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ABSTRACT

A population of human immunodeficiency virus (HIV) within a host often descends from a single transmitted/founder virus.
The high mutation rate of HIV, coupled with long delays between infection and diagnosis, make isolating and characterizing this
strain a challenge. In theory, ancestral reconstruction could be used to recover this strain from sequences sampled in chronic
infection; however, the accuracy of phylogenetic techniques in this context is unknown. To evaluate the accuracy of these meth-
ods, we applied ancestral reconstruction to a large panel of published longitudinal clonal and/or single-genome-amplification
HIV sequence data sets with at least one intrapatient sequence set sampled within 6 months of infection or seroconversion (n �
19,486 sequences, median [interquartile range] � 49 [20 to 86] sequences/set). The consensus of the earliest sequences was used
as the best possible estimate of the transmitted/founder. These sequences were compared to ancestral reconstructions from se-
quences sampled at later time points using both phylogenetic and phylogeny-naive methods. Overall, phylogenetic methods con-
ferred a 16% improvement in reproducing the consensus of early sequences, compared to phylogeny-naive methods. This rela-
tive advantage increased with intrapatient sequence diversity (P < 10�5) and the time elapsed between the earliest and
subsequent samples (P < 10�5). However, neither approach performed well for reconstructing ancestral indel variation, espe-
cially within indel-rich regions of the HIV genome. Although further improvements are needed, our results indicate that phylo-
genetic methods for ancestral reconstruction significantly outperform phylogeny-naive alternatives, and we identify experimen-
tal conditions and study designs that can enhance accuracy of transmitted/founder virus reconstruction.

IMPORTANCE

When HIV is transmitted into a new host, most of the viruses fail to infect host cells. Consequently, an HIV infection tends to be
descended from a single “founder” virus. A priority target for the vaccine research, these transmitted/founder viruses are diffi-
cult to isolate since newly infected individuals are often unaware of their status for months or years, by which time the virus pop-
ulation has evolved substantially. Here, we report on the potential use of evolutionary methods to reconstruct the genetic se-
quence of the transmitted/founder virus from its descendants at later stages of an infection. These methods can recover this
ancestral sequence with an overall error rate of about 2.3%—about 15% more information than if we had ignored the evolution-
ary relationships among viruses. Although there is no substitute for sampling infections at earlier points in time, these methods
can provide useful information about the genetic makeup of transmitted/founder HIV.

Human immunodeficiency virus type 1 (HIV-1) is among the
most genetically variable human pathogens. HIV-1 envelope

diversity within a single host during chronic infection can exceed
the global diversity of influenza during a given flu season (1);
HIV’s global diversity is more than an order of magnitude greater.
This diversity, driven by HIV’s rapid rate of evolution and fre-
quent recombination (2), represents a major challenge to vaccine
design. For example, vaccine-induced protection against one
strain may not protect against another (3). Recently, however,
there is growing evidence that transmitted/founder viruses—
strain(s) that successfully establish a productive infection follow-
ing the transmission bottleneck (4, 5)—may be substantially less
diverse than the global viral population. Moreover, transmitted/
founder viruses may possess certain genotypic or phenotypic
characteristics (6–10), such as envelope sequences that display the
CCR5 coreceptor usage phenotype (11), and enhanced sensitivity
to antibody-meditated neutralization (12). If infecting strains in-
deed represent a particular subset of all circulating viruses, and if
immunogens could be designed to specifically stimulate protec-

tive host responses against them, the prospect of a protective vac-
cine may be more hopeful. Characterizing transmitted/founder
strains is therefore critically important, since this provides a more
specific target for vaccine design.

The identification of transmitted/founder strains, however, re-
mains challenging. Often, HIV is not diagnosed until the chronic
phase of infection, at which point substantial intrahost evolution
has already occurred. To date, identification of transmitted/
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founder strains has been accomplished through intensive moni-
toring of large prospective HIV cohorts of high-risk individuals,
wherein new infections can be identified within days or weeks of
exposure (see, for example, references 11, 13, and 14). Although
highly valuable, such programs are resource intensive and require
follow-up of a great number of individuals to capture a compar-
atively small number of founder viruses. In contrast, it is substan-
tially less onerous to identify new HIV infections on a time scale of
months or years; indeed, an abundance of published HIV se-
quence data is available from patients diagnosed after the acute
stage. Whereas the sequence of a transmitted/founder strain can
be inferred from the genotypes of its immediate descendants when
these are captured in acute/early infection (11), the accuracy of
reconstructing transmitted/founder strains from more distant de-
scendants remains unknown. If it were possible to accurately re-
construct transmitted viral strains using later (or even chronic)
intrapatient sequences, the wealth of existing sequence data would
yield a much larger repository of transmitted/founder virus geno-
types for study.

Recovering ancestral sequences from present-day descendants
has been of interest to biologists since the middle of the 20th
century (15). Extensive statistical and computational methods for
ancestral sequence reconstruction, which rely on inferring the
phylogeny that models patterns of common ancestry among the
observed genetic sequences, have been developed and continue to
be improved. Often, these techniques have been used by research-
ers interested in evolution on a macro scale (16). In these cases, the
algorithms are untestable, since the ancestors in question are long
extinct. In contrast, longitudinal intrapatient HIV sequence data
provide a unique opportunity to apply these algorithms in a real-
world setting and on a more immediate time scale. In an individ-
ual with untreated HIV infection, the equivalent of a million years
of macroorganism evolution can be observed in a single year (17).
Substantial published longitudinal intrapatient data exist on
which to validate these algorithms. The best estimate of the trans-
mitted/founder strain can be obtained by computing a consensus
from intrapatient sequences sampled during acute infection, if
these early samples are available. In other words, the consensus of
the earliest sequences in a longitudinal data set are a “gold stan-
dard” estimate of the true transmitted/founder strain, which we
can attempt to recover by performing ancestral reconstruction on
the remainder of the data set. Although the output of an ancestral
reconstruction procedure is the most recent common ancestor
(MRCA) of the input sequences, HIV’s documented transmission
bottleneck (4, 5) makes the MRCA very likely to be identical to the
transmitted/founder virus (with the notable exception of very
early selection and rapid fixation of an immune escape mutation;
see Discussion). If these techniques can be applied to accurately
reconstruct transmitted/founder virus sequences using only lon-
gitudinal HIV sequences sampled after acute infection, we will
have a more rapid and cost-effective method to examine and char-
acterize many more infecting strains in the absence of early sam-
ples.

MATERIALS AND METHODS
Data collection. We used the Los Alamos Intra-Patient search interface
(www.hiv.lanl.gov/components/sequence/HIV/ipsearch/IPsearch
.html) to identify longitudinal studies with two or more clonal or single-
genome (SGS) sequences available at each time point, with a known time-
line relative to one of several reference points: HIV infection, sero-

conversion, presentation of symptomatic seroconversion illness, or birth.
Studies were selected where the earliest (“baseline”) sample was collected
within 6 months (186 days) of this reference point, and where at least one
of the subsequent (“follow-up”) time points occurred a minimum of 6
months after baseline. Any available follow-up time points less than 6
months after baseline were included in the analysis, as long as the total
study duration (baseline to last follow-up) exceeded 6 months. As a crit-
ical step of ancestral sequence reconstruction is inferring the evolutionary
relationships between sequences from different viruses in a within-host
population, sequences derived from direct (“bulk”) sequencing of PCR
products, and data sets with only one sequence per time point, were ex-
cluded. Known cases of superinfection (n � 19 patients) were also ex-
cluded. References for all published data sources are listed in the supple-
mental material.

We organized the data sets from these studies in a purpose-built
SQLite database. When patients from two different studies shared one or
more sequences (by GenBank accession number), they were treated as one
individual with a single ID. The data were grouped by patient and by gene
into data sets, defined as a collection of sequences from a single patient
and a single HIV gene. HIV env and gag genes comprised the majority of
data sets (77%, Table 1), but pol, nef, rev, tat, vif, vpr, and vpu were also
represented. A patient may have been associated to more than one data set
if more than one gene of that patient’s viral population (for example, both
env and gag) was sequenced. We assembled 335 unique data sets from 232
unique patients (Table 1), comprising a total of 19,486 sequences (if a
sequence was used for two data sets because it contained two different
genes, it was counted twice).

