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Abstract
Pancreatic ductal adenocarcinoma is the 4th leading 
cause of cancer deaths in the United States. The major-
ity of patients are candidates only for palliative chemo-
therapy, which has proven largely ineffective in halting 
tumor progression. One proposed mechanism of che-
moresistance involves signaling via  the mesenchymal-
epithelial transition factor protein (MET), a previously 
established pathway critical to cell proliferation and 
migration. Here, we review the literature to character-
ize the role of MET in the development of tumorigen-
esis, metastasis and chemoresistance, highlighting the 
potential of MET as a therapeutic target in pancreatic 
cancer. In this review, we characterize the role of c-Met 
in the development of tumorigenesis, metastasis and 
chemoresistance, highlighting the potential of c-Met as 
a therapeutic target in pancreatic cancer.

© 2014 Baishideng Publishing Group Inc. All rights reserved.
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Core tip: As one of the leading causes of cancer-related 
deaths, pancreatic cancer remains elusive to our cur-
rent therapeutic options. These modest advances in 
current therapies for pancreatic cancer have led to the 
recognition and development of targeted therapies 
toward tyrosine kinase receptors such as the c-Met re-
ceptor. In this review, we characterize the role of c-Met 
in the development of tumorigenesis, metastasis and 
chemoresistance, highlighting the potential of c-Met as 
a therapeutic target in pancreatic cancer.
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INTRODUCTION
Pancreatic cancer is the 4th leading cause of  cancer deaths 
in the United States[1]. Currently, surgical resection is the 
only treatment option with the potential of  cure. How-
ever, only 17% of  patients are surgical candidates upon 
diagnosis and surgical resection in combination with 
chemotherapy and radiation therapy results in a 5-year 
survival of  approximately 23% in specialized centers 
focused on pancreatic cancer[2]. While chemotherapy 
has the potential to delay tumor progression, innate or 
acquired chemoresistance and subsequent tumor resur-
gence is the norm[3,4]. Biologically diverse mechanisms 
have been identified to be involved in the chemoresistant 
phenotype, ranging from genetic and epigenetic changes 
to microenvironmental adaptation[4,5]. The goal of  this 
review is to focus on the signaling of  the mesenchymal-
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epithelial transition factor protein (MET) in pancreatic 
cancer.

The mesenchymal-epithelial transition factor gene (c-
met) encodes for a membrane-bound receptor tyrosine 
kinase (RTK) expressed predominantly by epithelial cells. 
MET is activated and signals downstream pathways fol-
lowing induction of  phosphorylation in response to bind-
ing of  its ligand, hepatocyte growth factor (HGF), also 
referred to as scatter factor. These ligands are secreted by 
cells of  mesenchymal origin. The resulting HGF/MET 
pleiotropic signaling cascade activates mediators of  cell 
proliferation and motility and has been heavily implicated 
in tumorigenesis via identification of  amplification, acti-
vating mutation, and/or overexpression of  MET in most 
solid organ neoplasms. Here, we review the literature 
to characterize the role of  MET in the development of  
tumorigenesis, invasion, metastasis and chemoresistance, 
highlighting the potential of  MET as a therapeutic target 
in pancreatic cancer.

PHYSIOLOGIC HGF-MET SIGNALING
MET activation propagates a complex system of  intracel-
lular signaling cascades that act to affect cell proliferation 
and migration. HGF is secreted by mesenchymal cells in 
close proximity to MET-expressing epithelial cells during 
embryogenesis or in response to tissue injury, thus func-
tioning as a paracrine signaling mechanism that promotes 
cell proliferation and migration. MET is translated as a 
180 kDa protein that is subsequently cleaved to form a 
heterodimer consisting of  a short alpha (approximately 
40 kDa) and long beta (approximately 140 kDa) chain 
of  residues. The mature protein is then transported to 
and inserted in the plasma membrane. Upon HGF li-
gand binding to MET, autophosphorylation at multiple 
tyrosine residues within the cytoplasmic domain oc-
curs, catalyzed by intrinsic ATPase activity. This results 
in changes in the tertiary structure of  MET facilitating 
the formation of  a signaling complex including GAB1 
and GRB2 proteins that subsequently activates multiple 
downstream pathways (Figure 1). Known effector mol-
ecules of  this signaling cascade include Src, mitogen-
activated kinase, extracellular signal-regulated kinase 1 
and 2, phosphoinositide 3-kinase (PI3K), protein kinase 
B (Akt), signal transducer and activator of  transcription 
(STAT), nuclear-factor-κB, and mammalian target of  ra-
pamycin[6-9]. MET-mediated induction of  these pathways 
acts to positively influence cell proliferation, migration, 
and survival (Figure 2). Via these down-stream effectors, 
HGF-MET signaling plays a crucial role in important 
physiologic processes including embryonic development, 
organ regeneration and wound healing.

