
Stability analysis of 4-species Aβ aggregation model: A novel
approach to obtaining physically meaningful rate constants

G. Ghaga, P. Ghoshb, A. Mauroc, V. Rangacharia, and A. Vaidyad,*

a Department of Chemistry and Biochemistry, University of Southern Mississippi, 118 College Dr,
# 5043, Hattiesburg, MS 39406, United States

b Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23220,
United States

c Department of Chemistry and Biochemistry, Montclair State University, Montclair, NJ 07043,
United States

d Department of Mathematical Science, Montclair State University, Montclair, NJ 07043, United
States

Abstract

Protein misfolding and concomitant aggregation towards amyloid formation is the underlying

biochemical commonality among a wide range of human pathologies. Amyloid formation involves

the conversion of proteins from their native monomeric states (intrinsically disordered or globular)

to well-organized, fibrillar aggregates in a nucleation-dependent manner. Understanding the

mechanism of aggregation is important not only to gain better insight into amyloid pathology but

also to simulate and predict molecular pathways. One of the main impediments in doing so is the

stochastic nature of interactions that impedes thorough experimental characterization and the

development of meaningful insights. In this study, we have utilized a well-known intermediate

state along the amyloid-β peptide aggregation pathway called protofibrils as a model system to

investigate the molecular mechanisms by which they form fibrils using stability and perturbation

analysis. Investigation of protofibril aggregation mechanism limits both the number of species to

be modeled (monomers, and protofibrils), as well as the reactions to two (elongation by monomer

addition, and protofibril–protofibril lateral association). Our new model is a reduced order four

species model grounded in mass action kinetics. Our prior study required 3200 reactions, which

makes determining the reaction parameters prohibitively difficult. Using this model, along with a

linear perturbation argument, we rigorously determine stable ranges of rate constants for the

reactions and ensure they are physically meaningful. This was accomplished by finding the ranges

in which the perturbations dieout in a five-parameter sweep, which includes the monomer and

protofibril equilibrium concentrations and three of the rate constants. The results presented are a

proof-of-concept method in determining meaningful rate constants that can be used as a bonafide
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way for determining accurate rate constants for other models involving complex biological

reactions such as amyloid aggregation.
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1. Introduction

Protein aggregation is now being recognized as one of the fundamental processes in cell

biology that seem to play a role in both cell toxicity and survival. More commonly known

for their pathogenicity in neurodegenerative diseases, amyloid aggregates are also seen to

take part in functional roles [6]. One of the most widely investigated amlyloid proteins is the

amyloid-β (Aβ) peptide that is implicated in Alzheimer's disease (AD). The intrinsically

disordered monomeric Aβ peptide aggregates to form large molecular weight, insoluble

fibrils that deposit as senile plaques in the brains of AD patients [19]. The process of Aβ

aggregation, as well as other amyloidogenic proteins, is highly stochastic but follows a

nucleation-dependent mechanism in which a specific structural re-organization and

concomitant self-assembly is a prerequisite for the aggregation process to occur. The

nucleation-dependent mechanism displays a characteristic sigmoidal growth curve

containing a lag-phase, where the nucleation occurs, followed by rapid growth and

saturation (Fig. 1; inset). Stochasticity in this process can be appreciated by the fact that it

involves multiple scales of the reactions (temporal and spatial) that can give raise to multiple

nucleation events leading to heterogeneous assembly, depending on the experimental

conditions.

In our previous study, we have demonstrated the temporal modeling of Aβ aggregation using

a top-down approach by systematically dissecting the sigmoidal growth into experimentally

verifiable segments [7]. In the same article, we specifically described the post-nucleation

event involving protofibril elongation and association using ODE-based simulations, and

derived the rate constants involved in such processes. In the current paper, we have taken the

biophysically and computationally well characterized processes of Aβ protofibril elongation

and association as a model interactions, to perform the perturbation analysis, to demonstrate

and distinguish between the kinetically- and thermodynamically-stable products. More

specifically, this paper demonstrates a novel method of selecting appropriate rate constants,

when there is no clear way of identifying them, which render the system of equations

physically meaningful by incorporation of kinetic and thermodynamic features.

