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Cell–microenvironment interactions play a critical role in the transformation of normal cells into cancer; how-
ever, the underlying mechanisms and effects are far from being well understood. Tissue Engineering provides
innovative culture tools and strategies to study tumorigenesis under pathologically relevant culture conditions.
Specifically, integration of biomaterials, scaffold fabrication, and micro=nano-fabrication techniques offers great
promise to reveal the dynamic role of chemical, cell–cell, cell–extracellular matrix, and mechanical interactions in
the pathogenesis of cancer. Due to the central importance of blood vessel formation in tumor growth, progres-
sion, and drug response, this review will discuss specific design parameters for the development of culture
microenvironments to study tumor angiogenesis. Tumor engineering approaches have the potential to revolu-
tionize our understanding of cancer, provide new platforms for testing of anti-cancer drugs, and may ultimately
result in improved treatment strategies.

Introduction and Background

Cancer remains the second leading cause of death in
the United States and represents a complex disease that

may be prevented or promoted by homeostatic or aberrant
cell–microenvironment interactions, respectively.1,2 For ex-
ample, cell–extracellular matrix (ECM) and cell–cell interac-
tions as well as chemical and mechanical cues play an
important role at each stage of cancer pathogenesis from the
development and progression of a primary tumor, to meta-
stasis, to drug responsiveness.1 Nevertheless, the functional
dynamics underlying cell–microenvironment interactions
remain poorly understood.

Traditional approaches to study tumorigenesis primarily
involve the culture of tumor cells in Petri dishes and in vivo
mouse models. Although two-dimensional (2D) culture tech-
niques have advanced our understanding of cancer, this
format poorly reflects the microenvironmental context of
tumors in vivo.3,4 In vivo experiments, on the other hand,
provide limited ability to control isolated aspects of cell sig-
naling, due to the inherent complexity of living systems. To
address these challenges, three-dimensional (3D) culture sys-
tems are increasingly applied to study tumorigenesis under
pathologically relevant yet well-defined culture conditions.
For example, in vitro assays using laminin-rich ECM (i.e.,
Matrigel�) have transformed our understanding of cancer as
a microenvironmentally controlled disease.5,6

Tissue engineering, originally developed for tissue rege-
neration therapy,7 has the potential to transform cancer re-
search by further advancing our qualitative and quantitative

understanding of tumorigenesis. Specifically, tissue engineer-
ing provides biologically inspired materials, culture tech-
niques, and analytical tools that enable the recreation of
humanized 3D tumor microenvironments in vitro. Tissue-
engineered tumor models not only establish pathologically
relevant culture conditions,3 but also provide beneficial study
conditions with regard to mechanical stability of the systems,
convenience of handling, applicability in animal studies, and
ability to spatiotemporally regulate signaling events condu-
cive to tumor growth.

Given the central importance of new blood vessel re-
cruitment (angiogenesis) for tumor growth, metastasis, and
drug response,8–10 the development of tissue-engineered 3D
culture models to study these events is particularly attrac-
tive. Tumors display an inherent potential to promote the
activation and recruitment of endothelial cells by secreting
enhanced concentrations of pro-angiogenic factors, including
vascular endothelial growth factor (VEGF).11 Despite the
enormous potential of anti-VEGF treatment for the preven-
tion of cancer growth, therapies of this type have only shown
modest clinical success.9,10

This article reviews specific tumor engineering approaches
that may be used for the development of pathologically
relevant 3D culture microenvironments. Tumor angiogenesis
will be used as a prototype for the discussion of specific
design parameters. We highlight the biological effects of
chemical, cell–cell, cell–ECM, and mechanical interactions
on tumor vascularization and discuss emerging engineering
tools that may be used to isolate the underlying mechanisms
under biologically inspired conditions in vitro.
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Chemical Cues

Excessive tumor cell proliferation and the subsequent de-
velopment of hypoxia lead to an overproduction of pro-
angiogenic factors that drive tumor vascularization.8,9,12

Although VEGF has been most widely investigated for its
role in tumor angiogenesis, cancer cells secrete an array of
other growth factors and cytokines (e.g., basic fibroblast
growth factor and interleukin-8) that collectively promote
new vessel formation.13 The molecular interplay between
these factors is regulated by spatiotemporal concentration
profiles that arise as a function of pro-angiogenic factor
production, diffusion, convection mediated by circulation as
well as interstitial flow,14 consumption, and elimination.
Engineered tumor models need to recapitulate these quali-
tative and quantitative relationships to provide biologically
relevant culture conditions.