MET is essential for embryonic development and 
hgf- or c-met-null embryos die in utero[10]. In early embry-
onic development, HGF and its receptor MET are co-
expressed by progenitor cells, suggesting autocrine sig-
naling is an early homeostatic mechanism for stem cell 
survival[11]. HGF-MET signaling is necessary to ensure 

the growth and survival of  placental trophoblast cells 
as well as embryonic hepatocytes. MET signaling is also 
necessary for the proper migration of  muscle progeni-
tor cells, development of  the embryonic nervous system, 
and epithelial branching morphogenesis[12,13]. Later in de-
velopment, paracrine HGF-MET signaling is critical for 
properly orchestrating organogenesis. Assays evaluating 
the ability of  epithelial cells to form tubules in vitro, a pro-
cess which recapitulates organ development, demonstrate 
that HGF signaling induces cells to undergo an epithelial-
to-mesenchymal (EMT) transition. This transition allows 
host cells to relocate during embryonic development. 
Ultimately, these cells reclaim their epithelial identity, but 
the EMT marks a critical event in organogenesis.[11] 

Inflammation and wound healing following injury are 
also highly dependent on HGF-MET signaling. HGF 
increases dramatically following renal or hepatic damage, 
inducing a diverse array of  anti-apoptotic responses[9,14,15]. 
In cases of  chronic or repetitive injury, HGF acts to op-
pose fibrosis by inducing apoptosis of  myofibroblasts 
and by antagonizing transforming growth factor-β 
(TGF-β)[9,13,16]. Peptic ulcer disease represents a specific 
example of  MET’s protective effect. The loss of  HGF 
signaling in a murine model led to decreased gastric mu-
cosal cell proliferation and delayed healing from mucosal 
injury[17]. In fact, HGF-MET signaling has been implicat-
ed as essential to the protection, regeneration, and anti-
fibrotic activity of  cutaneous, pulmonary, hepatic, and 
gastrointestinal tissues in response to injury[13]. 

With respect to pancreatic endocrine physiology, the 
beta cell, responsible for insulin secretion, is dependent 
on HGF-MET signaling to hypertrophy and prolifer-
ate in response to persistent hyperglycemia[18]. In effect, 
MET is essential for the hyperinsulinemia seen in Type Ⅱ 
diabetes. c-met knockdown mice exhibit increased beta cell 
apoptosis during development and are more susceptible 
to streptozotocin-induced diabetes[19]. Additionally, c-met 
knockdown mice displayed reduced beta cell expansion 
during pregnancy leading to an increase in gestational 
diabetes[20]. Multiple investigations have confirmed that 
these knockdown mice have decreased glucose tolerance 
and reduced insulin secretion after stimulation[21,22]. In 
fact, stimulation of  the HGF/MET pathway has been 
suggested to encourage beta cell proliferation after islet 
cell transplantation. Thus, MET plays a critical role in 
pancreatic neuroendocrine cell proliferation and develop-
ment.

Relatively little data is available concerning MET 
signaling and normal pancreatic exocrine development. 
A recent investigation by Anderson et al[23] examined the 
phenotype of  a point mutation in c-met that impaired 
localization and activation of  MET. Zebrafish with this 
mutation exhibited mislocalization of  pancreatic ductal 
cells compared with wild-type animals. Interestingly, duc-
tal proliferation was unaffected. Further, inhibition of  
MET proteindownstream signaling with PI3K and STAT 
inhibitors produced a similar phenotype, suggesting an 
essential role for MET in migration and localization of  
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Figure 1  The mesenchymal-epithelial transition factor receptor functions as a transmembrane tyrosine kinase receptor. Ligand binding from hepatocyte 
growth factor (HGF)/scatter factor induces receptor dimerization and autophosphorylation of intracellular tyrosine residues, which serves as a catalytic site for the SH2 
domains of numerous cytosolic signaling proteins. MET: Mesenchymal-epithelial transition factor. 