Alignment. Sequences were annotated in FASTA format using Biopy-
thon’s SeqIO module (18) and aligned with Seaview (19), using a combi-
nation of the built-in MUSCLE interface (20) and manual adjustment.
Alignments were trimmed to the interval where a minimum of 50% of
sequences within the data set had sequence coverage over each codon.
This interval tended to span the entire gene length for relatively short
genes such as vif or nef (median alignment lengths 558 and 615 bp, respec-
tively) or targeted specific regions such as the region encoding HIV pro-
tease and reverse transcriptase in pol (median length, 1,261 bp). Because
codon models generally have no representation for stop codons (see be-
low), columns containing any stop codons were removed. Terminal gaps
due to incomplete sequences, which comprised 1.08% of sites across all
sequences, were replaced with missing data characters (“?”). Finally, the
alignments were split into two FASTA files: one containing the sequences
from the baseline time point and the other containing all of the follow-up
sequences on which ancestral reconstruction was to be performed.

Consensus sequences. Ancestral reconstruction via consensus is ap-
propriate when all taxa directly descend from a single common ancestor (a
scenario represented by a “star” phylogeny) because the sequences repre-
sent independent outcomes. As has been shown previously (8, 11, 21, 22),
a within-host population tends to briefly exhibit a star-like phylogeny in
acute infection, so a consensus would be appropriate at this stage. How-
ever, as infection progresses, certain lineages in the phylogeny begin to
proliferate over others as the host’s immune system exerts selection pres-
sure. Thus, we would expect to see the consensus diverge from the ances-
tor over time. Consensus sequences were therefore generated from the
baseline sample, to be used as the best possible estimate of the “true”
ancestor. We refer to these as “baseline consensus” sequences. The con-
sensus nucleotide for each column of an alignment was taken as the most
frequent non-missing nucleotide, whether or not it was present in more
than 50% of the sequences (i.e., plurality rule consensus). A tie between
two nucleotide frequencies resulted in an ambiguous DNA character in
the consensus sequence; ties between a nucleotide and a gap were resolved
to missing data (“?”). Consensus sequences were also generated in the
same manner from the follow-up samples, to be used as a phylogeny-naive
reconstruction of the ancestor, for comparison against the ancestral re-
construction approach. We refer to these as the “follow-up consensus”
sequences.
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Phylogenetic tree inference. The software program Bayesian Evolu-
tionary Analysis by Sampling Trees (BEAST) (23) was used to generate a
random sample of rooted phylogenetic trees from the posterior distribu-
tion given each data set, under a molecular clock model of evolution. We
specified a log-normal prior for the clock rate; this prior distribution has
the mean and standard deviation as hyperparameters. The prior mean was
computed as follows. Mansky and Temin (24) estimated an HIV mutation
rate of 3.4 � 10�5 bp per replication cycle, and Perelson et al. (25) esti-
mated the mean generation time of HIV to be �2.6 days. Thus, an esti-
mate of the prior mean clock rate is calculated as follows: [(3.4 � 10�5

bp)/generation] � (1 generation/2.6 days) � (1.3 � 10�5 bp)/day.
We specified a prior standard deviation of 1 such that the prior distri-

bution had a 95% confidence interval of 1.5 � 10�6 to 4.1 � 10�5. All
other prior distributions were left at their default settings. We used an
HKY85 model of nucleotide substitution rates (26), with stationary nu-
cleotide frequencies estimated as model parameters, no variation in sub-
stitution rates across sites, and no partitioning of rate parameters by
codon position. A prior distribution over trees was specified by a constant
effective population size coalescent model with a random starting tree.
These settings were applied across all 335 sequence alignments.

For each data set, we evaluated both strict and relaxed uncorrelated
lognormal clock models. Two replicate 108-step MCMC chains were run
for each clock model for a total of four chain samples, and trees were
recorded to a log file every 10,000 steps. Convergence of the chains was
assessed using the R package coda’s implementation of the Gelman-Rubin
diagnostic, which compares the variance within chains to the variance
among chains. We took a Gelman-Rubin diagnostic value of �1.1 for the
posterior traces as a criterion of convergence. If the replicate chains for a

given clock model did not satisfy this criterion, we repeated the analysis
with longer chain samples up to 109 steps until the criterion was passed.
The criterion was not satisfied after 109 steps for 0 and 25 data sets for
strict and relaxed molecular clock models, respectively. For these, the
remaining clock model (which did pass the criterion) was carried forward.
Otherwise, using the implementation of the smoothed marginal-likeli-
hood estimator of Newton and Raftery (27) in Tracer (28), Bayes factors
between the strict and relaxed clock models were calculated, and results
from the favored model for each respective data set were carried forward.
The first 10% of the sampled trees were disregarded as burn-in, and the
remainder imported into Python and converted to the standard Newick
format using Biopython’s Phylo module (29).

For each MCMC run, the maximum clade credibility (MCC) tree (23)
was computed using Treeannotator (30), and 10 other sample trees were
chosen at regular intervals along the chain. At the end of this stage, a total
of 11 trees were associated to each data set: the MCC tree, plus 10 addi-
tional trees randomly sampled from the posterior distribution (sample
trees).

Codon reconstruction. We used an implementation of the Muse-
Gaut codon model (MG94) (31) in HyPhy (32) as described previously
(33) to estimate the ancestral sequence at the root of the tree. This model
takes into account the difference between synonymous and nonsynony-
mous codon substitutions. The reconstructed ancestral root sequence was
estimated by joint maximum likelihood (ML sequence [34]), and 10 ad-
ditional ancestral root sequences were sampled from the posterior distri-
bution (“sample” sequences) for a total of 11 reconstructed ancestral se-
quences associated to each tree. Since there were 11 trees associated to
each data set (1 MCC trees and 10 sample trees), this made for a total of

TABLE 1 Data set characteristicsa

Characteristic or parameter

Risk group

All Heterosexual MSM MTCT IDU Transfusionb Unknownc

Patients (n) 232 52 52 50 3 3 72
Data sets (n) 335 90 105 55 4 3 78

env 155 33 46 40 2 3 31
gag 102 39 13 8 1 41
pol 28 11 9 5 1 2
nef 11 5 3 3
rev 11 1 9 1
tat 15 1 12 2
vif 3 3
vpr 3 3
vpu 7 7

DNA 201 81 42 36 2 40
RNA 87 9 43 17 2 3 13
DNA�RNA 47 20 2 25
Treated 95 3 48 23 2 19
Untreated 194 81 57 13 4 1 38
Unknown treatment history 46 6 19 21

Parameter
Follow-up time points (n) 3 (1–5) 1 (1–2) 5 (2–7) 3 (2–3) 3 (1–5) 4 (4–4) 4 (3–6)
Sequences/data set (n) 49 (20–86) 16 (12–38) 90 (53–119) 41 (20–60) 88 (39–136) 56 (48–70) 52 (39–73)

Baseline (n) 10 (6–20) 6 (3–11) 18 (10–32) 10 (4–14) 23 (22–24) 8 (6–10) 10 (7–13)
Follow-up (n) 35 (12–61) 11 (7–24) 58 (36–93) 29 (12–42) 66 (17–113) 48 (38–64) 40 (29–58)

tfirst (days) 32 (7–68) 59 (23–93) 25 (6–78) 31 (14–62) 142 (98–186) 31 (16–31) 16 (1–48)
tsecond (days) 222 (72–769) 1,262 (306–1,893) 163 (37–571) 186 (93–375) 635 (216–1,054) 62 (62–563) 138 (70–224)
tlast (days) 724 (408–1,253) 1,262 (849–1,893) 724 (341–1,166) 504 (387–840) 1,028 (1,001–1,054) 341 (310–1,114) 430 (357–645)

a Values are numbers (n) for patients and data sets or medians (interquartile ranges) for other data. Abbreviations: MSM, men who have sex with men; MTCT, mother-to-child
transmission; IDU, injection drug user; tfirst, baseline time point; tsecond, first follow-up time point; tlast, final follow-up time point. “Days” refers to the number of days after the
reference point.
b That is, two blood and one factor VIII donations.
c “Unknown” usually indicates that patients were participants in a large cohort comprising multiple risk groups.
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121 reconstructed ancestral sequences per data set that could be classified
into four categories: a 1�MCC tree with an ML sequence (denoted as
MCC/ML), a 10�MCC tree with a sample sequence (MCC/sample), a
10�sample tree with an ML sequence (sample/ML), and a 100�sample
tree with a sample sequence (sample/sample). For each category except
MCC/ML, we computed the consensus of the reconstructed ancestral se-
quences in that category, resulting in four reconstructed ancestral se-
quences per data set (one for each category).

