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Limits of Structural Plasticity in a Picornavirus Capsid Revealed by a
Massively Expanded Equine Rhinitis A Virus Particle
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ABSTRACT

The Picornaviridae family of small, nonenveloped viruses includes major pathogens of humans and animals. They have positive-
sense, single-stranded RNA genomes, and the mechanism(s) by which these genomes are introduced into cells to initiate infec-
tion remains poorly understood. The structures of presumed uncoating intermediate particles of several picornaviruses show
limited expansion and some increased porosity compared to the mature virions. Here, we present the cryo-electron microscopy
structure of native equine rhinitis A virus (ERAV), together with the structure of a massively expanded ERAV particle, each at
~17-A resolution. The expanded structure has large pores on the particle 3-fold axes and has lost the RNA genome and the cap-
sid protein VP4. The expanded structure thus illustrates both the limits of structural plasticity in such capsids and a plausible

route by which genomic RNA might exit.

IMPORTANCE

Picornaviruses are important animal and human pathogens that protect their genomic RNAs within a protective protein capsid.
Upon infection, this genomic RNA must be able to leave the capsid to initiate a new round of infection. We describe here the
structure of a unique, massively expanded state of equine rhinitis A virus that provides insight into how this exit might occur.

he picornaviruses are a family of nonenveloped viruses with a

relatively small (~300 A in diameter; see Fig. 1a) icosahedral
capsid and a positive-sense, single-stranded RNA genome (1, 2).
The family contains important pathogens of a wide range of spe-
cies and have enormous consequences for human health and the
agricultural economy. Picornaviruses that cause notable diseases
in humans include poliovirus, enterovirus 71 (EV71), rhinovi-
ruses A to C, and hepatitis A virus. In animals, there is increasing
evidence that picornavirus-like viruses such as deformed wing vi-
rus are partly responsible for declining honey-bee populations
and are thus a major threat to food security (3), while foot-and-
mouth disease virus (FMDV) is arguably the most economically
important pathogen of agricultural livestock. Equine rhinitis A
virus (ERAV) is closely related to FMDV. Both ERAV and FMDV
are classified in the genus Aphthovirus (4), owing to similarities in
their genome sequences (5-7) and the physicochemical properties
of their capsids (8, 9). ERAV causes febrile respiratory tract infec-
tions in horses that resemble the symptoms of the common cold
(10). It infects a broad range of cell types and, like FMDV, it causes
viremia and persistent infections (6). ERAV is now being used as a
model system to investigate the biology of an FMDV-like virus
without the prodigious challenges of working in the stringent bio-
containment needed for FMDV itself.

A nonenveloped, single-stranded RNA virus such as ERAV
faces a formidable challenge in getting its genome into the cyto-
plasm of its host cell, where translation of viral proteins and rep-
lication of the viral genome can begin. Recently, we have shown
that ERAV, like FMDV, enters the host cell in a clathrin-depen-
dent manner and that infection is dependent on endosomal acid-
ification (11). However, it remains unclear how the structure of a
picornavirus capsid, together with triggers such as a change in pH,
orchestrates the translocation of the RNA genome across the lipid
bilayer of an endosomal membrane into the cytoplasm (for a re-
view, see reference 12).

The generalized picornavirus capsid is built from 60 copies of
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each of four structural proteins (VP1 to VP4; Fig. 1a) (13-15),
which are produced by cleavage of a single polyprotein by viral
proteases (for a review, see reference 16). VP1 to VP3 each com-
prise an eight-stranded beta sandwich and form the three quasi-
equivalent conformers required to build a capsid with a pseudo-
T=3 surface lattice (13, 14). The molecular mechanisms by which
the genome is delivered from this protective capsid into the cyto-
plasm of host cells remain poorly understood. The virus for which
this is best characterized is poliovirus, a member of the Enterovirus
genus, in which binding to a cell surface receptor initiates confor-
mational changes resulting in a change from the mature 160S
particle to a 135S form which haslost the internal protein VP4 and
externalized the hydrophobic N terminus of VP1. The 135S par-
ticle is then converted by an unknown mechanism to an empty
80S particle from which the genome has been ejected (for a review,
see reference 2). For poliovirus, it has been shown that the native
state is structurally dynamic, undergoing “breathing” motions
that allow reversible externalization of the VP1 N terminus (17).