Spatiotemporal control over the presentation of chemical
cues can be achieved by polymeric drug delivery vehicles.
For example, alginate- or poly(ethylene glycol) (PEG)-based
hydrogels can be used to recreate the growth factor binding
and release characteristics of natural ECMs.15,16 These sys-
tems can be covalently modified to exhibit cell adhesion
motifs (e.g., RGD) and=or proteolytically degradable cross-
links to permit cell invasion and subsequent cell-demanded
release of the respective molecule(s) of interest.15,17,18 Alter-
natively, solid polymers such as poly (alpha-hydroxy) esters
(e.g., poly(lactic-co-glycolic acid) [PLG]) are frequently used
for the controlled release of biomolecules due to their well-
defined and controllable degradation profiles.19 In combina-
tion with appropriate scaffold fabrication techniques, these
materials enable delivery of multiple morphogens in a si-
multaneous or sequential manner. More specifically, physical
association of growth factors with the surface or bulk of
porous PLG scaffolds allows for fast or slow release of bio-
molecules, respectively.20 This strategy may be invaluable to
study changes in tumor angiogenesis that may result from
sequential activation of angiogenic factor signaling in vivo.21

Additionally, PLG-based scaffolds can be designed to rec-
reate spatially compartmentalized angiogenic factor concen-
trations.22 Such systems permit studies of chemotactic
migration or gradient-driven differences in tumor angio-
genesis. Alternatively, 3D tumor cell culture within micro-
fluidic scaffolds (Fig. 1a) offers a promising strategy to exert
spatiotemporal control over chemical factor presentation.23,24

While the 3D culture context ensures in vivo-like angiogenic
factor expression by tumor cells,3 convective mass transfer
via the integrated microchannels serves to control the dis-
tributions of soluble factors that likely influence tumor
angiogenesis.23 Further, the microchannels can serve to in-
tegrate advanced functionalities. For example, they can be
used as templates for explicit endothelia that can respond
to pro-angiogenic activity.25

Cell–Cell Interactions

In addition to indirect cell–cell interactions mediated by
paracrine chemical signaling, tumor angiogenesis is regu-
lated by direct cell–cell contact. Cell–cell adhesions between
normal epithelial cells are typically stabilized by E-cadherin-
rich adherens junctions.26 However, during tumorigenesis
these transmembrane proteins are often downregulated,27,28

which can induce a change in cell–cell interactions as well as

impair tissue polarity, both of which can regulate the an-
giogenic capability of tumor cells.29,30 Altered microenvi-
ronmental concentrations of pro-angiogenic factors, in turn,
control the formation of intercellular junctions between en-
dothelial cells by modulating expression and signaling of
VE-cadherin.31,32 These changes are directly relevant to
tumor vascularization since dysfunctional VE-cadherin sig-
naling ultimately promotes invasion angiogenesis and blood
vessel permeability.33–35

Microscale engineering technologies offer great promise to
investigate the role of intercellular junctions in modulating
tumor angiogenesis. Traditionally, the effect of cell–cell
interactions on modulating tumor angiogenesis has been in-
vestigated by plating cells in either sparse or dense mono-
layers. However, this approach only provides a very rough
level of control over the localization and quantity of cell–cell
interactions. To overcome these limitations, microcontact-
printing or parylene-template-based micropatterning tech-
niques (Fig. 1b) can be used to seed cells individually or in
the presence of cell–cell contact.30,36 Alternatively, cell–cell

