defined the level of response for each child by the highest level of response 

achieved (ACR-pedi 30, 50 or 70).

Genotyping

Samples were genotyped using the Illumina HumanOmniExpress infinium array, according 

to Illumina’s protocols in Manchester, UK. The default Illumina clustering algorithm 

(GenTrain2.0) was used to cluster SNPs in the software package GenomeStudio. SNPs were 

excluded if they had a call rate <98% and a cluster separation score of <0.4. Samples were 

then excluded for call rate <98%, incompatible recorded and genotype inferred gender, 

duplicates and evidence of identity by descent, or those with outlying heterozygosity. 

Combining the samples with data from HapMap Phase 3 individuals, principal component 

(PC) analysis was performed using Eigensoft v4.2 to identify extreme ethnic outliers 

[23;24]. PC analysis was performed on a subset of SNPs with minor allele frequency (MAF) 

≥0.05, selected by removing SNPs in known regions of high linkage disequilibrium (LD) 

[25] and further pruned for LD between markers. Samples failing to cluster with European 

HapMap individuals were visually identified and removed. SNPs were excluded from the 

analysis if they had a MAF<0.05 and failed the Hardy-Weinberg equilibrium test (P≤ 

0.001). To assess our dataset for potential systematic over-inflation due to stratification, the 

genomic control inflation factor (λGC) was calculated using the same SNP subset as used in 

the PC analysis. Cluster plots were visually inspected for the most associated SNPs to 

confirm genotyping quality.

Statistical Analysis

Data were available on a number of potential confounding variables: gender, sample 

collection centre, presence or absence of concurrent steroid treatment, age at treatment 

baseline, time to treatment, duration of treatment and ILAR subtype (grouped into three 

categories: (1) oligoarthritis: persistent and extended, (2) polyarthritis: RF negative and 

positive, (3) psoriatic, enthesitis related, systemic and unclassifiable arthritis) (9). Each of 

these potential confounders were assessed for association with each core set variable. 

Moreover, presence of population stratification was checked using the first five PCs of the 

genotype dataset.
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Statistical analysis was performed using Plink v1.07 [26] and R v2.15 (http://www.r-

project.org), and plots were generated using R and LocusZoom [27]. SNPs were coded by 

minor allele count as 0, 1, 2. MTX response was defined using the ACR-pedi criteria with 

four categories: non-responders (reference category), ACR-pedi30, ACR-pedi50, ACR-

pedi70, and association between genotype and MTX response was analysed using ordinal 

regression. Similar to other genetic studies of drug response measured by composite disease 

scores [18], we hypothesise that attempting to identify the underlying genetic basis of MTX 

response may be usefully performed by analysing each of the core set variables individually, 

since it is likely that the genetic basis of each of these is different, with varying contributions 

to MTX response. As the core set variables are not entirely independent from one another or 

the ACR-pedi status, the multiple testing burden is not as great as if we performed multiple 

tests on independent outcomes. Core set variables (ESR, CHAQ, AJC, LJC, PhysVAS, 

ParVAS) were recoded as change between baseline and follow-up, and linear regression was 

used to assess the strength of association for each.

We conducted our analysis in two phases (I and II) with the same individuals in each 

analysis phase. We utilised a low stringency of significance in Phase 1 of the analysis in 

order to maximise discovery of loci for more detailed investigation in Phase II, where a 

more stringent significance threshold was set. In Phase I of the analysis, results from the 

ordinal regression of ACR-pedi categories and six linear regressions of the core set variables 

(ESR, CHAQ, AJC, LJC, PhysVAS, ParVAS), totalling seven analyses, were used to 

identify genomic regions of interest for further investigation. The significance threshold 

selected (P<0.001) allows for greater emphasis on power than reducing type I error to enable 

hypothesis generation, an approach taken previously [18].

Regions were then selected for further analysis (Phase 2) by searching for clusters of 

associated SNPs (P<0.001 in at least two of the seven analyses) and extending out to include 

all SNPs within the annotated gene (based on the Illumina HumanOmniExpress gene 

annotation file, hg19). This resulted in regions of interest of varying sizes (range 

0.02kb-12.8mb, average 1359kb). The aim of Phase II was to refine these regions. This was 

performed using SNP imputation to increase the density of SNP coverage in those regions. 

SHAPEIT v1 was used to pre-phase genotypes and SNPs were imputed against the 1000 

Genomes Project reference panel (approximately 37 million SNPs) using IMPUTE2 [28;29]. 