Indel reconstruction. A codon model such as the one we used in the
previous step only considers one kind of mutational event: nucleotide
substitutions. Other mutational events such as insertions and deletions
(indels) are generally not accounted for by codon models. Consequently,
we were required to reconstruct the evolution of indel polymorphisms in
ancestral sequences separately. We evaluated three methods at this stage.
The first two were the published software packages Indelign (35) and
Ancestors (36). For Indelign, we assumed a geometric distribution for the
lengths of the indels. The two distribution parameters, the average length
of insertions and the average length of deletions, were estimated separately
per data set. For Ancestors, we used the software’s maximum-likelihood
heuristic with the default parameters. Since both software packages lack a
character representation for missing data, these were replaced with the
consensus of the observed indel character states in their respective col-
umns. That is, if the state of an indel polymorphism was unavailable at a
given position, it was assumed to be in the most common state. This only
occurred when the sequence in question was incomplete at either end;
these sites represented 0.98% of all follow-up data at the nucleotide level.
The programs were run on nucleotide sequence alignments. In addition,
we evaluated a series of “gap character” models that were applied to di-
chotomized alignments in which indel polymorphisms were represented
by “0” or “1” to indicate the absence or presence of a codon. Full details are
provided in the supplemental material (see “Gap character models”).

We initially tested all three methods on a representative sample of data
sets and found that Indelign and Ancestors performed comparably and
significantly outperformed the binary character approach. However, both
packages were designed to handle large regions from only a few taxa and
were somewhat unstable with intrapatient phylogenies with many
branches. We decided to use the Indelign package, since it was more stable
with these data than Ancestors. Indelign produced one sequence per tree,
totaling 11 reconstructed ancestral indel patterns per data set. We reduced
this to two: a single pattern generated with the MCC tree and a consensus
of the 10 patterns generated with sampled trees.

Finalization and comparison. The codon reconstructions were over-
written with the indel patterns to obtain four ancestral sequences per data
set. The reconstructed ancestors were then compared to the baseline con-
sensus. These comparisons were undertaken at both the nucleotide and
amino acid levels. We did not consider sites where the baseline consensus
nucleotide or amino acid sequence had a missing data character (“?”) or
was ambiguous, states that comprised only 0.7% of all sites across all data
sets at the nucleotide level and 0.7% at the amino acid level. These sites
occurred for one of two reasons: (i) either the majority of baseline se-
quences were missing (incomplete) at that site (ii) or, of the baseline data
present, exactly half of the sequences had one character and half had
another. In either case, we could not be sure of the true ancestral state at
these sites, so comparison to the reconstruction would be meaningless.

At the nucleotide level, we considered all of the sites where both the
reconstruction and baseline consensus had a residue (i.e., neither se-
quence had a gap at that site, and the baseline consensus did not have a
missing data character). If the ancestral reconstruction did not match the
baseline consensus residue, we called that site a “nucleotide error.” We
then defined the nucleotide error rate as follows: nucleotide error rate �
(the number of nucleotide errors/the number of sites) � 100%. The
“amino acid error rate” was defined in the same way for the amino acid
translations of the reconstructed and follow-up consensus sequences. For
comparison, we also calculated these error rates when comparing the
consensus of all follow-up sequences to the baseline consensus sequence.

Given only sequences from late in infection, the follow-up consensus
sequence represents a phylogeny-naive estimate of the transmitted/
founder virus genotype. For example, this consensus sequence would not
account for the effect of selection, which would cause certain lineages in
the population to proliferate over others and skew the consensus away
from the true ancestor. We do not intend to suggest this method as an
“alternative” method of ancestral reconstruction but rather as a compar-
ator to provide context for our results.

At each site, the reconstructed ancestor may either correctly match the
baseline consensus, be ambiguous, or show one of three types of error:
substitution (i.e., a nucleotide or amino acid error), insertion (a present
nucleotide or amino acid where the baseline consensus is gapped), or
deletion (a gap where the baseline consensus has a present nucleotide or
amino acid). We define the “overall error rate,” on both the nucleotide
and the amino acid levels, as the combined proportion of ambiguous
characters and these three types of error, i.e., as [(the number of substitu-
tion errors � the number of insertion errors � the number of deletion
errors � the number of ambiguous sites)/the number of sites] � 100%.

Since we are interested in all types of error, the overall error rate is a
useful metric for evaluating reconstruction accuracy. Note that, in data
sets with no indel polymorphism, the overall error rate is equal to the
amino acid error rate. Figure 1 illustrates these definitions, and the com-
ponents of ancestral reconstruction, for one data set on which reconstruc-
tion was performed with an overall error rate within 0.001% of the me-
dian. All sequences in the data set are displayed in the style of Highlighter
plots (http://www.hiv.lanl.gov/) with respect to the baseline consensus. In
the center is the maximum clade credibility phylogenetic tree. The base-
line sequences, which we assume represent the ancestral sequence at the
root of this tree, are on the left. On the right, the follow-up sequences are
shown at the level of their corresponding tip node in the tree. The fol-
low-up consensus and the reconstructed ancestral sequence are shown in
comparison to the baseline consensus in the top right. Analogous figures
for each data set studied can be found on our web server (link below).

Finally, since insertion and deletion events take place over whole se-
quence regions, rather than separately at individual sites, we defined a
separate indel error rate to quantify the accuracy of indel reconstruction
by regions rather than by sites. We defined an “indel region” as a contig-
uous group of alignment columns with a gap occurring at least once in
either the follow-up sequences, or the baseline consensus, in every col-
umn. If at any site in the region the ancestral reconstruction showed a gap
(“-”) and the baseline consensus showed a nucleotide or amino acid, or
vice versa, we called the region an “indel error.” A total of 173 (51.6%) of
the data sets had one or more indel regions; of these, the number of indel
regions was, on average, low (median and interquartile range [IQR]: 3 [1
to 5], with a maximum of 15). The indel error rate was then defined in the
same way as the other error rates, using counts of indel regions rather than
individual sites, for data sets that had one or more indel regions: indel
error rate � (the number of indel errors/the number of indel regions) �
100%.

All statistical analyses were conducted with R (37), and plots were
made with the ggplot2 (38) package. The data files generated in all six steps
of this project (alignment, trees, codon sequences, indel sequences, con-
sensuses, and final reconstructions), our database, and analogues of Fig. 1
for all data sets, can be found at http://bioinfo.cfenet.ubc.ca/pub/ancre2/
(see the ReadMe in this directory for descriptions of all files, as well as the
database schema).

