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Abstract

Oral infection of certain inbred mouse strains with the protozoan Toxoplasma gondii triggers

inflammatory pathology resembling lesions seen during human inflammatory bowel disease, in

particular Crohn's disease (CD). Damage triggered by the parasite is largely localized to the distal

portion of the small intestine, and as such is one of only a few models for ileal inflammation. This

is important because ileal involvement is a characteristic of CD in over two-thirds of patients. The

disease induced by Toxoplasma is mediated by Th1 cells and the cytokines tumor necrosis factor-

α and interferon-γ. Inflammation is dependent upon IL-23, also identified by genome-wide

association studies as a risk factor in CD. Development of lesions is concomitant with emergence

of E. coli that display enhanced adhesion to the intestinal epithelium and subepithelial

translocation. Furthermore, depletion of gut flora renders mice resistant to Toxoplasma-triggered

ileitis. Recent findings suggest complex CCR2-dependent interactions between lamina propria T

cells and intraepithelial lymphocytes in fueling proinflammatory pathology in the intestine. The

advantage of the Toxoplasma model is that disease develops rapidly (within 7–10 days of

infection) and can be induced in immunodeficient mice by adoptive transfer of mucosal T cells

from infected donors. We propose that Toxoplasma acts as a trigger setting into motion a series of

events culminating in loss of tolerance in the intestine and emergence of pathogenic T cell

effectors. The Toxoplasma trigger model is providing new leaps in our understanding of immunity

in the intestine.

Keywords

infection; inflammation; mucosal immunity; protozoan

Inflammatory bowel diseases (IBD) in humans are immune-mediated disorders typically

identified as Crohn's disease (CD) and ulcerative colitis (UC) depending on the disease

phenotype and histological characteristics.1–3 UC manifests as severe inflammation of the

colon and rectum that is generally thought to be mediated by cytokines of the Th2 family, in

particular IL-13. In patients with CD, lesions are found in the ileum and colon. The

inflammatory cytokine milieu during CD is predominantly Th1. More recently, IL-23/Th17
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has emerged as an important inflammatory axis during CD.4 The incidence of both CD and

UC are increasing in developed countries. While these conditions are rarely fatal, they are

debilitating diseases to live with and in many cases they may progress to colorectal cancer.5

In economic terms, the cost of treating IBD has been estimated to be approximately 6 billion

dollars per year in the United States alone.6

IBD is characterized as chronic relapsing intestinal inflammation associated with a

compromised epithelial barrier, inappropriate immune responses to commensal intestinal

microbes and overgrowth of pathogenic enteroadhesive E. coli and other microbes such as

Bacteroides spp. A general model for disease pathogenesis involves an underlying genetic

susceptibility on which an ill-defined trigger event is superimposed, followed by intestinal

dysbiosis leading to fulminant pathology.7 Treatment approaches involve alleviation of

symptoms with drugs and immune modulators, but some patients are less responsive than

others.8 Therefore, an important research goal is to identify new tools and targets to treat the

disease, whether they are aimed at restoring the balance of pathogenic versus commensal

microflora, or whether they are targeted at host immunity and epithelial healing

mechanisms.9–11 Using multiple disease models we can hope to understand immune

function and dysfunction in the intestine, we can map out the cellular and molecular

pathways leading from health to disease, and we can ultimately identify new targets to treat

the disease.

A number of mouse models have been used to gain insight into IBD.12,13 Most involve Th1/

Th17 responses that also characterize CD. A smaller number of models encompass Th2

responses that mimic UC. Generally, models can be classified as those that involve

inappropriate effector responses and those that include defects in regulatory cells.14 An

example of the former is the tumor necrosis factor (TNF)ΔARE mouse that overexpresses

TNF-α.15 An example of the latter is the severe combined immunodeficiency-transfer

model, in which transfer of splenic CD45RBhi T cells from wild-type mice induces colitis in

severe combined immunodeficiency mice unless cells are co-transferred with regulatory T

cells.16 IBD in mice can be induced genetically, chemically and by certain microbial

infections. Among the microorganisms that trigger IBD-like lesions is the protozoan parasite

Toxoplasma gondii.