A great deal of structural information is available for picorna-
virus capsids and their intermediates. Recent work on EV71 (18,
19) has compared structures for mature (150S) and empty (82S)
particles that show slight (~4 to 5%) but significant expansion.
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FIG 1 Structure of equine rhinitis A virus. (a) X-ray structure of the native equine rhinitis A virus particle. A single asymmetric unit of the native ERAV virion
(PDB 2WFF) is shown in diagram representation, from a view outside of the viral capsid. The viral proteins are colored blue (VP1), green (VP2), magenta (VP3),
and orange (VP4), and the approximate position of the viral 5- and 3-fold axes are indicated by the solid black pentagon and triangle, respectively. The color
coding of VP1 to VP4 is identical in all figures in the manuscript. (b) The intact, pT=3 capsid structure. The asymmetric unit shown in panel a is highlighted in
yellow, and a icosahedron is included as a red wire mesh. The image was produced using PyMOL (www.pymol.org) and UCSF Chimera (35).

This structural rearrangement generates small holes near the base
of a surface depression known as the “canyon” and a somewhat
larger hole at the icosahedral 2-fold axes. However, neither of
these holes appears to be large enough to readily allow RNA egress.
Further conformational change could lead to merging of the holes
to form a larger pore that could allow uncoating and a slightly
larger (~10 A) pore at the 2-fold axis has been reported recently
(20, 21). This would accord with previous suggestions, based on
cryo-electron tomography, suggesting that RNA leaves poliovirus
near a 2-fold axis (22), and is able to cross a membrane (23). For
ERAYV, which is very similar in structure to FMDV (15, 24), the
X-ray structures of both the native virion and low-pH-induced
empty particle are extremely similar, with a root mean square
deviation between the structures of only ~0.9 A (15). Thus, there
is little appreciable expansion of the particle and no obvious exit
route by which the genomic RNA could have left. In contrast to
enteroviruses, such as poliovirus, the end products of the aphtho-
virus uncoating process are not empty capsids but dissociated
pentameric subunits (15, 25). However, based on X-ray crystal
structures and biochemical evidence, it has been suggested that
genome transfer during the infection process proceeds via a tran-
sient empty particle (15). The details of the structural transitions
that might allow the genome to leave the ERAV capsid are even
less well understood than for poliovirus.

Here we report two structures of ERAV that together provide a
fascinating insight into just how large structural transitions in
picornavirus capsids can be and give a potential route for RNA to
leave. Using cryo-electron microscopy (cryo-EM) and single par-
ticle image processing, we have determined the structure of native
ERAV virions, together with the structure of a massively ex-
panded, empty ERAV particle with large pores through the capsid
layer.
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MATERIALS AND METHODS