In this work, we model the Aβ aggregation reactions highlighted in Fig. 1. In the reduced-

order model developed and employed here, the monomer to protofibril pathway (which

includes nucleation) is combined into a single reaction step and the two potential pathways

for elongation are conserved. The rate constants in this system of equations are unknown

thereby making the solvability of the system impossible. Parametric fitting of the system to

experimental data is very difficult due to the complexity of the problem and the abundance

of species. Therefore, it is proposed that perturbation arguments and thermodynamic
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stability can be used to simplify the process of determining the rate constants. The

corresponding differential equations are then used to derive a set of first-order perturbed

differential equations. The two forward rate constants with which the present work is

concerned are kpe, for protofibril to elongation reactions, and kpa, for protofibril to

association reaction rate constant, which are systematically varied to determine which pairs

of solutions produce stable solutions for the perturbed system. The pairs of solutions that are

allowed are then subjected to thermodynamic constraints in an effort to further reduce the

allowable pairs of solutions.

In Sections 2 and 3, we discuss the experimental methodology and results. The following

Section 4 is devoted to the development of the reduced order model and also to the

introduction and implementation of the new methodology of determining rate constants.

These new rate constants are then introduced into the model system and solved numerically.

We also discuss the relevance and justification of this process and compare the results of our

theory with those obtained from experiments.

2. Experimental materials and methods

The standard approaches: thioflavin-T (ThT) staining and dynamic light scattering (DLS)

experiments were done to measure the formation of elongated and associated aggregates

respectively, as a function of time. The details of the experimental methods are explained in

the rest of this section followed by the results obtained.

Aβ42 was synthesized by the Peptide Synthesis Facility at the Mayo Clinic (Rochester, MN)

using routine Fmoc chemistry. MALDI-ToF mass spectrometry revealed >90% purity of the

peptide. Sodium dodecylsulphate (SDS) and thioflavin-T were procured from Sigma (St.

Louis, MO). All other chemicals were obtained from VWR Inc.

Any pre-formed aggregates of Aβ42 were removed by purifying the crude peptide by size

exclusion chromatography (SEC) on a Superdex-75 column in order to eliminate seeds in

our reactions. The fractions corresponding to the monomers were used to make fresh

protofibrils (Ps) as previously reported [7]. Briefly, 50–60 μM of Aβ42 monomer in 20 mM

Tris–HCl, pH 8.0 and 50 mM NaCl were agitated at 25 degrees for 8–12 h. The P formation

was monitored by ThT fluorescence by periodically taking aliquots of the reaction mixture.

Each time, the samples were centrifuged at 19000× g for 20 min and ThT fluorescence was

recorded for the supernatant to monitor the presence of soluble Ps in the supernatant. After

optimal fluorescence increase, the sample was again centrifuged at 19000× g for 20 min and

the supernatant was collected. The supernatant was then subjected to SEC fractionation

using a Superdex-75 column. The concentration was determined by UV–vis

spectrophotometry with the molar extinction coefficient of 1450 cm–1 M–1.

3. Experimental results: protofibril elongation and association

In order to identify the differences between the bulk rate constants for P elongation and

association we monitored the reactions by ThT fluorescence and dynamic light scattering

techniques, respectively. Protofibril (P) elongation was monitored using thioflavin-T (ThT)

fluorescence as previously reported [7,12]. The elongation reaction was initiated by adding
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25 μM freshly purified Aβ42 monomers to isolated 2 μM Ps (Fig. 2A, circles). As a negative

control, a similar elongation experiment on isolated 2 μM Aβ42 fibrils was performed,

which as expected, did not show significant elongation (Fig. 2A, triangles). The data were fit

to first-order exponential equation as reported previously [7], which gave a bulk rate

constant (kpe) value of 0.012 s–1. The kinetics of P association was monitored with dynamic

light scattering (DLS). The reaction was initiated by the adding 150 mM NaCl as reported

previously [7,16], and was monitored for 12 h as shown in Fig. 2B. The data was plotted