Imputed SNP genotypes reaching the probability threshold 0.9 were included in the follow-

up re-analysis, which focused on only these imputed regions using the same samples as 

Phase I and performed ordinal and linear regressions as described in Phase I. Regions 

containing at least one SNP in Phase II with association P<1×10−5 are the focus of the 

results presented here.

Power Calculation

Study power was estimated at the two significance thresholds used in Phase I (P<0.001) and 

Phase II (P<1×10−5) of the analyses, over the range of sample sizes available, and assuming 

the variance explained by the additive effect of the SNP tested ranged from 0.01-0.1 under 

an additive genetic model.
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Functional Annotation

In order to gain a better understanding of the potential biological impact of our results, the 

most highly associated SNPs identified in Phase II (as well as SNPs in high linkage 

disequilibrium (r2>0.8)) were queried using the web tool Assimilator (http://

assimilator.mhs.manchester.ac.uk/cgi-bin/assimilator.pl) [30]. This facilitates collation of 

functional annotations from the publically available ENCODE and UCSC Genome Browser 

databases. Using the advanced search options available, output was focussed on whether any 

of the Phase II associated SNPs have shown evidence of transcription factor binding sites, 

evidence for open chromatin suggesting regions of active gene expression, and epigenetic 

marks which may be affected by drug treatment [31].

RESULTS

Following stringent quality control, 694 JIA cases were available for analysis 

(Supplementary Table 1A and 1B) comprising individuals from all ILAR subtypes (Table 

1). 31% of children were non–responders (less than ACR-pedi30 response). Among 

responders, categorised by their highest level of response achieved, 8.6% of children 

reached ACR-pedi30, 14.6% ACR-pedi50 and 45.8% ACR-pedi70 response. Samples 

clustered together in the PC analysis (Supplementary Figure 1) and therefore were analysed 

together. Following the SNP quality control steps and removal of low frequency variants 

(MAF<0.05), 586,062 SNPs were included in the Phase I analyses (Supplementary Table 1). 

Quantile-quantile plots and inflation factors showed no systematic inflation of P values 

(Supplementary Figure 2), and power was estimated to range from 10-100% across the 

analysed sample sizes for various effect sizes (Supplementary Figure 3).

None of the potential confounding variables tested (gender, ILAR JIA subtype, centre, age 

at treatment baseline, duration of treatment, time to treatment, steroid treatment or PCs 

generated to identify ethnic outliers) were associated with all six individual core set 

variables (data not shown); therefore to reduce loss of analysis power no adjustments were 

made to the linear or ordinal regressions.

In the hypothesis generating Phase I of the analysis, using both ACR-pedi and the individual 

core set variables, 31 genetic regions encompassing 75 nearby genes achieved our defined 

level of significance (P<0.001 in at least 2 of the 7 analyses), Table 2 and Supplementary 

Table 2. This included several notable associations such as genes related to TGFbeta 

signaling (ZMIZ1: zinc finger MIZ-type containing 1, TGIF1: TGFB-induced factor 

homeobox 1) and a member of the multi-drug resistance subfamily of the ATP-binding 

cassette transporter proteins (CFTR: cystic fibrosis transmembrane conductance regulator). 

Overall in Phase I, the most significant was a variant within an intron of the calcium channel 

CACNA1I (voltage-dependent calcium channel T type alpha 1I subunit) in the analysis of 

active joint count (AJC) (rs136855, region 31, ß coefficient= 2.71, P= 9.18×10−8, see 

Supplementary Table 2). Two regions showed strong evidence with 13 SNPs in each 

associated at P<1×10−4 across several analyses (Region 12, CFTR-CTTNBP2: ParVAS, 

LJC, CHAQ; Region 20, ZMIZ1: ACR-pedi, ParVAS, ESR, CHAQ LJC, AJC; Figure 1). 

Using the 31 significant genetic regions found in the discovery phase of the analysis, the 

next analysis performed was to narrow down the genetic region of interest.
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Phase II of analysis involved imputation of SNPs within the 31 regions identified in Phase l 

to refine the association signals by increasing SNP density. After imputation, using the 

increased Phase II significance threshold of P<1×10−5 this analysis identified 14 of the 

initial 31 genetic regions as the most strongly associated with response to MTX (Table 3, 

Supplementary Figure 4). Overlapping associations of SNPs were revealed for AJC and LJC 

in several genetic regions (regions 16, 17, 23 and 28). In one of these regions (region 23, 

chromosome 11 intergenic between ANGPTL5-KIAA1377) the top associated SNP was the 

same (rs11225055), and in the other three regions the most significant associated SNPs for 

the AJC and LJC analyses were in very high LD (r2≥0.97). In all four regions showing 

association with ACR-pedi (regions 2, 12, 20 and 24), the ParVAS and/or PhysVAS scores 

were also associated.

