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Despite the continuously growing number of known avian picornaviruses (family Picornaviridae),

knowledge of their genetic diversity in wild birds, especially in long-distance migrant species is

very limited. In this study, we report the presence of a novel picornavirus identified from one of 18

analysed faecal samples of an Afro-Palearctic migrant bird, the European roller (Coracias garrulus

L., 1758), which is distantly related to the marine-mammal-infecting seal aquamavirus A1 (genus

Aquamavirus). The phylogenetic analyses and the low sequence identity (P1 26.3 %, P2 25.8 %

and P3 28.4 %) suggest that this picornavirus could be the founding member of a novel

picornavirus genus that we have provisionally named ‘Kunsagivirus’, with ‘Greplavirus A’ (strain

roller/SZAL6-KuV/2011/HUN, GenBank accession no. KC935379) as the candidate type

species.

Picornaviruses (family Picornaviridae) are small, non-
enveloped viruses with single-stranded, positive-sense
genomic RNA. In general, the 7.2–9.1 kb polyadenylated
picornaviral genome consists predominantly of a single
polyprotein coding region flanked by highly structured 59

and 39 untranslated regions (UTRs), although substantial
divergence from the common genome organization have
been observed recently (Woo et al., 2012). The viral
polyprotein is co- and post-translationally processed into
multiple capsid monomers: VP0 (sometimes cleaved to
VP4 and VP2), VP3 and VP1, and non-structural proteins:
2A, 2B, 2C, 3A, 3BVPg, 3Cpro and 3Dpol, and the presence of
a leader (L) protein upstream of the capsid proteins is also
observable in some picornaviruses (Racaniello, 2007; Boros
et al., 2012a).

The family Picornaviridae consists of 37 species grouped into
17 officially recognized genera (Aphthovirus, Aquamavirus,
Avihepatovirus, Cardiovirus, Cosavirus, Dicipivirus, Enterovirus,

Erbovirus, Hepatovirus, Kobuvirus, Megrivirus, Parechovirus,
Salivirus, Sapelovirus, Senecavirus, Teschovirus and Tremovirus);
and, currently 28 (but a rapidly increasing number) candidate
species (Knowles et al., 2012; Adams et al., 2013; http://www.
picornaviridae.com).

Free-living birds are effective hosts and dispersers of
different viruses such as Newcastle disease virus (family
Paramyxoviridae), Japanese encephalitis virus (family
Flaviviridae) and avian influenza virus (family Orthomyxo-
viridae) that are potentially hazardous to livestock, poultry
and even humans (Leighton & Heckert, 2007; McLean &
Ubico, 2007; Stallknecht et al., 2007). Despite studies
predominantly related to the human threat of avian-borne
viruses, knowledge of avian picornaviruses, especially
viruses in wild birds are still limited. Of the 16 so far
described avian picornaviruses, only duck hepatitis A virus
(genus Avihepatovirus) from mallard ducks (Anas platyr-
hynchos), turdivirus 1 (unassigned species), turdivirus 2
and 3 (unassigned species) from dead birds of the family
Turdidae and pigeon picornavirus A and B (unassigned
species) from feral pigeons (Columba livia) are thought to
infect wild birds (Knowles et al., 2012; Gough & Wallis,
1986; Woo et al., 2010; Kofstad & Jonassen, 2011).

The GenBank/EMBL/DDBJ accession number for the study sequence
is KC935379.

One supplementary table is available with the online version of this
paper.
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Analysis of avian picornaviruses in free-living migratory
birds is particularly important because these birds are easily
capable of travelling long distances, even across continents,
potentially transmitting avian-borne picornaviruses to new
animal populations.