Cryo-EM data collection and image preprocessing. Native ERAV was
purified as described previously (15) and stored in a sucrose containing
buffer (50 mM NaCl, 50 mM HEPES [pH 7.3], ~30% sucrose) at 4°C.
Samples were then dialyzed against phosphate-buffered saline overnight,
and spin-concentrated before use. Next, 3-ul aliquots of ERAV at ~2 mg
ml ™! were applied to 300-mesh Quantifoil R1.2/1.3 EM grids that had
been glow discharged in air for ~30 s immediately before use. Grids were
frozen by plunging into liquid nitrogen-cooled, liquid ethane, using a
computer-controlled, pneumatically driven freezing apparatus (26).
Grids were imaged on an FEI Tecnai-F20 microscope equipped with a
Gatan 626 cryo-transfer stage, using low-dose protocols (~15 e /A?).
Images were recorded on a Gatan US4000SP charge-coupled device cam-
eraa calibrated magnification of X87,209, giving a final object sampling of
1.72 A/pixel. Micrograph defocus and astigmatism were determined com-
putationally using the program CTFFIND3 (27), and micrographs show-
ing significant drift or astigmatism were discarded. Small and large parti-
cles were readily distinguishable in the raw micrographs, and all particles
recognizable as either small or large were interactively selected using the
program BOXER (28) and corrected for the microscope contrast transfer
function by computational flipping of image phases in SPIDER (29).
Judging the relative proportion of large and small particles in solution is
problematic, as the cryo-EM data set necessarily only contained isolated,
discrete particles, and the large particles were more prone to clumping.
The final data sets contained 822 small (55%) and 663 large (~45%)
particles, but this probably underestimates the proportion of large parti-
cles present in solution. All other image-processing steps were performed
in SPIDER. All image data were band-pass filtered between 350 and 6 A
and normalized to a constant mean and standard deviation.

Single particle reconstruction. Single-particle refinement and three-
dimensional (3-D) reconstruction were carried out essentially as de-
scribed previously (30). The atomic coordinates for wild-type poliovirus
(Mahoney strain; PDB ID 1AS]7 [31]) were converted to density and all
high-resolution features removed by Fourier filtration to 40 A using a
low-pass Fermi filter. The resulting low-resolution, RNA-free model of a
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FIG 2 Solution structure of native and expanded ERAV particles. (a) Raw cryo-electron micrograph of the ERAV sample. Two types of particle—small and
large—are clearly visible in the raw data. (b) Cryo-EM structure of small ERAV particle, which corresponds to the structure of the native virion. (c) The
corresponding structure of the large, expanded ERAV particle. For Fig. 2, 3, and 5, the cryo-EM-derived density for both native and expanded particles is colored
with the radial color scheme described in Fig. 5. (d) Fourier shell correlation plot for both EM structures. The resolutions of the maps are 16.9 A for the native

structure and 17.4 A for the expanded particle (both using the FSCO.5 criterion).

generic picornavirus capsid was then used as a starting model for EM
structure refinement of both data sets. The starting model was projected
across 78 orientations evenly covering the icosahedral asymmetric unit
with a spacing of 3°. All image data were then aligned to these views. After
alignment, averages of the images corresponding to each view were calcu-
lated. 3-D reconstructions were generated after each refinement round
using weighted back-projection and imposing icosahedral symmetry. The
resulting reconstruction was then used to generate a new series of refer-
ence views, and the whole procedure was iterated. In the final rounds of
refinement, images corresponding to each reference orientation were
ranked according to cross-correlation coefficient and the worst-aligning
members for each orientation were excluded. The final reconstructions
included 260 of 822 particles and 227 of 663 particles for the native and
expanded structures, respectively. The resolution of each map was deter-
mined by Fourier shell correlation (FSC) between reconstructions calcu-
lated from half of each data set and using the FSC = 0.5 criterion (Fig. 2d),
which indicated resolutions of 16.9 A for the native, and 17.4 A for the
expanded state.

Accession codes. The cryo-EM maps of native and expanded ERAV
have been deposited under Electron Microscopy Data Bank accession
codes EMDB-2389 and EMDB-2390, respectively. The fitted atomic co-
ordinates for the native particle have been deposited under Protein Data
Bank (PDB) accession code 4CTF and for the expanded particle under
4CTG.