Figure 2  Hepatocyte growth factor activation of the mesenchymal-epithelial transition tyrosine kinase receptor induces a pleiotropic response involving a 
host of intracellular signaling to induce cell survival, migration and proliferation. HGF: Hepatocyte growth factor; MET: Mesenchymal-epithelial transition factor; 
RTK: Receptor tyrosine kinase; JAK: Janus kinase; STAT: Signal transducer and activator of transcription; PLC: Phospholipase C; IP3: Inositol triphosphate; DAG: 
Diacylglycerol; Ca2+: Calcium; PKC: Protein kinase C; Grb2: Growth factor receptor-bound protein 2; Sos: Son of sevenless homolog; Ras: Harvey rat sarcoma viral 
oncogene homolog; Raf: Rapidly accelerating fibrosarcoma; MEK: Mitogen activated protein kinase kinase; ERK: Extracellular-signal-regulated kinase; FAK: Focal 
adhesion kinase; PI3K: Phosphoinositide 3-kinase; AKT: Protein kinase B; mTOR: Mammalian target of rapamycin.
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express HGF or MET become highly tumorigenic when 
implanted in vivo[34,35]. Therefore, while MET activity may 
not be the inciting mechanism in the formation of  many 
cancers, overexpression in pre-clinical models appears to 
confer a more aggressive phenotype.

In fact, MET expression has been correlated with 
more aggressive disease and worse clinical outcomes in 
many cancers. In NSCLC, MET overexpression corre-
lates with an unfavorable prognosis and has been impli-
cated as a primary mechanism of  resistance to epidermal 
growth factor receptor (EGFR) inhibitor therapy[36,37]. In 
hepatocellular carcinoma the expression level of  MET 
is directly correlated to metastatic behavior and inversely 
correlated to the level of  tumor differentiation and pa-
tient survival[38-41]. In a prospective cohort analysis of  
554 patients with renal cell carcinoma, a particular single 
nucleotide polymorphism (SNP) in c-met was associated 
with a decline in median recurrence-free survival from 50 
to 19 mo[42]. While the functional outcome of  this SNP 
remains to be elucidated, an activating point mutation 
is highly suspected. Likewise, MET overexpression is a 
HER2/neu-independent prognostic marker for node-
positive breast cancer, signifying increased tumor aggres-
siveness[43]. MET expression significantly correlated with 
the depth of  invasion and regional lymph node metastasis 
in colorectal cancer[44]. Thus, the list of  solid organ neo-
plasms for which upregulation of  HGF-MET signaling 
portends a more aggressive phenotype is extensive[45,46]. 
Taken together, this data demonstrates that dysregula-
tion of  the HGF-MET pathway contributes to tumor 
progression. This data also has implications regarding the 
status of  the HGF-MET pathway on the effectiveness of  
certain biologic therapies, a concept we will expand upon 
later.

Concerning pancreatic adenocarcinoma, evidence is 
accumulating that correlates dysregulated MET activity 
with an aggressive phenotype. In a recent investigation 
thirty-six pancreatic tumor samples were analyzed and 
MET expression levels were directly proportional to tu-
mor grade[47]. Similar histopathologic analyses showed an 
approximate five to seven-fold increase in MET protein 
expression levels in pancreatic cancer compared to nor-
mal pancreas samples[48,49]. Histopathologic evaluation 
of  our own resected patient population support these 
findings (Figure 3). A larger collection of  pancreatic tu-
mor specimens subsequently confirmed increased MET 
protein expression compared with normal controls and 
MET protein overexpression significantly correlated with 
increased TNM stage[50]. In fact, secreted HGF protein 
from surrounding stromal tissue has been correlated with 
MET overexpression in patients with pancreatic cancer 
and associated with worsened overall survival[51]. Given 
the known pathophysiologic actions of  MET in cancer 
and a well-demonstrated overexpression pattern in pan-
creatic adenocarcinoma, inhibition would seem a logical 
therapeutic avenue. 