The European roller (Coracias garrulus L., 1758 of the
family Coraciidae) is an Afro-Palearctic migrant (long-
distance migrants that breed in Europe, including
Hungary, and winter in sub-Saharan Africa) bird species
living mainly in loose nomadic associations and sometimes
forming large flocks containing hundreds of individuals
(Fry, 2001). Due to the continuous decrease in popula-
tion size, this bird species is now considered to be globally
‘near threatened’ by the International Union for
Conservation of Nature, and is on their Red List of
Threatened Species.

This is the first report of the presence of a novel
picornavirus identified in a long-distance migrant bird
species and distantly related to the marine-mammal-
infecting seal aquamavirus A1 (SeAV-A1, genus Aquama-
virus). Here, we proposed it as the prototype species in a
novel genus in the family Picornaviridae.

Faecal samples from artificial nests occupied by healthy
breeding pairs and nestlings of European rollers were
collected from two different Hungarian breeding territories
of the Great Hungarian Plain (Dorozsma-Majsai homo-
khát, n514; Borsodi Mezőség, n54) in July 2011 during
the regular bird ringing process. Samples were collected by
qualified ornithologists with valid permission (Permit No.
of the National Inspectorate For Environment, Nature and
Water: 14/1368-5/2011). Two randomly selected faecal
samples (one from each breeding territory) were subjected
to viral metagenomics analysis using sequence independent
random reverse transcriptase-PCR (RT-PCR) amplification
of viral-particle associated nucleic acids and 454 GS FLX
technology, as described previously (Kapoor et al., 2008a;
Victoria et al., 2009). To determine the complete
picornavirus genome 59/39 RACE, RT-PCR amplification
and dye-terminator sequencing were used as described
previously (Boros et al., 2011, Boros et al., 2012b).

Five sequence contigs (Fig. 1a) originated from one of the
sample (SZAL6) covering 26.8 % of a picornaviral genome
related to SeAV-A1 (GenBank accession no. EU142040) as
the closest match using BLASTX served as templates for
virus-specific primer design (Table S1, available at JGV
online). The 7272 nt RNA genome of the picornavirus
strain roller/SZAL6-KuV/2011/HUN (GenBank accession
no. KC935379) was predicted to possess a similar genome
organization to SeAV-A1 : 59UTR-P1(VP0-VP3-VP1)-
P2(2A1-2A2-2B-2C)-P3(3A-3B-3C-3D)-39UTR (Fig. 1).
The G+C content (53.01mol %) of the entire genome is
one of the highest among picornaviruses and significantly
different from SeAV-A1 (Table 1).

The complete P1 (2349 nt; 783 aa), P2 (1881 nt; 627 aa)
and P3 (2517 nt; 838 aa) regions showed low amino acid

sequence identity to SeAV-A1 (GenBank accession no.
EU142040) (Table 1). The identity calculations were
performed by BioEdit software (version 7.1.3.0) (Hall,
1999) using the pairwise alignments generated by
CLUSTAL_X software (version 2.0.3). The potential proteo-
lytic cleavage sites of roller/SZAL6-KuV/2011/HUN were
mapped based on (i) the aa alignment with the two SeAV-
A1 sequences: HO.02.21 (GenBank accession no. EU142040)
and Holland/88 (N. J. Knowles, Pirbright Institute, personal
communication, 2012) (ii) and the NetPicoRNA predictions
(Blom et al., 1996). The predicted cleavage sites and the
length of different genome regions are shown in Fig. 1(a).

The analysis of the P1 region did not support the presence
of L protein or the maturation cleavage of VP0 similar to
the members of genus Aquamavirus and other avian
picornaviruses such as avihepato-, avisi-, galli-, megri-
and turdiviruses (Tseng et al., 2007; Boros et al., 2013;
Boros et al., 2012a; Honkavuori et al., 2011; Woo et al.,
2010). No potential myristoylation motif (GxxxS/T, where
x is a non-conserved amino acid) was recognizable at the
N-terminal end of the viral polyprotein, which suggests
that, similar to the aquamaviruses and parechoviruses,
myristoylation of VP0 may not occur (Kapoor et al.,
2008b).