RESULTS
Error rates. Toward the goal of evaluating the accuracy of phylo-
genetic methods for reconstructing transmitted/founder viruses,
we applied ancestral sequence reconstruction techniques to a large
panel (n � 335 data sets, n � 19,486 sequences) of published
intrapatient, longitudinal, HIV-1 clonal/SGS sequence data sets.
The data originated from 55 studies published between 1991 and
2012 and varied widely with respect to geographic region, HIV
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subtype, transmission risk group, number of patients, and study
design. The data sets were selected to contain at least two sample
time points at least 6 months (186 days) apart, the first being
within 6 months of HIV infection, seroconversion, onset of acute
symptomatic seroconversion illness, or birth (in the case of moth-
er-to-child transmission). The 6-month baseline cutoff was cho-
sen as a liberal definition of “acute/early infection” in order to
include as many and as varied data sets as possible (see also refer-
ence 11 for examples of prior investigations of HIV transmission
using viruses sampled between 1 and 6 months postinfection).
The published sequences had all been generated with either clonal
or single-genome sequencing, so that multiple distinct sequences
were associated with each time point.

Using the consensus of the earliest available (baseline) time
point for each data set as the best estimate of the transmitted/
founder sequence, we evaluated how well one could reconstruct
this sequence using only data from subsequent (follow-up) sam-
ples. We evaluated several different procedures for extracting an-
cestral reconstructions from our phylogenetic analyses of these
data sets. First, we used either a random sample of trees from the
posterior distribution (this procedure is referred to as “sample”;
[39]) or the maximum clade credibility (MCC) tree as the most
representative case (see Materials and Methods). Second, we ei-
ther used the joint maximum-likelihood (ML) reconstruction of
the ancestral genotype at the root of the tree or a random sample
from the posterior distribution of genotypes at the root (sample).
Overall, there were four combinations of procedures evaluated for
tree and sequence reconstructions, respectively, which we denoted
as MCC/ML, sample/ML, MCC/sample, and sample/sample.

As a basis for comparison, we also evaluated the accuracy of the
phylogenetically naive approach of taking a consensus sequence of
follow-up samples (the “follow-up consensus”). The majority of
differences between the follow-up and baseline consensuses are

likely due to the selection of within-host mutations that increased
in frequency or became fixed in the population between the base-
line and follow-up time points. The frequency of these differences
represents a phylogeny-naive error rate, corresponding to the de-
gree of divergence of the host’s viral population from the trans-
mitted/founder sequence (see “Divergence and diversity” below).

The results are shown in Table 2. At both the nucleotide and
the amino acid levels, all ancestral reconstruction methods yielded
lower mean overall, substitution, and deletion error rates than the
follow-up consensus approach. However, the mean rates of inser-
tion errors were higher for all ancestral reconstruction methods
than for the follow-up consensus. The difference in accuracy at the
amino acid level between ancestral reconstruction and the fol-
low-up consensus was highly significant when considered as an
interaction effect with sequence diversity (�0.8 log odds, bino-
mial GLM, P � 3.49 � 10�4). Controlling for this interaction
effect and for the effect of entropy itself, ancestral reconstruction
remained significantly more accurate than the follow-up consen-
sus (�0.10 log odds, P � 0.04), and the magnitude of this im-
provement increased with the diversity of the data set (see “Diver-
gence and diversity,” below).

Indel reconstruction was performed only for the n � 173
(51.6%) data sets with one or more indel polymorphisms in their
follow-up sequences. When indel errors were counted as a pro-
portion of indel regions, rather than as a proportion of individual
sites, indel reconstruction was revealed to be much more challeng-
ing than the reconstruction of ancestral amino acids. At the amino
acid level, the mean indel error rate, by regions, of the follow-up
consensus was 23.8%. Since the Indelign package reconstructs
only maximum-likelihood sequences, the same reconstructed in-
del pattern was used for both the ML and sample sequences for
each tree, so that the indel error rate varied only with the tree used
in the reconstruction. The mean indel error rates were 20.9% for

FIG 1 Illustration of ancestral reconstruction process. This figure summarizes the genetic composition and ancestral reconstruction for a representative data set
(with the median reconstruction error rate). Baseline sequences are depicted on the left, with each line segment representing a sequence marked with mutations
away from the baseline consensus, akin to a Highlighter plot (http://www.hiv.lanl.gov/). The phylogenetic tree was reconstructed from all follow-up sequences
that were sampled at three time points after baseline. Follow-up sequences are depicted on the right with marks indicating mutations from the baseline consensus,
and the reconstructed ancestral sequence using phylogenetic methods and the follow-up consensus sequence are depicted above.
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indel reconstruction with the MCC tree, and 23.7% for indel re-
construction with the sample trees.

Since the MCC/ML method yielded the lowest overall error
rate at both the nucleotide and amino acid levels, all results hence-
forth apply to MCC/ML sequences only. Furthermore, all subse-
quent references to “error rate” and “overall error rate” refer to the
error rates at the amino acid, rather than nucleotide, level.
The overall error rates stratified by gene are summarized in Fig. 2.
The accessory and regulatory genes (nef, tat, rev, vif, vpr, and vpu)
are grouped together, since they represented fewer than 20 align-
ments each (n � 51 total). HIV env was substantially more diffi-
cult to reconstruct than any other gene (Mann-Whitney test, P �
10�5), with gag having the second-highest error rate, followed
by pol, and lastly the accessory and regulatory genes. Across all
genes, the median error rates for ancestral reconstruction were
lower than or equal to the median error rates for the follow-up
consensus.

Determinants of error rate. The fact that the data we analyzed
originate from diverse study types introduces many possible

sources of reconstruction error. We expected both the design of
the study and the clinical characteristics of patients involved to
have an impact on the error rate. To identify which variables had
an impact on error rates and to what extent, we identified several
study design parameters and data features and evaluated their
association with error rates using a generalized linear model
(GLM). For a data set, we define “�t” as the number of days be-
tween the baseline and first follow-up samples. In other words, �t
is the amount of time evolution has progressed unobserved within
the patient after the initial sampling and thus quantifies the
amount of diversification we must “undo” to recover the founder
strain. Other study design factors that we examined were as fol-
lows: the mean number of days between follow-up samples (in-
trasample time), the mean number of sequences per time point,
and the number of samples per year of additional follow-up (0 for
only one follow-up time point). The data features we considered
were risk group/mode of transmission (MSM, heterosexual, IDU,
MTCT, or transfusion), gene (env, gag, pol, or accessory/regula-
tory), molecule type (DNA, RNA, or mixed), and treatment his-
tory (treated or untreated). Molecule type was taken from the
“mol_type” field of each GenBank entry, with RNA generally orig-
inating from free virus in plasma and DNA originating from pe-
ripheral blood mononuclear cells. mRNA molecules were
grouped with RNA. If patients ever received antiretroviral therapy
(as detailed in the original publication), they were labeled as
treated, regardless of the duration or efficacy of the treatment.

To identify which of these factors were predictors of recon-
struction error rates, we fit a GLM with a logit link function to the
overall error rate expressed as a binomial outcome (substitution,
insertion, or deletion error, or missing data � failure, no error �
success). Risk group was unavailable for n � 78 (23%) of the data
sets, since these data originated from cohort studies comprising
multiple risk groups and the clinical characteristics of individual
patients were not specified. Similarly, for n � 46 (14%) it was not
specified whether the patients were treated or untreated. These
cases were excluded from the GLM but are included in all reported
univariate relationships. n � 21 (6%) data sets were missing both
pieces of information, so the total number of excluded data sets

TABLE 2 Mean error rates of ancestral reconstruction and follow-up consensus at nucleotide and amino acid levelsa

Error rate category

Mean error rate �10�3 (range)

Follow-up MCC/ML MCC/sample Sample/ML Sample/sample

Nucleotide error rates
Overall 14.9 (0–177.9) 13.1 (0–118.8) 14.0 (0–118.8) 13.9 (0–134.9) 13.7 (0–123.0)