Unfortunately, targeting MET alone as a therapeutic 
strategy appears to be overly optimistic. Despite con-

embryonic pancreatic ductal cells. 
In summary, physiologic HGF-MET signaling is 

essential for appropriate embryonic development and 
organ repair. The function of  the HGF/MET pathway 
observed in multiple organ systems appears to drive cell 
proliferation and mobility. Unfortunately, dysregulation 
of  this pathway clearly could result in tumor initiation 
and/or progression. Amplification, mutation or over-
expression of  c-met become deleterious, contributing to 
malignant transformation and metastasis. Activating and 
sustaining HGF-MET signaling in this pathologic context 
drives tumor progression and is responsible, at least in 
part, to the development of  chemoresistance.

PATHOLOGIC HGF-MET SIGNALING IN 
CANCER
Excessive MET activity is a feature of  many cancers, al-
though inciting mechanisms appear to be tumor-specific[24]. 
c-met received early attention as a proto-oncogene when 
activating mutant alleles were implicated in cases of  he-
reditary papillary renal cell carcinoma[25]. The resulting 
MET receptor was constitutively activated, undergoing 
spontaneous ligand-independent phosphorylation[11]. In 
an analysis of  seven families with hereditary papillary 
renal carcinoma, four displayed activating c-met mutations, 
all of  which were located in the tyrosine kinase domain 
of  the MET protein[25]. Sporadic c-met mutations have also 
been described in gastric carcinomas, glioblastomas, and 
squamous cell carcinomas of  the head and neck[11,12,26]. 
Furthermore, aberrant positive feedback systems involv-
ing autocrine and paracrine signaling in the HGF-MET 
axis contribute to tumorigenic phenotypes in melanomas, 
osteosarcomas, breast cancer and gliomas[26]. One retro-
spective histopathologic analysis observed MET over-
expression in 87% of  renal cell carcinoma specimens[27]. 
Additionally, a strong correlation between MET expres-
sion and the esophageal metaplasia-dysplasia-adenocarci-
noma continuum has been shown in surgical specimens 
from patients with esophageal adenocarcinoma[28]. In fact, 
c-met amplification occurs in approximately 9% of  esoph-
ageal cancers[29]. These investigations provide compelling 
evidence that c-Met is a potent oncogene. 

The association between MET activity and neoplas-
tic progression has been investigated in animal models. 
Hypoxia-induced tumor cell invasion is dependent upon 
upregulated MET signaling, suggesting another mecha-
nism driving growth and metastasis[30,31]. Overexpression 
of  wild-type MET in hepatocytes led to spontaneous he-
patocellular carcinoma development that regressed upon 
MET inactivation[30,32]. Thus, overexpression of  non-
mutated MET is sufficient to induce tumor development. 
Moreover, inhibition of  MET caused established tumors 
to regress, suggesting that MET signaling is necessary for 
tumor growth and maintenance. Subsequent animal mod-
els have proposed that the frequency of  many carcinomas 
and lymphomas is greatly increased by MET overexpres-
sion[33]. Non-neoplastic cell lines forced to constitutively 
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vincing evidence of  primarily MET-induced tumors, a 
growing body of  evidence supports secondary MET 
involvement in a synergistic crosstalk with other RTKs 
such as EGFR, vascular endothelial growth factor recep-
tor and insulin-like growth factor-1 receptor (IGF-1R) to 
promote malignant cell migration, invasion, and chemo-
resistance[52-55]. In hepatocellular carcinoma cells, EGFR 
co-immunoprecipitates with MET and activated EGFR 
leads to ligand-independent activation of  the MET path-
way[36]. MET and IGF-1R synergistically promote migra-
tion and invasion in pancreatic adenocarcinoma. Down-
regulation of  MET via adenoviral infection with a MET 
ribozyme abrogated the effects of  IGF-1, suggesting co-
dependence of  IGF-1R and MET in directing tumor 
invasion and migration[56]. These complex, multifactorial 
interactions among RTKs play a key role in growth and 
maintenance of  a variety of  tumor types and are under 
intense scrutiny for potential therapeutic value or mecha-
nisms of  therapeutic resistance. These discoveries will be 
essential to the evolving reality of  personalized cancer 
treatment strategies.