against normalized count rates (kcs–1) which correlate to the hydrodynamic diameter. As

expected, an exponential increase in the size was observed (Fig. 2B, light gray circles) in

presence of NaCl, while in the absence of 150 mM NaCl, no increase in the size was

observed (Fig. 2B, gray circles). Deconvolution of the data with a first order exponential

equation yielded a rate constant (kpa) of 0.008 s–1. In addition to the estimation of rate

constants, the increase in the size of Ps at various time points during both elongation and

association reactions was evaluated to assist modeling by making realistic assumptions. Ps

in buffer alone showed a monodisperse peak with a diameter of about 27 nm (Fig. 2 C and

D; dotted peak). There was only a marginal increase in the hydrodynamic diameter of the Ps

after 2 h (gray peak), 6 h (dark gray peak) and 20 h (light gray peak) during elongation with

25 μM Aβ42 monomers. On the contrary, the diameter of Ps when incubated with 150 mM

salt, showed a considerable increase in the size. The diameter was recorded as ≈ 30, ≈ 33,

and ≈ 36 nm after 2 (gray peak), 6 (light gray peak), and 20 h (dark gray peak),

respectively. These data indicate that the product involving P elongation could be a kinetic

product as opposed to thermodynamic nature of the associated species. Furthermore, the

association reaction involves a significant size increase (≈1.4-fold) as compared to the

elongated one, which forms the basis of some of the assumptions made in our models.

4. A reduced order problem

In this section, we present a reduced problem by modeling the entire aggregation process

through a series of four key steps that are the focus of our attention. Our paper follows a

well established approach which has been successful in capturing the essential features of

the problem in a cost effective manner. Typically, researchers have adopted curve fitting

experiments or empirical laws based on first principles of statistical mechanics to obtain rate

constants for complex problems [1,5]. The use of former technique to determine precise rate

constants is extremely difficult for Aβ aggregation. The difficulty is due to the enormous

complexity of the problem and the superabundance of species that populate such systems;

thereby making them highly stochastic. The latter method is also not completely problem

free; it has been cast in some doubt due to the approximate and probabilistic nature of the

argument [9]. The primary objective of this work therefore remains to employ rigorous

mathematical and biophysical stability arguments, aided by experimental observations, to

narrow down the space of rate constants that are meaningful. Morris and co-workers review

the various types of modeling techniques that have been used previously in the literature [5].

Models relevant to the system being studied in this work include those derived on the basis

of empirical sources (e.g., logistic equations), as well as those derived from kinetic and/or

thermodynamic considerations (e.g., Mass action equations, nonmass action equations which

consist of minimalistic equations and other kinetic equations and quantitative structure–
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activity relationship equations). Our approach belongs to the category of minimalistic

equations/Ockham's razor principles, as described by Finke and co-workers in their recent

review paper on kinetic models [5]. The reduced order approach adopted by some prominent

researchers in the protein aggregation field [1,3,4,14,15,17] has shown to be an effective and

economical approach to the problem. We begin this section with a discussion of the model

and the equilibrium state. This is then followed by an introduction and application of two

new constraints: (i) mathematical stability and (ii) thermodynamic stability upon our model

system.

4.1. Equilibria and constraints

We propose a three stage model for protofibril formation from Ps which included the

pathways to lateral association and elongation. Based on the previous reports on Aβ40

protofibril size, we assume that the Ps are made of approximately 1600 monomeric units

[16]. We also simplify the reactions towards P formation as one reaction (monomers →

1600mers with forward and backward rates kmp and kpm respectively), while based on the

literature, we assume two pathways of the formation of Ps containing 3200mers from the

one with 1600mers (schematically shown in Fig. 1): (a) lateral association (A), in which two

molecules of Ps interact laterally (with forward and backward rates kpa and kap respectively;

this assumption is partly based on the size estimates obtained experimentally as described

above), and (b) elongation (E), in which 1600 monomer molecules add sequentially at the

ends of Ps (with forward and backward rates kpe and kep respectively). Mathematically, we

represent the system by:

Here, as in the rest of the paper, the notation for concentration of a species, usually denoted

[X] is replaced by the more compact form X. In this case, M is the monomer concentration, P

is the 1600mer concentration, E refers to the concentration of the elongated 3200mer and A,

the concentration of the laterally associated 3200mer. The terms kij (i, j = m, p, e, a) refer to

the forward and backward reaction rates. The corresponding system of differential equations

are then given by Kondepudi and Pauling [10,18]

(1)

(2)

(3)
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(4)

At equilibrium we can find the steady state concentrations of the four species under

consideration. Lets take Me, Pe, Ee and Ae to be the equilibrium concentrations of each

species. We use the steady state version of the above system of Eqs. (1)–(4) to obtain certain

physical constraints for the problem, namely: (i) , (ii)  and (iii)

. Naturally, these must be simultaneously true in order to be self-consistent.

4.2. Stability conditions

In this subsection, we derive conditions for stable equilibria by linearly perturbing the stable

solutions Me, Pe, Ee and Ae. Our underlying argument is that in a physical system such as

this, the steady equilibrium must be stable under sufficiently small perturbations. Fig. 3

schematically represents the energy diagram of this process and represents our assumptions

about the system. Since the rate constants for the system of equations are not given, the

system remains unsolvable. However, we know that for the system to be physically

meaningful, the equilibrium state for this system must be mathematically stable and any

perturbation, if sufficiently small, must eventually vanish.1 Therefore, the rate constants

must necessarily allow for this condition. In fact, in terms of the energetics of the

aggregation process, it can be said that at any point in time, any perturbation that drives the

system out of its trajectory will eventually die and bring the system back to its course. This

last statement is mathematically tractable only in the equilibrium state. The behavior of the

perturbation therefore in itself becomes an interesting dynamic worthy of examination and

which provides essential clues into the behavior of the original system.

The perturbation to the equilibrium concentrations of the different species takes the form

(5)

where M1, P1, E1 and A1 represent perturbed concentrations and ε is the magnitude or order

of the perturbation. The expressions for M, P, E, A are placed into Eqs. (1)–(4) and the O(ε)

are collected, giving us the perturbed system

(6)

(7)

(8)
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(9)

The Eqs. (6)–(9) represent the governing equations for the perturbed terms. Therefore, in

order to establish the stability of the equilibrium states, we need to show that the perturbed

terms eventually vanish and thereby determine a range for stable rate constants. To do so,

we write Eqs. (6)–(9) in the operator form

(10)

where A (M1, P1, E1, A1} and

Our objective to seek the range of the rate constants in which the real part of all the

eigenvalues remains simultaneously negative, is also subject to the equilibrium constraints

obtained earlier. We conduct a parametric sweep of the rate constants and identify the

resulting eigenvalues and eigenvectors for the perturbation. The Eqs. (1)–(4) represent a

system of six parameters (forward and backward rate constants) and additionally two

equilibria (Me and Pe) making our search task extremely tedious. We therefore perform a

more restricted search by holding certain parameters fixed. For all our computations, we

assumed kmp = 9 × 10–1 (determined from [7]) and  is obtained from the law

of mass action. The equilibrium values of monomers and protofibrils are varied between the

values shown in Table 1. In the graphs depicting our results below, we choose three

representative cases from this list to denote the observed patterns.

Additionally, we assume kep = kpe10–1 and kap = kpa10–6. This choice of ratio between

forward and backward is made on the reasonable assumption that the associated molecules

are more stable than the elongated ones. It then follows that the associated molecules are

less likely to break down and contribute to the backward rates as compared to the elongated

molecules. The order of magnitudes in our study, when assumed, are based upon our

previous work [7] where rate constants were obtained by means of a pre-determined

relationship relating the rate constants to the aggregate size, based upon the laws of

statistical mechanics [7,11]. The results presented below are to be taken as representative

cases and once again, chosen based on our previous work; a sweep over the entire parameter

range is naturally impractical. Our first set of computations sweeps over the range 10–10 ≤

kpe ≤ 1010 and 10–10 ≤ kpa ≤ 1010 in steps of 100.1. Fig. 4 shows the results of our