Toxoplasma causes inflammation in the small intestine of certain inbred mice that resembles

CD, in that it is characterized by Th1-induced lesions in the ileum. Lesion development is

dependent upon orally acquired infection insofar as intraperitoneal injection of parasites

does not elicit intestinal lesions. Mouse models for ileitis are scarce. The SAMP1/Yit mouse

is a newly characterized strain that spontaneously develops CD-like lesions, and the

TNF ΔARE strain that is genetically engineered to overexpress TNF-α also develops

pathology resembling CD.17 Mice deficient for IL-10 also develop progressive lesions with

resemblance to CD in many ways. An advantage of the Toxoplasma-trigger model is that

disease onset is rapid and displays 100% penetrance. Unlike other CD models, T. gondii

infection in this model leads to acute lethality, although (as described below) recent

modifications to this model allow for induction of disease in the absence of lethality by

adoptive cell transfer from infected to non-infected immunodeficient recipients. In this

Review we discuss the Toxoplasma trigger model in the context of IBD, drawing attention to
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several recent findings that are yielding new insight into mechanisms of inflammatory

disease in the small intestine.

T. Gondii—an Opportunistic TH1 Microbe

Toxoplasma is an extremely successful intracellular pathogen that infects 10–50% of the

human population worldwide. The parasite is transmitted by carnivorism or predation, and

also by ingestion of oocysts shed by members of the cat family.18 Infection is characterized

by an acute phase, in which parasites cross the intestinal epithelium and widely disseminate

as tachyzoites that undergo rapid cycles of invasion, replication, escape by host cell lysis,

and re-invasion. Although most often asymptomatic, acute inection can sometimes lead to

ocular involvement and other manifestations of infection.19 This is followed by chronic

infection, characterized by emergence of long-lived cysts containing quiescent bradyzoites

in tissues of the skeletal muscle and central nervous system. This stage of infection, also

called the latent phase, is usually asymptomatic. However, during immunodeficiency such

as in AIDS progression or immunosuppression following organ transplant, the parasite may

undergo reactivation consisting of emergence from cysts as tissue-destructive

tachyzoites.20,21 Without chemotherapy this can be lethal. Toxoplasma may also cross the

placenta to cause serious damage to the fetus during primary infection. Furthermore,

sequelae of infection often emerge later in life following in utero infection.22

Infection with T. gondii normally triggers robust protective cell-mediated immunity in

which interferon (IFN) -γ has a central role. Early on, a model was established where the

parasite triggers IL-12 production that acts with TNF-α to induce IFN-γ production by NK

cells.23–26 Although macrophages and neutrophils produce IL-12 in response to

Toxoplasma,24,27 studies in cell-specific knockout mice indicate that dendritic cells are

likely the major IL-12 source in vivo.28 In mice, production of IL-12 and resistance to

infection is highly dependent upon MyD88, implicating Toll-like receptors (TLR) in

immune recognition.29–32 In this regard, there is evidence that TLR2, 4, 9 and 11 are

involved in recognition, although knockout of no single TLR results in the high

susceptibility observed following infection of Myd88−/− mice.33–37 Parasite ligands for

TLR2 and 4 have been identified as glycosylphosphoinositol lipid moieties on the tachyzoite

surface, and profilin in the parasite cytoplasm is recognized by TLR11, presumably

following phagocytosis of dead or antibody-coated parasites.33,38,39 At present, direct

recognition of Toxoplasma ligands by TLR9 is lacking. As described below, it is possible

that recognition of gut bacterial DNA underlies the effects seen during T. gondii infection.

IL-12 production and NK cell activation is followed by emergence of antigen-specific Th1

cells as well as CD8+ T lymphocyte effectors. Through production of IFN-γ, CD4+ and

CD8+ cells mediate protection during both acute and chronic stages of infection.26,40–42

Perforin-dependent cytolytic T cell activity also contributes to control of long-term

infection, although this appears to be secondary to production of IFN-γ43,44 The latter

cytokine provides protection in mice through STAT1-dependent induction of mediators such

as nitric oxide and the IFN-γ-dependent immunity-related p47 GTPase (IRG) proteins.45–49

What provides protection in humans is less clear insofar as the IRG family is absent and

nitric oxide-dependent killing of T. gondii has never been shown in our species.50,51
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However, there is evidence for IFN-γ-independent killing in human macrophages that

involves CD40 signaling and autophagy.52,53

Protective Immunity During the Mucosal Response to Toxoplasma

As an orally acquired infection, the host immune system first encounters Toxoplasma in the

intestinal mucosa. The mucosal immune system consists of a single layer of epithelial cells

that separates the underlying lamina propria (LP) from trillions of bacteria contained within

the lumen of the gut.54 Interspersed in the epithelium are a heterogenous population of T

cells collectively called intraepithelial lymphocytes (IEL) that contribute to homeostasis and

defense in the intestine, but that can also cause damage under certain conditions.55 Most IEL

express CD8αβ or CD8αα, and cells expressing the CD8α homodimer are composed of

approximately equal numbers of αβ T-cell receptor (TCR) and γδTCR-expressing cells. The

LP compartment is made up of myofibroblasts, T cells, B cells, macrophages and dendritic

cells. Organized lymphoid tissues called Peyer's patches line the intestine. The Peyer's

patches and LP are drained by lymphatics into mesenteric lymph nodes.