Substitution 9.5 (0–135.2) 8.6 (0–72.2) 8.6 (0–75.0) 8.1 (0–71.3) 8.3 (0–76.9)
Insertion 2.7 (0–66.9) 3.7 (0–66.9) 3.7 (0–65.9) 4.8 (0–92.6) 4.9 (0–92.6)
Deletion 1.6 (0–55.6) 0.69 (0–27.9) 0.69 (0–27.9) 0.39 (0–16.5) 0.39 (0–16.5)
Missing or ambiguous 1.1 (0–29.7) 0 (0–0) 1 (0–26.6) 0.57 (0–21.5) 0.12 (0–6.3)

By indel region 240.9 (0–1,000.0) 207.2 (0–1,000.0) 207.2 (0–1,000.0) 235.6 (0–1,000.0) 235.6 (0–1,000.0)

Amino acid error rates
Overall 27.5 (0–237.4) 23.0 (0–175.0) 24.8 (0–200.0) 23.7 (0–182.9) 23.5 (0–182.9)

Substitution 21.0 (0–187.0) 18.6 (0–158.3) 18.5 (0–161.1) 17.4 (0–158.3) 18.1 (0–169.4)
Insertion 2.5 (0–66.9) 3.7 (0–66.9) 3.6 (0–64.1) 4.7 (0–92.6) 4.8 (0–92.6)
Deletion 1.5 (0–48.8) 0.67 (0–27.9) 0.67 (0–27.9) 0.38 (0–16.5) 0.38 (0–16.5)
Missing or ambiguous 2.5 (0–69.3) 0.057 (0–15.1) 2 (0–44.1) 1.2 (0–53.4) 0.23 (0–15.1)

By indel region 237.8 (0–1,000.0) 216.4 (0–1,000.0) 216.4 (0–1000.0) 245.7 (0–1,000.0) 245.7 (0–1,000.0)
a Error rates of follow-up consensus and four ancestral reconstruction methods, broken down by error type (substitution, insertion, deletion, or ambiguous) at both nucleotide and
amino acid levels are indicated. Error rates by indel region are also given.

FIG 2 Error rates stratified by gene. Box-and-whisker plots show that ances-
tral reconstruction has a lower median error rate than the follow-up consensus
across all genes. Error rates of env data are elevated compared to other genes.
“Follow-up consensus” denotes the error rate in phylogeny-naive reconstruc-
tions from follow-up samples. “Reconstructed ancestor” denotes the error rate
in phylogenetic ancestral reconstructions from the same follow-up samples.
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was n � 103 (31%) We did not consider interaction effects in the
GLM because the significant colinearity among some variables
would have made it difficult to interpret the interaction terms of
the resulting model (see “Sensitivity to route of infection, sam-
pling timeline, and viral genome type,” below). The profile of the
resulting GLM is shown in Table 3. Coefficients are relative to the
most frequent data features, which were MSM risk group, env
gene, DNA-derived sequences, and no treatment.

Increased time between critical time points (t) made recon-
struction significantly more difficult (�0.08 log odds per year,
P � 1.15 � 10�4; Table 2). This intuitive result was confirmed by
examination of the univariate relationship between error rates
and t (Spearman’s 	 � 0.5, P � 10�5; Fig. 3) and with the time
between infection/seroconversion and baseline. The more HIV
evolves unobserved, the further its pattern of evolution deviates
from the predictive models used in ancestral reconstruction. On
the other hand, increasing the number of follow-up time points
per year was associated with a higher rate of successful reconstruc-
tion (�0.3 log odds per follow-up sample per year, P � 10�5), as
was increasing the number of sequences per time point, though
the effect was more modest (�0.03 log odds per additional se-
quence, P � 10�5). Reconstruction on HIV RNA-derived data sets
was slightly less accurate than on HIV DNA-derived data sets, but
this was not significant (�0.03 log odds, P � 0.7). Finally, treat-
ment had a positive effect on reconstruction accuracy (�0.3 log
odds, P � 10�4).

Closer examination of the 17 data sets comprising the highest
5% of error rates did not reveal a single unifying cause for the poor
reconstructions. The majority of the data sets were env (14 env, 2
accessory/regulatory, and 1 gag), and the mean alignment length
was shorter than the average (247 versus 309 codons). The mean t
of these data was more than double the average (1,272 versus 493
days), while the number of follow-up sequences was just over half
the average (27 versus 44). Two of three patients in the transfusion
risk group were present among the 17, which suggests that these
two patients may have been coinfected with more than one
founder virus. The other risk groups were represented roughly in
proportion to the total (10 heterosexual, 4 MSM, and 1 MTCT), as
were molecule types (14 DNA and 3 RNA) and treatment histories

(12 untreated, 4 treated, and 1 unknown). The diversity of the
high error rate sequences was over three times the average (mean
entropies, 0.3 versus 0.10).

Divergence and diversity. Regardless of study design, ances-
tral reconstruction is generally impeded by two features of the
available data: divergence and diversity. Divergence represents the
accumulation and fixation of mutations in the virus population,
taking the consensus genotype further away from the transmitted/

TABLE 3 GLM profilea

Parameter Coefficient 95% CI (minimum, maximum) P

Intercept (MSM, env, DNA, untreated) 2.75 2.53, 3.0 �10�5

Heterosexual –0.21 �0.37, �0.04 0.01
MTCT –0.07 �0.27, 0.1 0.54
IDU 0.98 0.64, 1.4 �10�5

Transfusion –2.05 �2.47, �1.6 �10�5

Baseline time (years) –1.03 �1.44, �0.6 �10�5

�t (years) –0.08 �0.12, �0.04 1.20 � 10�4

Follow-up samples/year (n) 0.34 0.28, 0.4 �10�5

Mean sequences/time point (n) 0.03 0.02, 0.04 �10�5

gag 1.37 1.21, 1.5 �10�5

pol 1.84 1.52, 2.2 �10�5

Accessory/regulatory 0.56 0.19, 1.0 4.57 � 10�3

RNA –0.03 �0.20, 0.1 0.72
DNA�RNA 0.03 �0.19, 0.3 0.78
Treated 0.26 0.13, 0.4 1.06 � 10�4

a Data were determined using a generalized linear model. Regression coefficients (log odds), 95% confidence intervals (95% CI), and P values for the fitted GLM are shown. The
parameters used in the GLM are risk group (heterosexual, MTCT, transfusion, and IDU, all relative to MSM), gene (gag, pol, and accessory/regulatory, all relative to env), molecule
type (RNA, RNA�DNA, all relative to DNA), �t, follow-up samples/year, sequences/time point, and baseline sample time.

FIG 3 Relationship of reconstruction error to �t and to entropy, env, and
non-env, stratified by risk group. The scatter plots depict the univariate asso-
ciations between overall error rates and amino acid entropy (left) and the time
elapsed between the baseline and first follow-up sample (�t, right), for env
(top) and HIV genes other than env (bottom). Trend lines were derived from
linear regressions stratified by risk group as indicated in the inset figure legend.
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founder genotype (40). Diversity refers to how different the fol-
low-up sequences are from each other or how “spread out” viral
evolution has been within the patient (40). We first examined the
relationship between diversity and reconstruction accuracy,
quantifying diversity with the entropy of the data set. The entropy
of an alignment with respect to a set of allowable characters is a
measure of diversity, where a higher value indicates a more diverse
alignment. The amino acid entropy of an alignment, which is the
entropy of the alignment with respect to the amino acid alphabet,
was defined by Henikoff and Henikoff (41). We also consider
indel entropy, which is analogously defined with respect to the
binary alphabet representing presence and absence. A high amino
acid entropy indicates a high rate of nonsynonymous polymor-
phism; high indel entropy indicates more variable sequence
length. The “overall entropy” is the sum of amino acid and indel
entropies.

An important measure of ancestral reconstruction’s utility is
how well the techniques scale with diversity. As shown in Fig. 3,
the positive correlation between entropy and error rate is pro-
nounced. The more diverse a population, the more difficult re-
construction becomes for any method, phylogenetic or otherwise.
However, Fig. 4 shows that, as entropy increases, the disparity
between methods increases. At very high entropy, both methods
are disadvantaged, but the relative improvement in accuracy of
phylogenetics over the follow-up consensus increases. We note
also that both entropy and our definition of error rate are normal-
ized by sequence length. The median length of the alignments was
233 codons, and we found no significant difference in reconstruc-
tion error rates between sequences above and below this value
(Wilcoxon rank-sum test, P � 0.4).