calculations on a log–log plot, for three different equilibrium concentrations; these are the

rate constants that render the system (1)–(4) stable.
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This mathematical constraint, though valuable, is insufficient. While the stable parameter

space is considerably reduced by this analysis, it remains prohibitively large. We therefore

resort to a second condition, rooted in the biophysics of the problem. It can be argued that

the 3200mer species obtained via elongation might correspond to a kinetically-stable species

with the reaction proceeding much faster than the lateral association based on experiments

described in the previous sub-section. Typically, the product arising out of lateral

association must be the thermodynamically stable product since linear elongated protofibrils

eventually coalesce into intertwined fibrils via association. This is also evident from the

bulk, experimentally determined rates of the two processes (Fig. 2); the rate constant for

elongation (kpe = 0.012 s–1) was determined to be about 1.4 times faster than that for the

association reaction (kpa = 0.008 s–1) upon fitting the curves to a first order kinetic equation.

As a result we argue that the following two conditions be satisfied. The first states that, over

a sufficiently long time (denoted t* ), the magnitude of deviation from equilibrium for the

elongated biomolecules would be less than those of the associated molecules. Hence

(11)

where 0 < γ1 < 1 needs to be satisfied. Here t* >> 1 represents a sufficiently long time when

equilibrium is reached. Finally the vectors (ai, bi, ci, di)T for i = 1, 2, 3, 4 are the

eigenvectors corresponding to the eigenvalues λi, respectively. The condition (11) is actually

valid throughout the reaction, i.e. for all t and not just at the equilibrium state. As a result the

value of γ1 varies between 0 and 1 with γ1 << 1 for t < t* while γ1 approaches closer to unity

as t > t* . Since, it is unclear what exactly γ1 could be at the equilibrium, we have selected a

range of values and identified the rate constants kbe, kba which satisfy the condition (11).

The second constraint is based in the fact that the kinetically stable molecules (elongated

species) achieve equilibrium at a faster rate than the thermodynamically stable molecules

(associated species). Therefore this requires that

(12)

We performed additional calculations with the same fixed parameters as considered above

and impose our conditions, namely Eqs. (11) and (12). Fig. 4 shows the resulting parameter

space for the three different equilibrium values. Needless to say, the plots displayed here and

the corresponding parameter values chosen are mere representative cases. The result of

significance is that the parameter space (kpe, kpa) is considerably reduced. Tables 2 show the

reduction in the allowable rate constants based on variations in γ1, γ2 and also the impact of

the stability constraints. Fig.5 shows a sample plot of the allowed rate constant for thespecial

case of γ1 = γ2 = 0.5 and Me = 1 μM and Pe = 1 μM. The open circles represent the case

when the mathematical stability condition alone is applied while the closed circles indicate

the cases where all three conditions have been applied.
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To quantify this reduction in the space of allowed rate constants, we point to the Table 2

below which documents the number of allowed values of the rate constants as a function of

the terms γ1 and γ2, after application of the stability (11) and (12), in addition to

mathematical stability. As is shown in the table there is a dramatic drop in the number of

rate constants with decreasing γ1 and γ2 reaching to an 85% drop as γ1 or γ2, for instance,

drops from 1 to 0.1. The Table 2 is a representative case and one among the many cases

explored based upon the values of Me and Pe from Table 1. In almost all of the cases, the

reduction in the number of allowable rate constants is considerable with a decrease in the

values of γ1 and γ2. The only unique case observed is the one where Me = 1 nM and Pe = 1

nM; here the rate constants are almost insensitive to γ1 but show a reduction of over 70% as

γ2 : 1 → 0.1.

The mathematically and thermodynamically stable kpe and kpa values were compared for

varying equilibrium concentrations for the monomers and protofibrils as shown in Table 1.

The resulting rate constants were compared to search for matches. Sets 3, 4 and 5 had no

overlap with any of the other sets. The overlap between sets 1, 2, 6, and 8 yielded 497

overlapping values. The overlap between sets 7 and 9 yielded 853 values. The overlap

between sets 1, 2, 6, 7 and 9, as well as sets 7 and 8, yielded 4 overlapping values. The

union of the overlapping values was used to simulate results using the full equation system

which is discussed in the following subsection. Fig. 6.