Functional annotations for the most highly associated Phase II SNPs from Table 3 (plus 

SNPs in high LD (r2>0.8) with these lead SNPs) were assigned using Assimilator software 

[30]. The results presented in Supplementary Table 3 suggest the regions identified in Phase 

II of the analysis contain evidence of many markers of regulation and highlight many 

possible functional mechanisms. Certain regions were less fully covered by current 

databases, for example region 14 containing the gene CSMD1. Others including region 30 

containing the gene CYTH4 (cytohezin 4), have more evidence for regulatory activity, 

including multiple SNPs showing evidence of acting as an expression quantitative trait loci 

(eQTL) [32].

DISCUSSION

Recent developments in treatments and management of childhood arthritis have lead to 

increased expectations from clinicians, parents and patients for complete control of disease 

and consequent reduction of long-term adverse health outcomes [4;5;33]. The first step in 

JIA treatment, in parallel with joint injections, is typically administration of MTX: however 

it is clear that a proportion of patients treated with MTX will fail to respond adequately. 

Given recent recommendations for early aggressive treatment, it is important that MTX 

treatment is targeted to those children most likely to respond well [34]. Increasing our 

understanding of the influence of genetic variants in MTX response could assist clinicians to 

choose the best treatment options for their patients and identify patients who need more 

aggressive treatments. Performing large-scale genetic studies searching for variants 

contributing to MTX response has great appeal, but has proved challenging due to the 

relative rarity of JIA and lack of well co-ordinated international efforts. With this in mind, 

the CHARMS-JIA GWAS International Consortium facilitated the collection of carefully 

phenotyped response to medication data, and DNA samples from children with JIA treated 

with MTX for their arthritis, enabling the largest genetic analysis of MTX response in JIA to 

date. In Phase I of the analysis a total of 31 regions were identified as associated with 

response to MTX at P<0.001. To narrow down these genetic regions, additional SNPs were 

imputed in Phase II of the analysis, with the results in 14 regions satisfying a more stringent 

cut-off of P<1×10−5. The most strongly associated locus was CACNA1I which encodes the 

alpha chain of a low voltage-activated calcium channel that has been implicated in calcium 

signalling in neurons and may have other roles that have yet to be characterised. Other 

notable associated genes include CFTR, ZMIZ1 and TGIF1. Although the genes identified 
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from this analysis need replication in independent cohorts, they provide some plausible 

novel candidates for further investigations into MTX response.

One association of considerable interest is the cystic fibrosis transmembrane conductance 

regulator gene, CFTR. The peak association signal for this region is within the 3′ end of the 

downstream CTTNBP2 gene (Figure 1b); this is interesting since it is known that CTFR 

expression is regulated by complex structural looping involving this region of CTTNBP2 

[35]. CFTR, also known as ABCC7, is a member of the ATP-binding cassette transporter 

superfamily, specifically the multi-drug resistance subfamily. These proteins are known to 

be important to drug transport and elimination [36]. Interestingly, a gene within the same 

subfamily, ABCC3, which is known to be involved in MTX efflux has recently been shown 

to contain a SNP (rs4793665) associated with MTX response in a cohort of 287 Dutch JIA 

patients [10]. This finding led us to specifically review this gene within our results despite it 

not fulfilling the selection criteria for Phase I or II. We found that rs4793665 was not 

directly genotyped in this study nor were there SNPs within r2≥0.8 on the chip; however 

there were 38 SNPs within the introns/exons of ABCC3 genotyped, with 15 showing 

association in our cohort at P<0.05 with the MTX response outcomes analysed (except 

ESR). The most associated of these, rs4148411 within an intron of ABCC3, was found in the 

PhysVAS analysis (P= 7.55×10−5) and is in low LD with the SNP identified by de Rotte and 

colleagues (r2=0.02), suggesting that comprehensive further investigation of this gene is 

warranted.

Interestingly our study identifies several genes related to TGFbeta signalling as being 

associated with response to MTX. ZMLZ1 has been identified in several GWAS of 

autoimmune diseases [37-40]. It is a member of the protein inhibitor of activated STAT 

family, is known to regulate several transcription factors (androgen receptor, Smad3/4, p53) 

and TGFbeta/SMAD signalling, and is induced by retinoic acid [41]. It is well established 

that TGFbeta/SMAD and retinoic acid have important roles in the balance between Th17 

and Treg cells [42], which are known to impact directly upon JIA severity [43]. Therefore a 

possible role for this gene in response to treatment in JIA is of considerable interest. 