Population divergence is more intuitively quantified than di-
versity, simply by counting the differences between the baseline
and follow-up consensus sequences. In other words, the diver-
gence of the population can be directly quantified by the error rate

of the follow-up consensus. As the ultimate goal of ancestral re-
construction is an error-free recovery of the transmitted/founder
virus sequence, we examined the cases where perfect reconstruc-
tion was accomplished by either method. Cases where the baseline
and follow-up consensuses achieved an exact match— data sets
with zero divergence—provided a sanity check on the ancestral
reconstruction methods. Examination of cases where ancestral re-
construction was error-free informed us about how much diver-
gence one could reasonably expect to “undo” with computational
methods. Finally, the cases where neither method was perfect in-
dicated which technique was more accurate on the more difficult
data sets.

There were 79 cases where both methods performed a perfect
reconstruction. In 14 cases, the follow-up consensus was perfect
but ancestral reconstruction had errors. On the other hand, there
were 27 cases of perfect reconstruction by phylogenetics but not
by the follow-up consensus. Unsurprisingly, the overall error rates
of the follow-up consensus on these data sets were lower than the
average (mean [range] error rates 1.1% [0.1 to 6.3%]; see “Error
rates,” above). All risk groups except IDU and transfusion were
represented in these data sets (10 MSM, 9 unknown, 4 MTCT, and
4 heterosexual). The majority were DNA derived (n � 14); 5 were
RNA derived, and 8 were mixed DNA and RNA data sets. Non-env
genes were over-represented in this sample (63%). Finally, when
neither method was perfect, phylogenetics outperformed the fol-
low-up consensus by ca. 0.6% of sites (mean error rates � 3.5%
[0.2 to 17.5%] for ancestral reconstruction and 4.1% [0.1 to
23.7%] for follow-up consensus).

Errors within immunologically relevant positions. Errors oc-
curring in immunologically important positions, such as CD8�

T-lymphocyte (CTL) epitopes in gag, may also be of particular
relevance to vaccine design. We observed a weak, but statistically
significant, inverse correlation between overall error rate and den-
sity of best-defined epitopes (42) (Spearman’s 	 � �0.1, P �
0.02), a trend particularly noticeable in p24 onward (Fig. 5). How-
ever, it is possible that this was due simply to those regions of gag
which are most epitope dense being most conserved and therefore
easier to reconstruct (see Discussion). HIV gag overall was easier
to reconstruct that env (see “Error rates,” above) but more diffi-
cult than pol or the accessory/regulatory genes, although sample
size may have been a factor in this result.

Rapid divergence from founder. In the preceding analyses, we
have measured the accuracy of ancestral reconstruction by com-
paring a phylogenetically imputed ancestor to the consensus of
samples taken in acute infection. For this comparison to be mean-
ingful, the baseline consensus must actually represent the true
transmitted/founder strain. However, there may be cases where
the baseline consensus is different from the transmitted/founder
strain such as, for example, if one or more mutations occurred
very early in infection and proliferated to a high frequency by the
time of the first (baseline) sample. This possibility introduces an-
other source of uncertainty into our reported error rates. Unfor-
tunately, since the baseline sequences are the earliest available for
each data set, any differences between the baseline consensus and
transmitted/founder strain are not directly measurable.

To estimate the impact of this source of uncertainty, we per-
formed a similar analysis on n � 11 longitudinal data sets from a
study of simian immunodeficiency virus (SIV) env evolution in
macaques experimentally infected by a known inoculum of SIV-
mac239 (43). If sequences diverged rapidly from the inoculum

FIG 4 Advantage of phylogenetics over naive method increases with diversity.
As entropy of data set increases, the difference between the error rates of the
phylogenetic and naive methods increases, in the direction of the phylogenetic
method having a lower error rate. Points below the vertical line are data sets
where phylogenetics outperforms consensus. Trend line is a local regression
(Loess) with 95% confidence interval (shaded area).
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genotype by baseline, then one should expect higher error rates
when comparing reconstructed genotypes directly to the inocu-
lum than against the baseline consensus that will more likely re-
semble genetic variants from follow-up samples. In these data, the
consensus of SIV env sequences sampled at baseline (63 to 168
days postinfection) differed from the inoculum genotype at 0.1%
of amino acids on average (range, 0 to 0.35%); sequences ranged
from 857 to 878 amino acids in length. This level of rapid diver-
gence was similar to what has been reported in longitudinal stud-
ies of acute HIV infections (21, 44, 45) (see Discussion). The error
rates of the follow-up consensus method were slightly higher
when evaluated against the inoculum (mean, 0.33% [0.12 to
0.69%]) than against the baseline consensus (mean, 0.3% [0.12 to
0.58%]). On the other hand, we found no measurable difference
in error rates using phylogenetic methods, with means of 0.19%
(range, 0 to 0.58%) and 0.19% (range, 0 to 0.47%), respectively,
relative to the inoculum and baseline consensuses. These results
suggest that rapid divergence of HIV from the transmitted/
founder virus prior to baseline is not a primary source of error in
ancestral reconstruction by phylogenetic methods. Since rapid di-
vergence before the baseline sample tends to be limited to a small
number of sites, however, these error rates are close to the level of
stochastic error, making it difficult to measure differences be-
tween methods with a high degree of confidence.

DISCUSSION
Previous work. The concept of ancestral reconstruction was first
theorized by Zuckerkandl and Pauling (15), whose goal was to
“extract evolutionary history from molecules.” Since then, ad-
vances in computational techniques and sequencing technologies
have allowed researchers to apply ancestral reconstruction to a
wide variety of organisms and time scales. In particular, a few
studies have made use of ancestral sequence reconstruction to

infer properties of unavailable HIV strains. These studies share the
limitation that their methods are unverifiable, as the true ancestor
could not be sequenced. For example, Rolland et al. (46) devel-
oped a “center of tree” reconstruction method and applied it to
gag, tat, and nef sequences from several different hosts. The recon-
structed sequences were synthesized and found to be both func-
tional and immunogenic. However, the center of tree sequence
was not meant to represent the (unrecoverable) common ancestor
to all of the input sequences but rather a hypothetical sequence
which minimized evolutionary distance to the extant strains. An-
cestral env sequences, reconstructed with maximum-likelihood
methods, have likewise been shown to be both functional and
immunogenic (47, 48). In (33), a reconstruction pipeline from
which this work was derived in part was used to examine the
pattern of the HIV coreceptor switch within a given host by esti-
mating ancestral sequences at all nodes of several intrapatient
phylogenies. Although the reconstructed sequences were theo-
rized to have existed in the respective patients at some point, this
could not be confirmed by sequencing as the study population
comprised chronic HIV infections and no early samples were
available.

On the other hand, several validations of phylogenetic tree re-
construction, a critical step of ancestral reconstruction, have been
done with in vivo HIV data. Hillis et al. (49) correctly inferred a
between-host HIV phylogeny with �t between 2 and 3 years. Phy-
logenetic methods described previously (50) were used to estimate
the time elapsed since the most recent common ancestor (tMRCA)
of the viral population of several patients, roughly corresponding
to date of infection. The estimates corresponded well to clinical
measures of infection date. In an earlier study (51), a known HIV
phylogeny comprising 13 patients was accurately inferred through
a variety of phylogenetic methods.