4.3. Solution to Eqs. (1)–(4)

We used the ODEs defined in (1)–(4) to simulate the entire fibril formation pathway. All the

simulations were executed in Matlab's ODE solver using ode23s. We used each of the

overlapping rate constants (for kpe and kpa) as obtained above in the simulation.

Additionally, we used the following estimates for the remaining rate constants as discussed

previously:

In order to compare the simulation results to the ThT fluorescence intensities measured from

biochemical experiments we need to define a formal mapping scheme. The fluorescence

intensity plots from experiments essentially show the cumulative effect of all protofibrils of

a certain size (and beyond). Hence, from the simulation, one has to plot the cumulative

effects from all the protofibrils (1600mers), elongated 3200mers (i.e., the E's) and associated

3200mers (i.e., the A's) that can be mapped directly to the experimental ThT estimates. In

order to do this we will compute the following expression at each value of the simulation

time:

(13)

where b is a constant scaling factor to map to the fluorescence sensitivity estimates.

Note that since the experimental set-up (and hence the conditions) for generating the

intensities against different initial concentrations was the same, it is unlikely that the
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mapping constant b should be different for different initial concentrations. This is in contrast

to what has been proposed in [11] to fit the curves conveniently to experiments without

considering the intricacies of the system of equations. Our results have been generated

keeping the value of b constant and set to b = 4750 which gave the least square error after

several additional iterations of the simulation.

Also, the rounding-off errors in Matlab had to be considered to execute the simulations

specifically because of the term M1600 in the ODEs. This was achieved by scaling the

concentration of monomers to a value of 1 at each time step and computing the relative

concentrations of the other 3 species based on that. Also, the each of the concentrations of

the 4 species had to be scaled back to their actual values before the next iteration of the

numerical simulation of the ODEs.

Fig. 7A shows the comparison of the numerical simulations with that of the ThT

fluorescence based biochemical experiments of the entire pathway wherein we considered

the five different initial monomer concentrations (of 10, 25, 50, 75 and 100 μM respectively)

while that of the other 3 species were set to zero. It can be observed that even with a

simplified model of only 4 species we can very closely reproduce the fibril formation

dynamics as the simulation and experimental estimates are in close agreement. Note that, the

simulated curves did not produce any lag times which is common for protein aggregation

systems because model did not consider the nucleation phase separately. This can however

be achieved simplistically by adding a delay term to the model or extending the model to

consider more oligomers from the pre-nucleation phase both of which outline our future

work in identifying the proper rate constants for the pathway.

Also, note that the Fig. 7A actually plots multiple curves for each initial monomer

concentration corresponding to each of the rate constants estimated from the overlapping

regions. However, there is minimal (or close to zero) deviation in the simulated plots for

each of these rate constants showing the effectiveness of the stability analysis discussed

above. It can be hence be argued that the identified combinations of rate constants are

supposed to reproduce exactly the same pathway dynamics irrespective of the difference in

their actual values.

Fig. 7B shows the actual concentrations of E (top curve) and A (bottom curve) produced by

one of the identified rate constant combinations for the 100 μM initial monomer

concentration test case. It can be observed that both E's and A's proceed towards dynamic

equilibrium in the long time limit; however interestingly, the concentration of E's decrease

with time as opposed to an increase in the concentration of A's. This behavior is however

expected and illustrates the correctness of our model: initially the E's grow fast in the system

and reach a dynamic equilibrium because of the high monomer concentrations. After

sufficient number of P's were produced, the lateral association reactions take effect and shift

the dynamic equilibrium of the E's by using up the P's in the system. This in turn triggers the

backward elongation reactions and hence result in an over-all decrease in the concentration

of E's.
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5. Discussion

In summary, our paper proposes a stability based approach to estimate the rate constants for

models discussing protein self assembly. In particular, we discuss the case of Aβ protein

aggregation, which has been identified as a possible cause of Alzheimer's disease. A reduced

order, four species model approximating the aggregation process including monomers,

protofibrils (composed of 1600 monomers) which in turn lead to competing laterally

associated and elongated proteins, is considered. The model is designed to capture the post

nucleation phase of the reactions. The nucleation mass as of now remains unknown and

needs to be identified before we can model the aggregation process in its entirety and is

under continued investigation. The stability criterion that we propose allow us to select a

highly reduced set of rate constants from a much larger search space. The selected rate

constants are then employed to solve the original system of equations.