MET AND TUMOR METASTASIS 
The microenvironment of  a tumor may be as instrumen-
tal to the progression of  disease as the tumor itself. In 
fact, stromal support in the form of  angiogenesis, mito-
genic signaling and cytoskeletal attachments are necessary 
for tumors to grow and metastasize in vivo. As previously 

mentioned, HGF secretion by stromal cells mediates 
MET activity in a paracrine manner. Additionally, HGF-
MET signaling encourages angiogenesis by inducing 
VEGF expression by cancer cells[57,58]. However, neovas-
cularization alone is not sufficient for metastasis to occur. 

Recall that in embryonic development and tissue re-
pair, MET plays an essential, physiologic role in cellular 
migration and subsequent organogenesis. Unfortunately, 
overexpression of  MET and its subsequent downstream 
pathways, including PI3K and Src, similarly enable 
growth and invasion of  malignant cell populations. An 
initial step in tumor migration involves clearing a path 
through the extracellular matrix (ECM). This is accom-
plished primarily by the actions of  secreted matrix metal-
loproteinases (MMPs), which digest surrounding ECM. 
Not surprisingly, MMPs have been shown to be upregu-
lated by MET signaling[24]. 

Cells must also respond to chemotactic factors in the 
ECM for effective migration. As previously mentioned, 
an EMT endows epithelial cells with certain properties 
of  mesenchymal cells that enable migration. Further-
more, it has recently been proposed that the EMT may 
be coupled with a transition to a more stem-cell-like state, 
suggesting further importance of  the EMT to metastasis 
and tumor progression[59]. In embryogenesis, MET con-
trols the EMT necessary to enable myogenic progenitor 
cell migration[9]. Additionally, EMT is further driven by 
Wnt signaling, a pathway that is also stimulated by MET 
via glycogen synthase kinase 3-β[60]. The mechanism by 

8462 July 14, 2014|Volume 20|Issue 26|WJG|www.wjgnet.com

Figure 3  Immunoperoxidase staining. Immunoperoxidase staining of formalin fixed, paraffin embedded human pancreatic specimens demonstrate over expression 
of c-Met receptor in pancreatic cancer patients when compared to adjacent normal pancreatic tissue controls (right panel). HE staining demonstrate histological confir-
mation of diseased (pancreatic cancer) or normal tissue (left panel). 
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Table 1  Cancer stem cell markers are listed with previously 
described functions

which MET governs the EMT directly in tumor metasta-
ses remains to be elucidated. 

Finally, malignant cells must take up residence in a 
distant organ as a metastatic focus. Remarkably, HGF-
MET signaling plays a role both in cellular dissociation 
within the primary tumor and cellular re-association with-
in the metastatic niche[24]. HGF triggers destabilization 
of  adherens junctions within the primary tumor through 
FAK-mediated integrin signaling[61]. As tumor cells invade 
and metastasize, failure of  proper interaction with for-
eign microenvironments leads to programmed cell death. 
HGF-MET signaling upregulates cytoskeleton adhesion 
receptors and enables tumor cells to effectively engage 
their new surroundings and elude apoptosis, thereby fa-
cilitating metastatic development[24]. Thus, in addition to 
fostering primary tumor growth, MET appears to act at 
multiple regulatory points in the development of  meta-
static disease.