Following ingestion of oocysts or bradyzoites, the cyst wall is digested in the stomach,

sporozoites or bradyzoites cross the small intestinal epithelium, enter the LP and

differentiate into tachyzoites within ∼24 h.18 After 24–48 h, parasites begin to disseminate

to extra-intestinal sites in a process that most likely involves utilizing macrophages and

dendritic cells as carriers.56–58 Inflammatory macrophages are important microbicidal

effectors at this stage of infection. Recruitment of these cells is dependent upon expression

of chemokine receptor CCR2, resulting in killing of parasites.59 This is most likely

dependent upon IFN-γ-induced IRG-mediated destruction of the parasitophorous vacuole.60

Initiation of immunity in the intestinal mucosa involves recognition of pathogen-associated

molecular patterns such as profilin and glycosylphosphoinositol moieties.61 In the mouse

model, activation of mucosal dendritic cells through TLRs such as TLR11 and possibly

TLR2 and 4 results in antigen presentation and activation of T cells in regional lymphoid

tissues. However, a recent study suggests that lack of these TLR only minimally affects

generation of IFN-γ-secreting T cells.62 Instead, it was suggested that translocating bacteria

have a central role in initiating immunity to the parasite, essentially acting as an adjuvant to

kick start antigen-specific immunity to Toxoplasma. Evidence for this model is that mice

depleted of gut flora display impaired generation of cytokine-secreting T cells after T. gondii

infection, and this defect is corrected by oral administration of bacterial

lipopolysaccharide.62,63

A collection of studies indicate the importance of three-way interactions between CD4+ LP

T cells, CD8αβ IEL, and enterocytes in maintaining gut homeostasis and providing

protection during Toxoplasma infection. CD8αβ IEL from infected mice produce IFN-γ and

display cytotoxic activity against infected enterocytes and macrophages in vitro.64

Following adoptive transfer, these cells traffic back to the intestinal mucosa dependent upon

chemokine receptor CCR5 and provide protective immunity to challenge infection in the

gut.65–67 The mechanism of protection is not clear, but is known to require IFN-γ expression

in recipient animals but not in donor cells.68
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IEL populations also display immunoregulatory activity in the gut during T. gondii

infection. LP CD4+ T cells synergize with intestinal epithelial cells resulting in increased

proinflammatory cytokine and chemokine responses.69 It has been shown that an important

function of IEL is to downmodulate this response resulting in protection against parasite-

mediated intestinal pathology. This activity is dependent upon production of transforming

growth factor-β by CD8αβ IEL that downregulates IFN-γ expression by LP CD4+ T

cells.65,70 Other studies indicate an important role for γδTCR+ IEL in maintaining the

integrity of the epithelium during Toxoplasma infection.71 Thus, under normal conditions

IEL are important cells for both host defense against Toxoplasma and in protection against

inflammatory pathology. Yet despite this rigorous response, T. gondii escapes the intestinal

mucosa, establishes systemic infection and ultimately encysts forming latent infection.

Immunopathology in the Intestine During Toxoplasma Infection

Cells, cytokines and other soluble mediators

Infection of C57BL/6 mice with a relatively low dose of T. gondii (typically 20 cysts of

Type II strain parasites) elicits mucosal immune defense and animals survive into chronic

infection. However, when the infectious dose is raised to 100 cysts, infection is lethal in the

C57BL/6 mouse strain.72 Death occurs around 7–10 days after infection, and is associated

with massive necrosis of the villi and mucosal cells in the ileum of the small intestine

(Figure 1). In addition to the case of C57BL/6 mice, there is evidence that this type of

pathology occurs during T. gondii infection in other host species.73 Lesions in mice bare

many interesting resemblances to IBD in humans. Necrosis is dependent upon CD4+ T

lymphocytes, IFN-γ and nitric oxide, as determined by antibody depletion and gene

knockout studies.72,74,75 Furthermore, the original study showed that induction of damage

was dependent upon αβTCR+ and not γδTCR+ cells.72 It has also been found that CCR5-

dependent NK cell recruitment contributes to intestinal pathology, most likely because these

cells serve as an early source of IFN-γ during infection.76 Toxoplasma-triggered necrosis

can be prevented by depletion of TNF-α, an important observation insofar as neutralization

of this cytokine is used as a strategy to induce and maintain remission in CD.8,75