FIG. 1. Tissue engineering provides innovative tools to
recreate tumor-inherent cell–microenvironment interactions
in vitro. For example, hydrogel-based microfluidic three-
dimensional (3D) culture systems provide spatiotemporal
control over soluble factor presentation and allow studies of
the role of chemical cues in tumor angiogenesis23 (a: diffu-
sion of rhodamine through a microfluidic collagen network
[image courtesy of A.D. Stroock and N.W. Choi]). To probe
the role of cell–cell interactions, micropatterning techniques
allow culture of cells in the presence and absence of direct
cell–cell contact30 (b: Parylene peel-arrays patterned with
fibronectin [green] and seeded with tumor cells [red]).
Polymer-based artificial extracellular matrices can be used to
broadly recreate 3D interactions of tumor cells with their
surrounding extracellular matrix3 (c: tumor cells cultured
within 3D porous poly [lactic-co-glycolic acid] scaffolds and
stained with the viability stain calcein). To assess the role of
tumor rigidity on tumor angiogenesis, traction force mi-
croscopy permits the quantification of cell-generated forces
on matrices of varying elasticity83 (d: traction force map
of tumor-associated stroma cell [image courtesy of C.A.
Reinhart-King and J.P. Califano]).

2148 VERBRIDGE ET AL.



junctions can be controlled micromechanically by using mi-
cromachined silicon culture substrates with movable and
interchangeable parts.37 This 2D culture setup enables ex-
perimental control over tissue composition, spatial organi-
zation, and timeframe of exposure to cell–cell interactions,
thereby resolving the direct and indirect effects of cell–cell
interactions. While all of these approaches provide exquisite
control over 2D cell–cell interactions, they may only partially
recreate conditions influencing cell–cell interactions on the
tissue level.38

Multiple strategies have been utilized to manipulate cell–
cell interactions with 3D cell aggregates. For example, die-
lectrophoretic forces can create high-resolution 3D cellular
structures of tumor or tumor stroma cells within a photo-
polymerizable hydrogel.39 Similarly, PEG microwell cultures
or collagen-based lithographically defined tissue arrays
permit control over the size, shape, and homogeneity of 3D
cultures and may be used to recapitulate 3D cell–cell contact
intrinsic to tumor angiogenesis.40,41 Extension of these ap-
proaches to incorporate multiple cell types—including tumor
cells, endothelial cells, tumor-associated fibroblasts, and stem
or progenitor cells—will further improve our understanding
of tumor angiogenesis, given the importance of these poly-
cellular interactions on blood vessel formation.42–44 Such
systems will not only be important tools for basic research,
but also provide the experimental basis for advanced drug
screening.

Cell–ECM Interactions

Tumor angiogenesis relies critically on cell–ECM interac-
tions that are mediated by integrin cell surface receptors.
There is evidence that particular integrins can act as either
promoters or negative regulators of pathological angiogen-
esis.45 Deregulation of this signaling in the presence of a
tumor not only promotes the malignant phenotype and an-
giogenic capability of tumor cells,46–48 but also activates the
adhesion, migration, and tube formation of endothelial cells.49

These differences in cell behavior are mediated by the ability
of integrins to transduce bi-directional signals into and out of
the cell and to undergo reciprocal interactions with other cell
surface receptors (e.g., growth factor receptors).50 Alter-
natively, integrin-dependent changes in signaling may be in-
duced by differential presentation of ECM ligands (e.g., ligand
type,51 density52 and spacing of adhesion sites,53 and matrix
topography54) or the presence of hypoxia.55

Three-dimensional culture in artificial ECMs may pro-
vide a more accurate understanding of the role of cell–ECM
interactions in tumor angiogenesis. While culture within
porous PLG scaffolds can be used to broadly test the effect
of culture dimensionality on ECM protein expression
and consequential changes in integrin signaling (Fig. 1c),3

peptide-modified alginate gels permit more specific dissec-
tion of the role of 2D versus 3D integrin engagement on the
angiogenic capability of tumor cells.47 For example, these
materials can be produced with varying types (e.g., RGD
[fibronectin-derived] and YIGSR [laminin-derived]) and den-
sities of adhesion peptides and can be readily tuned in their
mechanical properties,56–58 allowing more defined control
over cell–ECM interactions than PLG scaffolds. Similarly,
functionalization of photocrosslinkable PEG hydrogels with
acrylate-PEG-peptide conjugates can be used to test the effect

of cell–ECM interactions in response to different individual
or combined adhesion sequences.59 Simultaneous introduc-
tion of proteolytically degradable domains (cleaved, for ex-
ample, by cell-released matrix-metalloproteases)60–62 and=or
immobilized gradients of pro-angiogenic factors63 makes
these materials particularly powerful platforms as they allow
the study of tumor-dependent changes in angiogenic sprout-
ing in a dynamic and cell-responsive manner.