MET AND CANCER STEM CELLS
A growing body of  evidence suggests that a hierarchy ex-
ists in cancer cell populations, a notion initially discovered 
in hematopoietic malignancies. Cancer stem cells (CSCs) 
actually comprise a small minority of  tumor cells but ap-
pear to be the only group capable of  unlimited self-renew-
al and formation of  xenografts. Interestingly, these cells 
appear to have a limited potential for further differentia-
tion[62,63]. CSC populations have subsequently been identi-
fied in a variety of  solid organ neoplasms including brain, 
breast, melanoma, pancreas, prostate and colon. While 
CSC identification is specific to each tumor type, common 
themes include cell surface markers such as CD24, CD44, 
CD133, epithelial surface antigen (ESA), chemokine re-
ceptor type 4, and urokinase plasminogen activator (Table 
1)[64-72]. Importantly, in pancreatic cancer stem cell (PCSC) 
populations, MET overexpression conferred an equally 
tumorigenic phenotype to CD44+/CD24+/ESA+ cells[73]. 
Restated, MET overexpression alone may sustain a pan-

creatic cancer stem cell phenotype. 
Conversely, MET overexpression may prompt can-

cer cells to dedifferentiate into CSCs. MET activation in 
prostate cancer cells induces a stem-like phenotype and 
endows cells with more invasive potential[74]. In head and 
neck squamous cell carcinoma, cells overexpressing MET 
can recapitulate the heterogeneity of  parental tumors 
in vivo and exhibit increased self-renewal, invasion, and 
metastasis[75]. In glioblastomas, overexpression of  MET 
leads to a stem-like phenotype resistant to terminal dif-
ferentiation signals[76]. Regardless of  the origin of  CSCs, 
MET overexpression is associated with a stem-cell-like 
phenotype in a wide range of  cancers.

MET AND CHEMORESISTANCE
Chemoresistance is an important factor contributing to 
the high mortality rate of  most cancers and is germane 
to treatment failure in pancreatic cancer. With few excep-
tions, tumor metastasis precludes surgical therapy and 
leaves chemotherapy as the only therapeutic option. In 
borderline cases, neoadjuvant chemotherapy protocols 
may offer opportunities for attempts at a surgical resec-
tion. After surgery, adjuvant chemotherapy protocols 
are beneficial in avoiding recurrence, especially in more 
aggressive tumor types. Unfortunately, the development 
of  chemoresistance is a real oncologic dilemma. In the 
face of  chemoresistant tumor populations, no effective 
treatments exist. Therefore, understanding the molecular 
regulators of  chemoresistance has major implications in 
therapeutic intervention. Several lines of  evidence con-
verge to suggest that MET overexpression may confer a 
chemoresistant phenotype. 

We have outlined the close relationship between 
MET and CSCs. In fact, CSCs have been shown to be 
largely responsible for chemoresistant phenotypes in 
glioblastomas, hematopoietic, pancreatic and colorectal 
cancers[77-83]. Mechanisms range from reducing drug de-
livery to repairing cytotoxic injury and ultimately result 
in tumor cell repopulation[77-83]. Furthermore, a higher 
proportion of  cells bearing CSC markers has been as-
sociated with poor outcomes in glioblastomas, breast and 
pancreatic cancer[84-86]. Thus, investigative directions have 
become particularly focused on identifying factors that 
drive and sustain CSCs. Given the significance of  HGF-
MET signaling in PCSC populations, the role of  MET 
in this process would seem to be particularly relevant in 
pancreatic cancer.

The activation of  the HGF-MET axis has been di-
rectly implicated in acquiring and maintaining chemore-
sistance in several tumor cell populations (Table 2). HGF 
stimulation protects NSCLC cells from cisplatin toxicity, 
in part mediated by downregulation of  apoptosis-induc-
ing factor[87]. c-met amplification is associated with NSCLC 
resistance to the EGFR inhibitor Gefitinib via modula-
tion of  the PI3K pathway[88]. Multiple investigations have 
revealed that MET inhibition sensitizes ovarian carci-
noma to carboplatin plus paclixatel, whereas MET over-
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CSC marker Proposed function

CD44 ECM binding, organization of actin cytoskeleton, 
modulation of mitogenic signaling[112]

CD24 P-Selectin binding, cell migration[113]

ESA Mediation of epithelial intercellular adhesion[114]

CD133 Activation of Wnt signaling and angiogenesis[115,116]

CXCR4 Receptor of SDF-1, hematopoietic stem cell homing, 
invasion[117]

MET Receptor of HGF, promotes cell growth, proliferation, 
migration[11]

u-PA ECM degradation, cell migration[118]