The analysis of P2 region revealed the presence of an
aphthovirus-like ‘ribosome-skipping’ motif (DxExNPG838/
P) similar to SeAV-A1, leading to the release of a 55 aa 2A1
protein. The C-terminal 22 aa residues of roller/SZAL6-
KuV/2011/HUN 2A1, which could be the core site of
‘ribosomal skipping’ (Ryan et al., 1991), shows 59 % amino
acid identity to the 29 aa 2A1 of SeAV-A1 (EU142040).
The N-terminal part (33 aa) of the 2A1 protein showed no
significant sequence identity to any of the known
picornaviral 2A sequences (Fig. 1b). The proteolytic
cleavage site analysis revealed the presence of a second,
165 aa 2A protein that showed only 11 % amino acid
identity to the 100 aa 2A2 of SeAV-A1 and did not possess
any of the known picornaviral 2A characteristic motifs (e.g.
catalytic sites of trypsin proteases, H-box/NC-motifs or
the GxGxxGKS motifs of NTP-binding sites of 2As of
avihepato- and avisiviruses) (Tseng et al., 2007; Boros et al.,
2013). A Conserved Domain Database (CDD) search
(Marchler-Bauer et al., 2011) identified some functional
sites of protein kinases (CDD-ID: cd05094) and adenylate
forming domains (CDD-ID: cl17068) in the 2A2 of roller/
SZAL6-KuV/2011/HUN, although with a relatively high E-
values (Fig. 1b). The 2C protein – similar to the other
picornaviruses – falls into the class III helicases and all
three functional motifs (A–C) were identifiable (Fig. 1a)
(Hales et al., 2008).

The proteolytic cleavage site mapping strongly suggested
the release of a single, 24 aa 3BVPg that was nearly half the
size of the aquamavirus 46 aa 3B (encoding two VPgs in
tandem) and showed only 42 % amino acid identity to the
C-terminal VPg of SeAV-A1. Interestingly, the roller/
SZAL6-KuV/2011/HUN VPg showed low similarity (34 %)
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and some conserved motifs (e.g. AGxVR) to the 25 aa
peptide located at the C-terminal end of the 3A (from
aa 1518 to 1542) (Fig. 1c), which suggested that the study
strain originally had two VPgs, but one could have
degenerated and become part of 3A.

The study sequence contains all of the conserved amino
acid motifs of picornaviral 3C proteinase and 3D RNA
polymerase (Fig. 1a) and showed the highest sequence
identity to SeAV-A1 at the 3D region (Table 1)
(Gorbalenya et al., 1989).

The phylogenetic analysis was performed using the amino

acid sequences of the complete P1, 2C and 3CD genome

regions of roller/SZAL6-KuV/2011/HUN and the repres-

entative members of the family Picornaviridae. The amino

acid phylogenetic trees were constructed using the

neighbour-joining method based on the Jones–Taylor–

Thornton matrix-based model of MEGA software (version

5.0) (Tamura et al., 2011). Bootstrap values (based on 1000

replicates) for each node are shown if .50 %. All three
phylogenetic trees show the consequent but distant
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Fig. 1. (a) The genome organization, conserved picornaviral motifs and the predicted cleavage sites with the enlarged 2A
genome region of roller/SZAL6-KuV/2011/HUN. Nucleotide (upper numbers) and amino acid (lower numbers) lengths are
indicated in each gene box. The positions of the conserved picornaviral amino acid motifs are indicated with the first amino acid
positions of the motif. The sequence contigs acquired from pyrosequencing are depicted as grey bars. (b) Functional sites of
protein kinases and adenylate-forming domains of 2A2 of the study sequence identified by the CDD-search. (c) Alignment of
the C-terminal end of the predicted 3A and the complete 3BVPg of roller/SZAL6-KuV/2011/HUN. Identical amino acids are
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III is shown by an arrow (Hellen & de Breyne, 2007).
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Table 1. Genomic features of the representative species of the 17 officially recognized and two candidate picornavirus genera and pairwise amino acid sequence identities
between the P1, P2, P3, 2C and 3D proteins of roller/SZAL6-KuV/2011/HUN (KC935379) compared with those of the picornaviruses. Bold numbers indicate the highest levels
of amino acid identities