RESULTS AND DISCUSSION

The two structures reported here were solved from a single
cryo-EM data set. The ERAV used was expressed in Ohio HeLa
cells, purified by sucrose-gradient fractionation, and stored in a
sucrose-containing buffer at 4°C (15). When we examined images
of what we expected to be native ERAV particles, it was immedi-
ately apparent that two distinct forms were present: one small and
one large (Fig. 2). A data set of each type (822 small and 663 large)
was collected, and a structure for each was determined using single
particle image processing and icosahedral averaging as described
previously (30). The results were 3-D structures for two very dif-
ferent ERAV particles. The smaller particles generated a structure
that, at least at the intermediate resolution of our map, is indistin-
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guishable from previous X-ray structures of mature ERAV (Fig.
1b) (15), while the large particles generated an expanded structure
unlike any seen for any picornavirus capsid to date (Fig. 1c). The
expanded capsid is much larger than the native state, with a max-
imum diameter (measured from the center of the particle to the
tip of a pentameric turret) some 12% larger (355 A versus 316 A).

To try to understand how the ERAV capsid structure can ac-
commodate such a large conformational change, we fitted the
atomic coordinates for native ERAV (PDB ID 2WFF [15]) into the
EM density of both the native and the expanded EM structures. As
expected, the coordinates fit into our native (small) structure ex-
tremely well as a single intact unit (Fig. 3a), confirming that the
smaller structure is of the native virion. However, the expanded
state is clearly built from pentamers of the viral coat proteins, and
a reasonable fit of the atomic coordinates could only be achieved
as 12 isolated pentameric units (Fig. 3b). This is consistent with
previous suggestions that the picornavirus capsomere is a penta-
mer (32).

The rotation and translation of the pentameric capsomeres
required to form this particle from the native state is enormous,
with the points of the pentons moving by as much as ~60 A in
three dimensions. Unsurprisingly, such large movements com-
pletely change the interacting surfaces between all adjacent pen-
tamers (Fig. 3c and d), disrupting a large interface with comple-
mentary electrostatic interactions (Fig. 3e and f) in the process.
The new interface that holds the expanded particle together is
obviously much smaller than in the intact particle. The core of the
interaction appears to be predominantly hydrophobic in nature,
with the strongest density for interpenton contacts in the ex-
panded EM map corresponding to the location of PHE118 in VP2.
Presumably, a ring stacking interaction occurs between the
PHE118 residues of two VP2 molecules across the 2-fold axes of
the particle (Fig. 4).

The energetic driver for such a dramatic remodeling of the
pentamer interfaces is unclear. However, it is tempting to specu-
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FIG 3 Structural transition required to reach the expanded state. The cryo-EM structures of the native (a) and expanded (b) ERAV particles with fitted atomic
coordinates derived from the native particle structure (2WFF) are shown. The intact virion structure is fitted into panel a without adjustment, whereas the
structure of an unmodified pentamer of VP1 to VP4 is fitted into panel b as a rigid body. The EM density is shown as a semitransparent surface, colored as in Fig.
2, and the fitted X-ray coordinates are shown in diagram representation and colored as in Fig. 1. (c and d) Close-up views of the interaction between two adjacent
pentamers in the native and expanded particles. The view is down a viral 2-fold axis as in panels a and b. (e and f) Electrostatic surface potential of the two
pentamers shown in panels ¢ and d (calculated using the APBS plugin in PyMOL).
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FIG 4 Contact holding the expanded particle together. The contact point
between adjacent pentamer of VP1 to VP4 in the expanded particle lies across
the 2-fold axes. At 2.75 o, this contact in the expanded map is a discrete bridge
of density that is occupied by Phel18 (shown as sticks) from each of the two
symmetry-related copies of VP2 at the 2-fold axis. VP1 to VP4 are colored as
described in the legend to Fig. 1.