Note the pattern of migratory functions associated with cancer stem cell 
(CSC) markers. ECM: Extracellular matrix; ESA: Epithelial specific antigen; 
CXCR4: Chemokine receptor type 4; SDF-1: Stromal cell-derived factor 1; 
MET: Mesenchymal-epithelial transition factor; HGF: Hepatocyte growth 
factor; u-PA: Urokinase-type plasminogen activator.
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expression imparts chemoresistance[89,90]. Furthermore, 
stimulation of  the HGF-MET pathway confers protec-
tion against chemotherapeutic agents by upregulation of  
PI3K/Akt signaling in multiple myeloma, glioblastoma 
and gastric adenocarcinoma[91-93]. Our group has found 
that pharmacologic MET inhibition using a small mole-
cule inhibitor sensitizes esophageal adenocarcinoma cells 
to pyrimidine analog chemotherapy (unpublished data). 
Additionally, preclinical studies have demonstrated that 
overexpression of  MET has also been associated with 
EMT-like changes in acquired-gemcitabine-resistant pan-
creatic cancer cells[94]. These findings are not surprising as 
pancreatic cancer is known for rapid acquisition of  che-
moresistant behavior and also MET overexpression. Ad-
ditionally, MET inhibition in pancreatic adenocarcinoma 
leads to gemcitabine sensitization[95]. Although consisting 
largely of  in vitro data, these investigations demonstrate 
a strong correlation between MET overexpression and 
chemoresistance in a variety of  malignancies.

The mechanism by which MET overexpression con-
fers chemoresistance in pancreatic cancer likely involves 
the mesenchymal support network. Tumors most heavily 
invested with stroma are often those most refractory to 
chemotherapy[4]. Stroma is the predominant source of  
HGF, suggesting MET activation is, at least in part, a re-
sult of  paracrine signaling. In breast cancer, HGF-MET 
signaling augments tumor cell adhesion to ECM com-
ponents by upregulating integrin synthesis and inducing 
conformational changes that activate integrins[24,96]. This 
integrin-mediated adhesion is actually a mechanism by 
which tumor cells can oppose the cytotoxic effect of  
chemotherapy[97]. Indeed, studies have shown that integ-
rin expression, specifically a β, is upregulated in cases of  
relapsed leukemia. This finding suggests that increased 
integrin expression may contribute to generating minimal 
residual disease, defined as tumor cell persistence follow-
ing therapy[4]. Further investigation is necessary to char-
acterize the mechanism by which MET-driven integrin 
upregulation imparts chemoresistance and whether this 
principle is applicable to other tumor types. However, dis-
ruption of  the HGF-MET axis may result in biochemical 
dissociation from the protective mesenchymal environ-
ment, thereby imparting sensitivity to cytotoxic therapies.

Data specific to the pancreatic cancer microenviron-
ment regarding MET signaling is forthcoming. Animal 
models that utilize VEGF inhibitors to impart ischemia 
actually result in increased tumor growth and invasion 
but inhibition of  MET abrogates this proliferative re-
sponse to hypoxia[98]. As previously mentioned, PCSCs 
can be defined by comparatively high MET expression. 
Pharmacologic inhibition of  MET in PCSC populations 
blocked self-renewal capacity, reduced the overall PCSC 
population and significantly slowed tumor growth in 
vivo[99]. Treatment with MetMAb, a monovalent antibody 
against MET, has shown decreased pancreatic tumor 
growth in orthotopic models in vivo[100]. Further, recent 
preclinical data suggest cabozantinib, a novel small mol-
ecule MET inhibitor, overcomes gemcitabine resistance. 
These studies will likely lead to phase 3 clinical trials us-
ing this inhibitor in pancreatic cancer patients[101]. 