Genus Type species Genome features Roller/SZAL6-KuV/2011/HUN (KC935379) pairwise

amino acid identity (%)

GenBank accession no. Genome size

(nt)

G+C content

(mol%)

IRES type P1 P2 P3 2C 3D

Aphthovirus Foot-and-mouth disease virus AF274010 8115 54.08 Type II 15.5 16.9 19.2 21.9 23.8

Aquamavirus Aquamavirus A EU142040 6718 43.85 Type IVB 26.3 25.8 28.4 34.7 34.9

Avihepatovirus Duck hepatitis A virus DQ249299 7687 43.23 Type IVB 20.3 19.2 22.9 30.3 30.2

Cardiovirus Encephalomyocarditis virus M81861 7835 49.47 Type II 15.1 15.5 19.6 18.9 22.2

Cosavirus Cosavirus A FJ438902 7632 43.75 Type II 16.0 17.0 21.6 21.4 25.3

Dicipivirus Cadicivirus A JN819202 8785 41.72 Undefined 13.9 15.9 19.5 20.8 24.1

Enterovirus Enterovirus C V01149 7440 46.35 Type I 14.6 14.9 19.7 20.4 24.8

Erbovirus Equine rhinitis B virus AF361253 8821 50.40 Type II 14.1 18.0 22.2 21.6 25.0

Hepatovirus Hepatitis A virus M14707 7478 37.85 Type III 11.6 16.1 16.1 20.6 18.5

Kobuvirus Aichivirus A AB010145 8251 58.91 Type VB/V 16.5 17.4 21.7 23.3 26.4

Megrivirus Melegrivirus A HM751199 9075 46.07 Type IV 12.4 16.7 16.8 23.2 21.9

Parechovirus Human parechovirus L02971 7339 39.60 Type II 21.7 18.7 22.8 27.0 28.8

Ljungan virus AF327920 7590 42.53 Type II 20.7 19.7 24.3 26.7 30.5

Salivirus Salivirus A GQ184145 7989 56.68 Type V 16.9 17.0 19.2 22.8 22.7

Sapelovirus Porcine sapelovirus AF406813 7491 41.04 Type IVB 15.7 15.5 19.9 18.9 24.3

Senecavirus Seneca Valley virus DQ641257 7310 51.62 Type IVA 14.5 16.1 19.4 21.3 24.3

Teschovirus Porcine teschovirus AJ011380 7117 44.83 Type IVB 14.1 16.2 20.1 21.6 24.1

Tremovirus Avian encephalomyelitis virus AJ225173 7055 44.88 Type IVA 10.3 13.7 17.1 19.0 21.5

‘Avisivirus’ ‘Turkey avisivirus’ KC465954 7532 44.97 Type II 20.1 18.4 23.0 26.1 27.6

‘Pasivirus’ ‘Swine pasivirus’ JQ316470 6916 43.20 Undefined 19.4 20.1 23.1 29.1 26.7
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Fig. 2. Phylogenetic relationships between roller/SZAL6-KuV/2011/HUN (indicated in bold and with an arrow), representative members of the 17 picornavirus genera and
unassigned picornaviruses based on amino acid sequences of the different picornavirus proteins: P1 (a), 2C (b) and 3CD (c). Bars indicate amino acid substitutions per site.
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relationship of roller/SZAL6-KuV/2011/HUN to SeAV-A1
(Aquamavirus) (Fig. 2).