late that the polyanionic genomic RNA must play a role, and this
seems plausible given the amounts of electron density for encap-
sidated RNA seen in the two structures. Shown in Fig. 5a is a
central, 40-A-thick slab through the structure of the native ERAV
particle, which shows that the volume encapsidated by the protein
shell is full of density that we attribute to the ~8-kb single-
stranded genomic RNA packaged in the mature virion. The ex-
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panded structure by contrast is almost completely empty at an
equivalent contour level (Fig. 5b). The ~12% expansion of the
expanded particle leads to an ~42% increase in encapsidated vol-
ume, so we would expect to see less electron density for RNA
owing to lower degree of order and confinement. However, given
the almost complete absence of density within the capsid, the
genomic RNA appears to have left the particle. The pores in the
expanded capsid are the obvious route by which RNA could leave.
They are located at the icosahedral 3-fold axes, and are essentially
triangular, with an edge of ~75 A and an in-circle diameter of ~45
A (Fig. 5¢), easily enough to allow even base-paired regions of the
RNA (with a diameter of 18 to 24 A) to leave.

The lack of density for an encapsidated genomic RNA is not the
only difference observed inside the capsids of the native and ex-
panded states. When the inside surface of the pentameric capsom-
ere of the expanded state is examined, it is clear that although a
pentamer of VP1 to VP3 fits the EM density well, the underside of
the ERAV capsomere has a broad, circular depression in the elec-
tron density. This corresponds precisely to the location of VP4 in
the crystal structure, which is completely outside the envelope of
the EM map. This region is very different to the density in the
native particle (Fig. 5d). This strongly suggests that VP4 is not
present in the expanded particle. The loss of VP4 from enterovirus
capsids is known to precede genome uncoating (33), and there is
circumstantial evidence that the same is true for aphthoviruses
(34). This strongly suggests that the structure presented represents
an uncoating intermediate rather than a reassembly of previously
dissociated pentamers. Indeed, such reassembly, from isolated
pentameric association of VP1 to VP3, has not previously been
observed for any picornavirus capsid although poliovirus pen-
tamers containing VPO, the uncleaved precursor of VP2 and VP4
can reassemble into empty particles (15). We have thus far been
unable to reproduce the expanded state in the quantities required
for either biophysical or more detailed structural analyses, al-
though a small number of virus particles appear to be in the ex-
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FIG 5 Internal differences between native and expanded ERAV particles. (a) 40-A-thick central section through the cryo-EM structure of the native ERAV
particle. The particle is filled with density that we ascribe to the encapsidated genomic RNA. (b) At an equivalent contour level, the expanded particle is almost
entirely empty. (c) The pores on the 3-fold axis of the expanded state are large and triangular, with an in-circle diameter of ~45 A. (d) The internal surfaces of
the native (left) and expanded (right) particles are very different. No density that can accommodate VP4 is present in the expanded particle, suggesting that it is
not present in the expanded state. The crystal structure of the ERAV coat protein pentamer is docked into each EM map and is shown in a diagram representation

colored as described in the legend to Fig. 1.
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panded state in all subsequent imaging experiments, even of fresh
native virus.

The two structures presented here were serendipitously dis-
covered after storage in a sucrose-containing buffer. We cur-
rently have no direct evidence that the expanded state is an “on
pathway” intermediate in the normal uncoating process, al-
though this is a priority for further experiments. However, we
have demonstrated the conversion of virions into empty parti-
cles when exposed to conditions resembling those encountered
during the early stages of endocytosis when cell entry occurs
(15). The available structural evidence for picornaviruses of the
enterovirus genus seems to be building toward a consensus
describing pore formation near to a 2-fold axis (20, 22, 23).
This is obviously different from the location of the pores in the
expanded ERAV capsid described here at the 3-fold axes. How-
ever, the structure represented here may represent the end-
point of a structural transition that starts with such a 2-fold
pore opening at a single location in the capsid.

Regardless of the functional importance of the expanded struc-
ture in the normal ERAV uncoating process, conformational
changes of this magnitude are unprecedented in the picornavi-
ruses. The structure presented here will change our ideas about
how just how dynamic picornavirus capsids can be and how large
a structural transition might be accommodated and still retain a
recognizable capsid structure. This will perhaps also change our
view about the transient states that could be accessible during
picornavirus uncoating reactions in vivo.
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