It has to be borne in mind that the exercise presented here is not directed towards estimating

the rate constants and other parameters which would match the experimental data obtained.

In other words, this is not a curve-fitting method to see the best fit obtained. Instead, our

approach serves as a proof-of-concept for a first principle based mathematical methodology

by which accurate rate constants for individual reactions involved in a complex process like

amyloid aggregation could be obtained to assist a computational modeling. Our top-down

modeling method is distinctly different from other curve-fitting paradigms in that the

individual rate constants are validated for their contribution to the aggregation process. The

main difference when compared to previous approaches arises from the fact that the

experimental data is not used to force the model to fit but rather the bulk properties obtained

from the experiments are used as leads to reduce the parameter space and to make

physiochemically-relevant assumptions. Ideally, any model on Aβ aggregation should be

able to identify the kinetic rate constants in the different phases of aggregation: pre-

nucleation, post-nucleation, and fibril elongation/association. In [5] (and the references

therein) the authors provide a detailed review on various models of Aβ aggregation which

can be still classified as curve fitted models and fail to present a precise understanding of the

process. Recently, Chung-Lee and colleagues have generated a detailed molecular-level

model of insulin aggregation [11], which tries to understand the biophysics behind protein

aggregation systems. However, their model cannot be directly used to understand the

dynamics of Aβ aggregation wherein, the nucleation stage is itself unknown. In a bid to

understand the complete dynamics of Aβ aggregation, authors in [7] propose a divide-and-

conquer strategy by dissecting the Aβ42 aggregation process into the three biophysically

distinct stages and present a detailed model of the third stage in the aggregation process that

involves protofibril elongation as well as lateral association to fibrils and report the

dynamics in terms of the kinetic rates associated with this stage. However, a major

drawback in these approaches is the process of identifying the rate constants involved. Both

[7,11] accomplished the rate constant identification stage manually (and arguably

arbitrarily), and both fail to sweep the entire parameter space of rate constants. Hence the

reported rate constants in [7,11] only show one possible solution (amongst many) that fit the

experimental curve well which was chosen somewhat arbitrarily.
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Since amyloid aggregation process is extremely complex involving a very large number of

molecular interactions, the parameter space for finding accurate rate constants for individual

reaction is extraordinarily large. Therefore, it is a challenge even for computing methods to

perform the sweep to narrow down to realistic parameters. In this regard, mathematical

stability analyses, despite its computational cost, as demonstrated here, can be extremely

helpful in the modeling of amyloid aggregation. In this paper, we have simplified the Aβ

reactions to a 4-species model to demonstrate this methodology as a proof-of-concept.

Although understandably, the absence of nucleation mass prevents a perfect agreement with

the experimental data (especially in the initial stages of the reactions), the trend between the

elongation and association reactions have been consistent between the model and

experimental data. We believe that there is a much stronger biophysical basis for the

selection in this paper. The natural question that arises is if this methodology can be applied

to obtain the appropriate rate constants for each individual reactions from monomers to

3200mers. At this stage this complex problem remains yet to be solved and is definitely a

computational challenge. However, identification of the nucleation mass, would allow us to

refine our existing model and suggest appropriate systems which can account for the pre and

post nucleation processes effectively and is the ongoing subject of our investigation. In such

a case, the methodology suggested here would be very helpful in identifying the individual

rate constants.

Our efforts in this paper also indicate multiple solutions for possible rate constant

combinations, each being equally good in determining the entire pathway dynamics.