The 500 nt 59UTR was similar in length to the 59UTR of
SeAV-A1 (506 nt) and contained three terminal uracils.
The classification and analysis of the internal ribosomal
entry site (IRES) (from nt 309 to 503) of the study
sequence was performed by the Mfold program (Zuker,
2003). The predicted secondary structure of roller/SZAL6-
KuV/2011/HUN had close similarity to the type IVB IRES
structures of members of the genera Sapelovirus,
Teschovirus and Aquamavirus (Table 1); thus, it contained
the conservative IIIe stem–loop with highly conserved
unpaired bases and the IIId G loop, but GpG instead of
CpG dinucleotide pairing in the IIIf (Fig. 1d) (Hellen & de
Breyne, 2007; Kapoor et al., 2008b). The 25 nt 39UTR of
the study sequence was similar in length to the 34 nt
39UTR of SeAV-A1, the shortest among the known
picornaviruses, and with a fold to a single stem–loop
predicted by the Mfold program (data not shown).

Generic 3Dpol primers (Szal6-AqV-3DGen-R and Szal6-
AqV-3DGen-F; Table S1) were designed based on the 3Dpol

sequences of roller/SZAL6-KuV/2011/HUN and aquama-
viruses for screening all of the faecal samples collected from
the European rollers. No other picornaviruses were
detected using this RT-PCR.

In this study, using metagenomic and RT-PCR approaches,
we have reported the first complete genome sequence
of a novel picornavirus (roller/SZAL6-KuV/2011/HUN)
isolated from a long-distance migrant bird species,
European roller, in Hungary. According to the current
guidelines of the ICTV Picornaviridae Study Group (http://
www.picornastudygroup.com/definitions/genus_definition.
htm), novel picornavirus genera are defined by amino acid
identities in the P1, P2 and P3 regions being less than ,40,
,40 and ,50 %, respectively, compared with other genera
(Table 1). Based on these guidelines, and the supporting
phylogenetic analyses, roller/SZAL6-KuV/2011/HUN could
be the founding member of a novel picornavirus genus.
Given the lack of knowledge about the origin and
pathogenic role of this picornavirus species, we propose to
name it Greplavirus A (from the geographical name of the
Great Hungarian Plain) in a novel genus ‘Kunsagivirus’
(from the name of the part of the Great Hungarian Plain –
‘Kunság’ – where the samples were collected), in the family
Picornaviridae.

The identification of roller/SZAL6-KuV/2011/HUN from
only one of the analysed faecal samples raises the possibility
that the European roller is not the natural host of this virus
but that it originated from another animal that was eaten.
This is suspected for other enteric viruses identified using
viral metagenomic approach, e.g. di-cistronic viruses from
human faeces (Kapoor et al., 2010) and bat guano (Li et al.,
2010). The European rollers consume primarily medium-
sized (,35 mm) insects (Orthoptera, Coleoptera), although
occasionally small vertebrates [e.g. pygmy shrews (Soricidae),
lizards (Lacertidae)] may also serve as a food source (Molnar,

1998). Interestingly, we found co-infections (data not
shown) of different rodent-origin/rodent-related picorna-
viruses (e.g. mosavirus and kobuvirus), mamastroviruses,
picobirnavirus and Puumala virus (genus Hantavirus) with
roller/SZAL6-KuV/2011/HUN in sample SZAL6 using
BLASTX on the sequences of viral metagenomics. Five viruses
related to rodent-borne viruses support the dietary origins
of the identified group of viruses, although the relatively low
detection rate of roller/SZAL6-KuV/2011/HUN does not
necessarily imply an outside source of the virus. Further
epidemiological studies and supporting experiments (e.g.
follow-up and seroprevalence studies) on the possible hosts
(e.g. rollers, pygmy shrews, lizards) should be conducted to
answer this question.

The analysis of viruses in faecal samples of such
endangered, migrant bird species may help identify viruses
that are potentially capable of long-distance spread and
transmission to other animal populations.
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