Finally, the interplay between RTKs and the potential 
for redundancy deserves emphasis when discussing thera-
peutic intervention. MET and other RTKs are involved 
in a complex signaling network that may exist as a redun-
dant system with controlled feedback. For example, MET 
induction has been associated with anti-EGFR therapy 
and resultant MET overexpression confers resistance to 
EGFR inhibitors in lung and colorectal cancer[88,102-104]. 
Thus, MET inhibition may potentiate therapeutic effects 
aimed against other RTKs, and vice versa. In fact, effec-
tive siRNA inhibition of  c-Met transcripts in NSCLC 
confers sensitization to gefitinib, an inhibitor of  EGFR[88]. 
Further, concomitant administration of  EGFR and MET 
inhibitors eliminated NSCLC cells more effectively than 
either drug alone[55,105]. Similarly, MET inhibition led to 
increased sensitivity of  her2-positive breast cancer cells 
to trastuzumab[106]. Not surprisingly, combination RTK 
inhibition is quickly becoming the standard in targeted 
oncologic chemotherapies involving MET inhibition.

CONCLUSION
In summary, c-met encodes a versatile RTK crucial to 
physiologic cell proliferation, organogenesis and wound 
healing. Its mechanism of  action involves multiple anti-
apoptotic, pro-mitogenic, and pro-motility downstream 
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Table 2  Mechanisms of hepatocyte growth factor-mesenchymal-epithelial transition factor induced chemoresistance in different 
cancer types

Cancer type Chemotherapy Mechanism of HGF-MET signaling in chemoresistance

Multiple myeloma Bortezomib MET overexpression: Apoptotic resistance via PI3K-Akt activation[92]

Glioblastoma Radiation, cisplatin, camptothecin, 
adriamycin, and taxol groups

Addition of HGF: Anti-apoptotic effects via PI3K-Akt dependent pathways[91]

Rhabdomyosarcoma Vincristine/etoposide, radiation Addition of HGF: Enhanced migration, MMP secretion, PI3K-Akt activation[119]

Non-small cell lung carcinoma Cisplatin Addition of HGF: Downregulation of apoptosis-inducing factor (AIF)[87]

Non-small cell lung carcinoma Erlotinib c-met amplification: Activation of EGFR, preservation of PI3K-Akt activation[88]

Gastric adenocarcinoma Adriamycin Addition of HGF: Anti-apoptotic effects via PI3K-Akt upregulation[93]

Pancreatic adenocarcinoma Gemcitabine MET overexpression: Anti-apoptotic effects via PI3K-Akt activation, induction of 
EMT-like changes[94,95]

Ovarian adenocarcinoma Carboplatin/paclitaxel MET overexpression: Apoptotic resistance via PI3K-Akt activation[89,90]

MET: Mesenchymal-epithelial transition factor; PI3K: Phosphoinositide 3-kinase; Akt: Protein kinase B; HGF: Hepatocyte growth factor; MMP: Matrix 
metalloproteinase; EGFR: Epidermal growth factor receptor; EMT: Epithelial-mesenchymal transition. 
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effectors. Unfortunately, dysregulated HGF-MET signaling 
is implicated in multiple oncologic mechanisms, including 
tumor growth, invasion and chemoresistance. Not sur-
prisingly, clinical studies have consistently revealed MET 
overexpression as a negative prognostic indicator in a 
wide variety of  malignancies. 

HGF-MET signaling mediates mesenchymal-cell-
mediated mitogenic support to developing tumor cell 
populations. MET activity enhances ECM degradation 
and integrin-mediated adhesion. In addition to promoting 
mobility and invasion, this appears to confer a protective 
microenvironment conducive to the development of  che-
moresistant clones. MET signaling is a marker of  cancer 
stem cell populations, a recently characterized subgroup 
of  cancer cells resistant to cytotoxic therapies. 

A better understanding of  tumor growth signaling path-
ways and chemoresistant mechanisms carries the potential 
of  immense therapeutic value, especially in aggressive 
tumors such as pancreatic adenocarcinoma. Strategies 
include targeting chemoresistant CSCs, limiting acquired 
resistance with combination therapy, and developing meth-
ods of  biochemically dissociating tumor cells from their 
mitogenic microenvironments. Each of  these mechanisms 
has been associated with HGF-MET signaling. Not sur-
prisingly, a series of  MET inhibitors and more nonspecific 
RTK inhibitors are currently under investigation (Table 
3)[107-111]. The evidence presented makes a compelling case 
for further insights into HGF-MET signaling as a thera-
peutic target in pancreatic cancer.
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