Activation of CD4+ T cells by IL-12p40 and to a lesser extent IL-18 was found to be

required for parasite-triggered necrosis.77 The p40 chain of IL-12 is also shared by IL-23,

and recent studies indicate that IL-23 mediates intestinal immunopathology triggered by T.

gondii as well as in other IBD models.78,79 Importantly, polymorphisms in the IL-23

receptor gene are known to influence IBD, and the IL-23p19 chain has been shown to be

upregulated in CD colon biopsy samples.80,81

During Toxoplasma infection, IL-23-dependent upregulation of matrixmetalloprotease-2

induces intestinal lesions, most likely by mediating damage to the epithelial border.78

Increased expression of both matrixmetalloprotease-2 and matrixmetalloprotease-9 has been

observed during IBD in both humans and experimental animals.82,83 In the Toxoplasma

study, IL-23-induced T-cell IL-22 production was found to contribute to colitis during T.

gondii infection.78 This is interesting because IL-22 has a protective role in other models of

IBD, namely the CD45RBhi transfer model and during dextran sulfate sodium-induced
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colitis in mice.84,85 Yet, as with the case of T. gondii-induced colitis, several studies have

linked IL-22 upregulation to CD86,87

Although IL-23 is strongly associated with Th17 responses, the above Toxoplasma study

found no evidence for a role of IL-17 in parasite-induced ileitis using IL-17A−/− mice.78

However, two other recent studies reported that IL17RA−/− animals are resistant to

development of intestinal lesions during T. gondii infection.88,89 Therefore, at this point it is

unclear whether IL-17 is involved in promoting damage in the intestine during Toxoplasma

infection. Disparities may stem from differences in strains of mice or parasites used in the

studies.

The cytokine IL-10 has a central immunoregulatory role in preventing cytokine

overproduction during Toxoplasma infection. Mice lacking expression of IL-10 are

hypersusceptible to parasite-induced immunopathology after both oral and intraperitoneal

infection.90,91 Immunoregulatory Foxp3+ Treg cells are known to have a role in maintained

tolerance in the intestine, and it was found during T. gondii infection that there is both a

collapse in this population and conversion to a T-bet/IFN-γ-positive phenotype in the

remaining cells associated with lethal pathology.92,93 This was shown to result from limited

amounts of IL-2 in an overwhelmingly Th1-dominated cytokine environment. It is possible

that collapse in the Treg population results in loss of the source of IL-10 that would normally

prevent inflammatory pathology during Toxoplasma infection. Alternatively, Th1 cells or

NK cells are additional possible sources of IL-10 during oral infection whose possible loss

during oral infection might contribute to intestinal immunopathology.94,95

Role of intestinal flora and TLR signaling in Toxoplasma-triggered ileitis

It is now recognized that intestinal flora aggravate IBD, including CD.3 Inflamed lesions

contain accumulations of gram-negative Escherichia coli and Bacteroides spp., and there is

evidence for increased adherence and translocation in microlesions in the intestine, as well

as systemic immune responses to bacterial antigens.96–99 This has led to the view that CD

may result from alterations in the endogenous flora, including emergence of enteroadhesive

bacteria, loss of tolerance and inappropriate immune responses to gut flora. These

imbalances are collectively called dysbiosis. Several models of experimental colitis support

the view that dysbiosis is an important component of IBD pathogenesis.100,101 However, it

is not clear whether abnormalities in the mucosal immune system lead to dysbiosis, or

whether dysbiosis causes abnormal immunity.

During acute ileitis triggered by T. gondii there is substantial damage to the epithelium, and

subepithelial bacterial translocation is readily apparent.63,102 Indeed, in LP preparations

from infected mice, macrophages and neutrophils with intracellular bacteria as well as

tachyzoites are easily seen (Figure 2). Adherence to epithelial cells and translocation of gut

flora are associated with increased bacterial load during Toxoplasma infection. In addition,

there is a decrease in species diversity characterized by dominance of gram-negative E. coli

and Bacteroides/Prevotella spp and increased intestinal concentrations of bacterial TLR

ligands such as lipopolysaccharide, lipopeptides and flagellin.103 Depletion of flora with

antibiotics renders mice resistant to Toxoplasma-induced ileitis, and reconstitution with E.

coli and Bacteroides/Prevotella restores sensitivity to parasite-induced disease. In parallel,
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depletion of gut flora results in decreased cytokine responses during T. gondii infection.62

Collectively, these studies make it clear that gut flora have an integral role in ileitis caused

by Toxoplasma in the gut.