Studies of cell–ECM interactions can also be performed
with novel micro- and nano-fabrication techniques. For
example, nanoscale patterns of adhesive ligands can be
generated with nanoparticle gradients that are based on self-
assembly of diblock copolymer micelles.64 This approach has
the potential to reveal how cells explore positional clustering
of integrins to interpret the tumor-ECM environment. To
investigate the mechanisms and effects through which to-
pographical features of the tumor-ECM modulate blood
vessel formation, silicon substrates with uniform grooves
and ridges can be engineered on a similar scale as that of the
tumor ECM.54 Integration of these approaches with 3D ma-
trix fabrication and culture techniques will provide greater
insight into the role of cell–ECM interactions critical to tumor
angiogenesis.

Mechanical Signaling

Mechanical forces also regulate tumor angiogenesis, and
these forces can either be cell-generated or derived from
external stimulation. As tumors are stiffer than normal tis-
sues, tumor-residing cells are able to more strongly adhere to
their surrounding matrix (Fig. 1d).65 The resulting increase in
cytoskeletal tension, however, promotes the malignant trans-
formation of cancer cells, and drives vascularization by
modulating VEGF-receptor signaling in endothelial cells.65,66

Mechanical stiffness also directly affects endothelial cell net-
work formation and angiogenesis.67,68 Additionally, tumors
frequently exhibit elevated interstitial pressure,69 and the
resulting strains regulate the proliferative and angiogenic
capability of tumor cells.70,71 Lastly, fluid forces that origi-
nate from tumor-inherent changes in blood and interstitial
fluid flow not only impact the behavior of tumor or tumor-
associated cells directly,72 but may also exert a synergistic
effect on pro-angiogenic signaling.14

Recreation of normal or tumorigenic tissue stiffness with
artificial ECMs enables the study of tumor angiogenesis as
a function of cell-generated forces. For example, the rigidity
of RGD-modified polyacrylamide73 and alginate57 hydrogels
is readily adjustable by photo- and ionic cross-linking, re-
spectively. With this procedure, it is possible to investigate
changes in cellular behavior as a function of altered cell
mechanics rather than differences in the concentration of cell
adhesion motifs. Variation of collagen or Matrigel concen-
tration is another strategy that is frequently employed to
mimic the elasticity of tumors.74 However, these approaches
simultaneously change adhesion peptide concentrations,
which can alter cell behavior independently of differences in
matrix rigidity.75,76 Finally, matrix stiffness may be modified
by altering cross-linking pH and temperature, as well as
cross-linker catalyst concentration.77 It has to be noted,
however, that process parameters must remain within a cell-
compatible range, imposing certain limitations on these
methods.
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To investigate the effect of external strains on tumor an-
giogenesis, tissue-engineered tumor models can be exposed
to tumor-mimetic compression and=or perfusion. More spe-
cifically, cyclic mechanical compression of scaffold-based 3D
tumor models with various oscillation patterns could pro-
vide insights into mechano-regulated signaling pathways
that may influence both the angiogenic capability of tumor
cells and the invasive characteristics of endothelial cells.78,79

To study tumor angiogenesis in response to changes in in-
terstitial fluid flow, low level fluid forces can be applied
using 3D radial flow chambers with cell-incorporating artifi-
cial ECMs.80 Microfluidic 3D culture systems and polymeric
honeycomb scaffolds with aligned pores, on the other hand,
offer great promise to gain a better understanding of the effect
of varying blood flow rates, as these systems provide tem-
poral control over perfusion and transport phenomena via the
integrated microchannels.23,25,81,82

Conclusions

Tissue engineering provides highly innovative culture
tools and strategies that can be tailored to study tumori-
genesis in general and tumor angiogenesis in particular. The
ability to experimentally control in vitro systems not only
has the potential to transform our understanding of how
chemical, cell–cell, cell–ECM, and mechanical cues work in
concert to propagate tumor growth, but can also enable
improved drug testing. Interdisciplinary collaborations be-
tween cancer biologists and tissues engineers are paramount
to further advance studies of cancer biology and may ulti-
mately lead to improved therapies for cancer patients.
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