Arguably, fitting to the entire pathway dynamics curves obtained from the in vitro

experiments will fail to identify which of these combinations is the best one to use and point

to the fact that newer experimental/theoretical considerations have to be made to find a

consensus. For example, the monomer depletion curve from HPLC measurements and

molecular dynamic simulations on possible estimates of the nucleation mass can serve as

additional evidence in down-selecting from these rate constant combinations and reducing

the solution space. Hence the over-all goal of our model is much broader and can cater to

any biological system characterized by a system of homogeneous ODEs. Our model makes a

first-pass on the parameter estimation problem by down-selecting the possible solution space

theoretically.
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Fig. 1.
The general model for protein aggregation. A monomer will self-aggregate to form a

protofibril. The protofibril can then continue aggregation via two distinct pathways:

elongation, where monomer addition continues, or lateral association, where protofibrils join

together side-to-side to form fibrils. Inset: fibril growth as a function of time. The

characteristic curve of fibril formation includes a lag-phase prior to nucleation, an

exponential growth region and the stationary phase.
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Fig. 2.
Elongation and association of Protofibrils (Ps). (A), Elongation of 2 μM Ps monitored over a

period of two hours using ThT fluorescence in the presence of 25 μM Aβ42 monomers

(circles). A similar reaction with 2 μM fibrils was used as negative control (triangles). (B), P

association monitored over a period of 12 h using dynamic light scattering (DLS) in

presence (light gray circles) and absence (gray circles) of 150 mM NaCl. The data is plotted

against normalized count rates per second (Kcs–1). (C and D), Size distribution of Ps after 2,

6, and 20 h of elongation with 25 μM Aβ42 monomer and after 2, 6, and 12 h of association

with 150 mM NaCl respectively, monitored using DLS.
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Fig. 3.
Energy profile for Aβ aggregation schematically depicts our perturbation based approach

and different rates at which elongation and association occur.
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Fig. 4.
The figure shows the set of allowable rate constants based on the application of

mathematical stability condition for the case γ1 = γ2 = 0.5 where all three stability

constraints have been applied. The panels A, B and C show the variation of the graph with

changing values of equilibrium concentrations Me and Pe.
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Fig. 5.
The figure shows the set of allowable rate constants for the case γ1 = γ2 = 0.5 where all three

stability constraints have been applied. The panels A, B and C show the variation of the

graph with changing values of equilibrium concentrations Me and Pe.
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Fig. 6.
The figure shows the set of allowable rate constants for the case γ1 = γ2 = 0.5 and Me = 1

μM and Pe = 1 μM. The open circles stand for the mathematically permissible values while

the closed circles represent the permitted rate constants where all three stability constraints

have been applied.
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Fig. 7.
The figure shows the results of our numerical simulations of the system (1)–(4) with the rate

constants derived from the stability criteria. Multiple curves for different initial conditions

are shown in panel (A) and compared with experimental data taken from [7]. Panel (B)

shows the individual elongation and association curves in semi-log form.
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Table 1

The table shows the equilibrium concentrations that were used to study the dependence of the solutions on Me

and Pe.

Set Me Pe

1 100 Χ 10–6 1 Χ 10–6

2 10 Χ 10–6 1 Χ 10–6

3 1 Χ 10–4 1 Χ 10–4

4 1 Χ 10–6 100 Χ 10–6

5 1 Χ 10–6 10 Χ 10–6

6 1 Χ 10–6 1 Χ 10–6

7 1 Χ 10–6 1 Χ 10–9

8 1 Χ 10–9 1 Χ 10–6

9 1 Χ 10–9 1 Χ 10–9
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Table 2

The table shows the variation in the number of allowed values of kpa and kpe with changing values of γ1 and

γ2. This representative table is shown for the case of Me = 1 μM and Pe = 1 μM.

γ 2 γ 1

1.0 0.8 0.6 0.4 0.2 0.1

1.0 530 530 530 530 530 530

0.8 524 524 524 524 524 524

0.6 511 511 511 511 511 511

0.4 306 306 306 306 306 306

0.2 101 101 101 101 101 101

0.1 82 82 82 82 82 82
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