Corroborating this finding, another associated region contains TGFbeta-induced factor 

homeobox 1 (TGIF1), known to be an active transcriptional corepressor of SMAD2 and to 

modulate the down-regulation of aryl hydrocarbon receptor (AhR) [44;45]. Together these 

results suggest TGFbeta signalling is a strong biological candidate for a role in reducing 

disease activity with MTX treatment. These data are of particular interest, since they directly 

parallel our gene expression profiling studies, which identified TGFbeta signalling, TGFB-2 

and the zinc finger protein ZEB1, which interacts with SMAD signalling proteins, as being 

involved in response to MTX in children with JIA [14].

Four genetic regions associated with ACR-pedi status also showed associations with either 

ParVAS or PhysVAS. In some research studies, using the ACR-pedi status can present 

difficulties due to missing data observed in long-term observational cohorts. This finding 

suggests the ACR-pedi, ParVAS and PhysVAS scores measure MTX response similarly, 

leading to the possibility that both ParVAS and PhysVAS could be used to measure 

response to treatment, when full clinical data are unavailable.
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To our knowledge, this is the first report of a large-scale genetic association study of MTX 

response in inflammatory arthritis: despite several international efforts in GWAS studies of 

JIA and RA as a whole, no previous large-scale analysis of MTX response are available to 

date, perhaps in part due to the considerable challenges of collecting adequate numbers of 

cases with detailed response data as well as DNA. A study investigating interferon-beta 

treatment in MS (using 53 responders and 53 non-responders), found that of the best 

associations most were in glutamate and interferon receptors, a cell-cycle dependent protein, 

and guanosine triphosphatase-activating and zinc-finger proteins, all genes not known to be 

directly involved in the drug metabolism pathway [46]. A recent GWAS in 706 RA patients 

treated with tocilizumab, a biologic therapy targeting the interleukin (IL)-6 receptor, found 

eight putative loci associated with tocilizumab efficacy; however none were in known RA 

risk or IL-6 pathways [18]. Similarly, our results suggest that multiple genes determine 

response to MTX treatment in JIA, and not just those in known MTX pathways. In fact, 

none of the MTX pathway genes previously investigated in candidate gene studies in both 

JIA and RA met our selection criteria for Phase II. This is possibly due to the small sample 

size and lack of power in previous studies resulting in false positive associations, and may 

be additionally confounded by the power limitations of our study including the availability 

of ACR-pedi scores on only a subset of our cohort. Despite this, the lack of strong 

association in the MTX pathway genes is interesting, and suggests that novel pathways and 

mechanisms, hitherto not known, may be important to pursue in order to understand and 

fully elucidate the actions of MTX and the genes involved in success or failure of MTX 

treatment [47]. It also suggests that the previously developed MTX efficacy prediction 

models for both RA [16] and JIA [9] could be further enhanced or further optimised by 

incorporating additional genetic variants outside the MTX pathway genes.

Previous investigations of the genetics of MTX response in JIA have been small, often 

underpowered, studies taking a candidate gene approach focussing on genes in MTX drug 

pathways. In contrast, this study is large and comprehensively covers the genome, the first 

of its kind for JIA. We have identified several regions of interest, three of which show a 

remarkable degree of functional overlap with genes and pathways implicated by gene 

expression profiling and previous candidate gene studies. By analysing each clinical 

outcome variable individually we show their genetic contributions to MTX response may 

differ, although with interesting overlap in novel candidates including TGIF1, ZMIZ1 and 

CFTR. Future targeted replication of the exciting novel regions identified is now required to 

confirm these findings. This study provides an excellent basis for the future development of 

genetic risk models for MTX response prediction.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A) Linear regression analysis of ZMIZ1 (region 20) for the change in ESR with MTX 

treatment, with the top hit in this region rs2802369 coloured purple. Similar results were 

seen for the ParVAS, CHAQ, and ACR-pedi analyses of this region. B) Linear regression 

analysis of CFTR-CTTNBP2 (region 12) for parent’s global assessment (ParVAS), with the 

top hit in this region rs757278 coloured purple. Similar results were seen for the ACR-pedi 

and LJC analyses of this region. Coordinates are based on the NCBI36 assembly.
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