A natural next step is to apply the idea of testing on real data
from the second body of work to the methodological framework
of the first—that is, use ancestral reconstruction on groups of
extant sequences where the ancestor is already known or can be
accurately estimated. This has been applied in a few limited cases,
but most often in a controlled laboratory setting. Hillis et al. (52)
successfully recovered the branching order (but not the branch
lengths) of an experimentally created bacteriophage T7 phylogeny
by five different reconstruction methods, and parsimony was used
to estimate the ancestral character states with 98.6% accuracy.
However, the mutation rate of bacteriophage T7 is substantially
lower than HIV. Researchers using experiments with synthesized
ancestral env sequences (48) evaluated their reconstruction meth-
ods on a group of macaques inoculated with SIVmacBK28 and
were able to recover the inoculum genotype with 99.8% accuracy.

The recent availability of longitudinal, intrapatient HIV se-
quence data sets provides a large number of test cases for evalua-
tion of ancestral reconstruction on real data, with phylogenies
having evolved on their own outside a laboratory setting. To our
knowledge, ancestral reconstruction has only been applied to one
such data set (53). In that case, the objective of the study was not to
validate ancestral reconstruction but to examine the relationship
of extant sequences to the most recent common ancestor
(MRCA). In the present work, we evaluated the performance of
phylogenetic methods to reconstruct transmitted HIV variants on
a much larger number of cases. We found that, overall, phyloge-
netic methods tend to provide a better reconstruction of the
amino acid composition of this ancestral sequence than a consen-

FIG 5 Proportions of errors and CTL epitopes within HIV gag. Inverse cor-
relation between epitope density and error density. Lines represent sliding
window weighted averages of error rates (solid) and epitope densities (dashed)
with a window size of 20 codons. Locations of the respective gene products of
the Gag precursor, including the matrix (p17), capsid (p24), and nucleocapsid
(p7) proteins, are indicated below the plot (based on the HXB2 reference
sequence, GenBank accession number K03455).
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sus method. The relative advantage of the phylogenetic method
increased significantly with sequence diversity, where reconstruc-
tion is generally more challenging for either approach. On the
other hand, neither method could reliably reconstruct ancestral
indel variation, with mean rates of indel reconstruction error ex-
ceeding 21.6%. Finally, reconstruction error rates were signifi-
cantly reduced in CTL epitope-dense regions of the HIV genome;
this association may be due to the fact that these regions tend to be
evolutionarily conserved.

Sensitivity to phylogenetic methods. There are a myriad of
programs available for each step of the reconstruction process,
and no widely accepted standard for which to use. The packages in
our pipeline were chosen based on a combination of literature
recommendations and prior experience (50) and limits on com-
putational resources. A great many packages exist for the first step,
multiple sequence alignment (see Table 3.1 in reference 54) for a
list). After all steps of processing, a very poor reconstruction could
often be traced back to an inaccurate alignment. Predictably, the
hypervariable loops of env were very difficult to align owing to
high indel rates in these regions and were likely at least partly
responsible for the high error rates seen in env reconstructions
compared to other genes. Many methods also exist for phyloge-
netic inference, but the necessity of rooting the tree left us with
only two broad options—rooting with an outgroup or using a
molecular clock model—and we opted for the latter. As discussed
previously (55), outgroup rooting works well only when the out-
group is fortuitously chosen close to the ancestor.

To reconstruct sequences at the root of the tree, we chose the
Muse-Gaut model of codon substitution (31), which is aware of
both nucleotide and amino acid space (in particular, it makes the
distinction between a synonymous and nonsynonymous substitu-
tion). Mostly, this choice was based on prior experience (50) and
having an implementation of the model already available. On the
other hand, reconstructing the ancestral indel pattern was a par-
ticularly challenging step. To our knowledge, only two published
programs, Indelign (35) and Ancestors (36), were available at the
time of our study for ancestral indel reconstruction. Moreover,
these programs are tailored for whole-genome, macroorganism
evolution, where insertions and deletions tend to be large and
infrequent. In HIV, indel polymorphisms tend to occur most of-
ten in highly variable regions of the HIV genome, such as the
region encoding the HIV envelope glycoprotein gp120 variable
loops V1 and V2. These regions are inherently difficult to align due
to a lack of sequence homology and can undergo extensive change
between time points. Finally, our merging of the indel and codon
reconstructions by simply “overwriting” one with the other im-
plicitly assumes that codons and indels evolve independently,
which is unlikely to be the case. On our data, the best phylogenetic
methods in the public domain for reconstructing ancestral indel
variation were unable to outperform a rudimentary method of
taking the consensus of follow-up sequences. This is a significant
concern in the context of HIV, where indel variation can play an
important role, for example, in mediating escape from the neu-
tralizing antibody response (56). Reconstructing ancestral indels
is a major challenge because, by definition, the sequence homol-
ogy that conventional phylogenetic methods rely on to recon-
struct ancestral variation lacks insertions and deletions. As such,
this remains an important open area for future work with imme-
diate applications to understanding the role of indel variation in
transmitted/founder variants of HIV.

Although it complicates the construction of an ancestral re-
construction pipeline, the variety of available methods also pro-
vides opportunities for further exploration. In particular, the
models of evolution used in phylogenetics do not account for
recombination as a possible evolutionary event. As such, when
recombination does occur, it has the potential to greatly confound
both phylogenetic inference (57, 58) and the reconstruction of
ancestral sequences (59). Although recombination rates in HIV
are high (60), it has recently been suggested that HIV’s effective
recombination rate may be 1 to 2 orders of magnitude lower than
previously thought (61). In addition, in cases of infection by a
single transmitted/founder virus sequence, the only possible types
of recombination events are within, as opposed to between, diver-
gent lineages (62). Although such events might potentially distort
the shape of the estimated phylogeny, the ancestral sequence at the
root should be markedly less affected than if interlineage recom-
binants were introduced. Regardless of magnitude, recombina-
tion is almost certainly a contributing factor to the error rate of
ancestral reconstruction. Phylogenetic techniques for ancestral
reconstruction which take recombination into account, which
could help offset this source of error, are an important area for
future research.

Finally, we considered whether sampling trees or sequences
conferred an advantage compared to maximum clade credibility
phylogenies and maximum-likelihood reconstructions. Hanson-
Smith et al. (63) suggest that the Bayesian approach of sampling
from the posterior distribution is unnecessary and will not im-
prove reconstruction accuracy. Our analysis of longitudinal HIV
sequence data agrees with this result, although the apparent loss of
accuracy resulting from sampling was very small. This suggests a
fairly high degree of uncertainty for our data about both the phy-
logeny (perhaps owing to the relatively high homology of intrapa-
tient data sets) and the underlying evolutionary process. Indeed,
although the heights of the reconstructed phylogenies (which rep-
resent the time to most recent common ancestor, i.e., tMRCA)
should have been in agreement with the known timelines of lon-
gitudinal sampling, this was not always the case, since many of the
tree heights were much further in the past than the known refer-
ence points (see Fig. S1, left, in the supplemental material). We do
not believe this to be entirely attributable to coinfection, since it
was observed across all risk groups and even in the SIV data sets we
examined, which were known to have only one transmitted/
founder. We investigated the possibility that the assumption of a
constant population size was having a deleterious effect on tree
heights by using a Bayesian skyline model to marginalize out un-
certainty about population dynamics; however, the Bayes factors
indicated strong support for the constant population size model in
most data sets (data not shown). We also observed a significant
correlation between the variance in tree heights sampled from the
posterior and reconstruction error (see Fig. S1, right, in the sup-
plemental material), further contributing to the evidence for a
high degree of phylogenetic uncertainty in these data.

Sensitivity to route of infection, sampling timeline, and viral
genome type. A core assumption of applying phylogenetic meth-
ods to the problem of reconstructing the sequence of the trans-
mitted/founder virus is the existence of a population bottleneck at
transmission, resulting in a single productive viral lineage (64).
Multiple studies have reported that, although the majority of new
infections stem from a single variant, coinfection with two or
more variants does occur (7, 22, 62, 65). Using the methods of
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Keele et al. (11), we isolated n � 135 data sets where the estimated
tMRCA fell within 3 months on either side of the known reference
point. Given the potential margin for error in the reference point
itself (which is often reported as the midpoint between the last
seronegative and first seropositive HIV test), we could be reason-
ably certain that these data sets satisfied the hypothesis of a single
transmitted/founder virus. Error rates for these data sets were
lower than average (mean error rates [range] � 1.6% [0 to 14.6%]
for ancestral reconstruction and 1.9% [0 to 16.0%] for follow-up
consensus), but the relative advantage of phylogenetics over the
naive approach (18.5%) was roughly consistent with the rest of the
data. A histogram of discrepancies between tMRCA estimates and
known reference points is provided in Fig. S2 in the supplemental
material.

On the other hand, modes of HIV transmission that bypass the
recipient’s mucosal barriers (e.g., via injecting drugs or blood
transfusion) can result in a greater number of infecting strains
(66). Since our methods rely on the assumption of a single founder
virus, we would expect the reconstructions to be of greatly dimin-
ished accuracy in these cases. Although we only had data from six
patients in these categories, we observed elevated rates of overall
reconstruction error (relative to the MSM risk group) that were
consistent with this hypothesis. In the transfusion risk group (n �
3) the error rates were well above average (13.3, 14.6, and 6.6%);
the error rates of the data sets in the IDU risk group (n � 4) were
0, 0, 1.9, and 3.4%.

We also observed significantly greater reconstruction errors
among individuals in the heterosexual risk category relative to
MSM (mean error rates [range] � 3.7% [0 to 17.5%] for hetero-
sexuals versus 1.8% [0 to 11.1%] for MSM). However, it is very
likely that this result was due to confounding with other study
design variables. Values of �t were much higher for the heterosex-
ual data, averaging several years for the heterosexual transmission
group but only months for the MSM group (median days [IQR] �
1,202 [252 to 1,852] for heterosexuals versus 89 [30 to 489] for
MSM). The heterosexual group also had fewer sequences per time
point than the MSM group (median number [IQR] � 10 [7 to 14]
for heterosexuals versus 15 [10 to 20] for MSM).

To compare risk groups while controlling for �t, we performed
a matched test by selecting pairs of data sets, one from each risk
group, with values of �t within 15 days of each other. We then
compared the error rates between matched pairs of data sets using
a paired Wilcoxon signed-rank test. This controls for the effect of
�t on error rates; however, due to the wide variation of t values,
matched pairs comprised only a small subset of the data sets. Us-
ing this procedure, we found no significant differences between
the heterosexual and MSM risk groups (n � 26, P � 0.7), the
MSM and MTCT risk groups (n � 31, P � 0.2), or the heterosex-
ual and MTCT risk groups (n � 20, P � 0.09).

We hypothesize that the effect of HIV molecular type (proviral
DNA versus RNA) on reconstruction error was due to the pres-
ence of “archived” proviral HIV sequences in the reservoir of la-
tently infected cells (67), which has been previously observed to
affect the accuracy of phylogenetic inference (68). Moreover, data
sets where both DNA and RNA were sequenced tended to have
higher error rates than data sets derived from only one molecular
type. This outcome suggests that the evolutionary processes
within cellular reservoirs represented by the samples of HIV DNA
are very different from the processes shaping variation among free
virions in plasma. A single evolutionary model may not ade-

quately capture this heterogeneity. As with risk group, the HIV
molecular type was correlated with other study design variables.
In particular, RNA data sets tended to have lower �t, a shorter
interval between the reference point and baseline sample, and
more follow-up time points per year than DNA data sets (all Wil-
coxon rank-sum test, P � 10�5). Although confounding between
study parameters makes it difficult to attribute the impact of each
parameter on reconstruction error rates, our model analysis indi-
cates that a combination of RNA data, low �t, high numbers of
sequences per time point, and frequent follow-up provides the
best chance of an accurate ancestral reconstruction. In addition,
the techniques may be inappropriate for modes of transmission
where the probability of coinfection is high, such as via blood
transfusion or the use of injection drugs.

Finally, there is no guarantee that the consensus of the baseline
sequences is an accurate representation of the true transmitted/
founder virus. Discrepancies may occur if, for example, a muta-
tion in the HIV genome appearing very early in infection reaches
a high frequency in the virus population before the baseline sam-
ple is taken. In this case, neither a naive consensus nor phyloge-
netic approaches would be able to accurately reconstruct the in-
dividual transmitted/founder virus. Instead, estimates of this
sequence will erroneously include substitutions that became fixed
in the population between transmission and the earliest date of
sampling. To assess the impact of rapid divergence from the
founder genotype, we analyzed longitudinal data sets of SIV env in
11 macaques experimentally infected with a clonal SIVmac239
inoculum, such that the transmitted/founder virus genotype was
known without ambiguity. In these data, there was limited amino
acid divergence (mean, 0.1%) from the inoculum genotype by the
baseline sample. As expected, we observed slightly higher mean
error rates when the follow-up consensus sequences were evalu-
ated against the inoculum instead of the baseline consensus. In
contrast, we observed no difference in mean ancestral reconstruc-
tion error rates with respect to the inoculum or baseline consen-
sus, suggesting that phylogenetic methods were less sensitive to
rapid sequence divergence before baseline.

It may be difficult to generalize results from SIV to the rapid
divergence of HIV in vivo. However, we found comparable levels
of divergence within similar time frames (within 6 months of in-
fection) have been reported in studies of acute HIV infections with
exceptionally early samples. Herbeck et al. (21) analyzed whole
HIV genome sequences (�9,100 bp) sampled longitudinally from
three seroconverters, including samples as early as 3 days after the
onset of symptoms, and found that between 9 and 18 mutations
(0.1 to 0.2% of the genome) had accumulated under positive se-
lection by 6 to 7 months. These researchers also noted that the
transition from a star- to lineage-based phylogeny may occur as
early as 50 days into infection, which would shift the baseline
consensus away from the transmitted variant. Similarly, Henn et
al. (44) performed whole-genome “deep” sequencing on longitu-
dinal samples of HIV from one subject, including a sample taken
within 15 to 20 days of infection, and identified 2 mutations (�
0.02%) that attained 
50% prevalence by 6 months after presen-
tation. Finally, Goonetilleke et al. (45) performed longitudinal
single-genome amplification sequencing on three patients who
were at Fiebig stage II (18 to 34 days postinfection) at screening
and identified between 4 and 12 mutations (0.05 to 0.15% of the
genome) which had become dominant by 6 months after screen-
ing. Although our analysis of SIV data sets suggests that phyloge-
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netic methods are less sensitive to this rapid divergence, we can
incorporate the upper limit of reported HIV sequence divergence
by 6 months postinfection (0.2%) to yield conservative estimates
of the overall error rates, averaging from 2.1 to 2.5% for ancestral
reconstruction and from 2.6 to 3.0% for the follow-up consensus.

Despite these limitations, the best possible method to recon-
struct the transmitted HIV genotype is to examine the genetic
composition of samples from an acute or early stage of infection.
Obtaining such samples in substantial numbers, however, un-
avoidably requires implementing and maintaining a large-scale
prospective cohort of individuals at risk of HIV infection. When
early samples cannot be obtained, the best that one can do is to
extrapolate the ancestral sequence from HIV sequences derived
from the samples that are available, while interpreting such results
in light of limitations discussed above. Our ability to reconstruct
ancestors wanes as the HIV sequences inevitably become more
diverse and complex over time. Beyond this certainty, we have
lacked a quantitative understanding of how accurately we can re-
construct transmitted HIV variants from available sequence data.
In the present study, we have shown that a significant quantity of
ancestral genotypic information is recoverable through phyloge-
netic analysis, but not by a phylogeny-naive examination of extant
sequences, and that the amount of new information revealed
through phylogenetics increases with sequence diversity. How-
ever, the advantage of phylogenetic methods does not carry over
to the reconstruction of ancestral indels. This reveals a significant
gap in the state-of-the-art of phylogenetics and a critical area for
future work because of its key implications for our understanding
of HIV, where indel variation can play a central role in mediating
escape from the neutralizing antibody response.
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