The TLR system has an important role in recognition of endogenous bacteria and immunity

in the gut. Under some conditions, signaling through TLR helps to maintain homeostasis, as

mice lacking MyD88 (the major adaptor of TLR signaling) are more sensitive to dextran

sulfate sodium-induced colitis.104–106 However, Myd88−/− mice do not develop intestinal

inflammation after Toxoplasma infection suggesting TLR recognition promotes

inflammation in this circumstance.62 Consistent with the observation that LPS-expressing

bacteria overgrow in the inflamed ileum of infected C57BL/6 mice, animals lacking TLR4,

the major LPS receptor, do not develop ileitis after peroral T. gondii infection.107 In

addition, ileitis is ameliorated by administration of the LPS scavenger molecule polymyxin

B. Nonetheless, an independent study reported that lack of functional TLR4 resulted in

increased susceptibility to intestinal damage during Toxoplasma infection.108 The difference

between the studies may stem from the fact that Heimesaat et al.107 used TLR4 knockout on

a C57BL/6 background whereas the Furuta et al.108 compared C3H/HeN (LPS responder) to

C3H/HJ (LPS non-responder) mouse strains.

It has also been found that mice lacking TLR9 display decreased intestinal pathology during

peroral T. gondii infection.35,62,109 This seems likely due to recognition of bacterial nucleic

acid triggered by Toxoplasma infection. A role for Toxoplasma profilin-TLR1 1 interaction

as an early signal for pathogenesis is indicated by the finding that Tlr11−/− mice are resistant

to ileitis following peroral infection.62 Taking these findings collectively, it appears that

emergence of intestinal inflammation during T. gondii infection involves TLR-dependent

responses to both parasite and endogenous gut flora. We propose that proinflammatory

parasite-TLR interactions combined with infection-mediated bacterial translocation results

in abnormal TLR activation in response to prokaryotic ligands. In turn, this culminates in

intestinal dysbiosis and massive subepithelial invasion of gut flora (summarized in Figure

3).

Interactions between IEL and LP T lymphocytes fuel Inflammation

The chemokine receptor CCR2 is required for Toxoplasma-induced ileitis.102,110 This

receptor and its ligand are also found to be upregulated during CD, and increased numbers

of CCR2-positive LP CD4+ T cells are also seen in human disease.111,112 We found that a

subpopulation of IEL express this receptor, and CD8α+TCRαβ+ IEL from infected mice

induced pathology following transfer into infected Ccr2−/− hosts.102 There is growing

evidence that CD8+ cells contribute to and even initiate the disease in IBD113 In a hapten-

induced colitis model, CD8+ T cells were identified as the earliest initiators of

inflammation.114 Along similar lines, CD8+ T cells specific for influenza hemagglutinin A

triggered colitis in transgenic mice expressing this molecule in the intestinal epithelial

compartment.115 In CD patients, IEL have been found to possess enhanced cytotoxic

activity and increased IFN-γ production compared with cells from normal individuals.116,117

Therefore, although CD8+ IEL have important roles in homeostasis and protection against

infection, under some inflammatory conditions these cells display pathogenic activity. For
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the case of Toxoplasma infection, down-modulatory transforming growth factor-β-producing

IEL activity may be replaced by CCR2-dependent recruitment of lesion-inducing CD8 T

cells into the intestinal epithelium.

Previous studies found that CD4+ T cells are required for Toxoplasma-induced ileitis.72 In

this regard, we found that an LP-derived CCR2+CD4+ T cell population emerged in the IEL

compartment concomitant with lesion onset.118 By adoptive transfer of LP and IEL alone or

together into non-infected Rag1−/− mice, we found that CD8α+ IEL act to recruit LP CD4+

T cells to cause proinflammatory pathology. In addition, the chemokine and cytokine

environment in the intestine was remarkably similar in this co-transfer model to that found

in Toxoplasma-infected C57BL/6 mice. The observation that lesions are induced in the

absence of Toxoplasma provides more evidence that the role of the parasite is to act as an

initiator for dysfunctional immunity that damages tissue rather than a view that the parasite

directly destroys the intestinal mucosa through replication in the tissues (Figure 3).

Subsequently, we found that endogenous microflora in recipient mice is required to induce

damage, suggesting that IEL, LP CD4+ T cells, or both populations may recognize bacterial

antigens.118 Together, these findings suggest that IEL and LP T cells act together in

mediating damage in the intestinal mucosa during Toxoplasma-initiated inflammation.

Toxoplasma as a Trigger for IBD

How exactly does T. gondii induce onset of inflammation? Resistance to parasite-induced

ileitis in Tlr11−/− mice suggests the obvious possibility that profilin-TLR11-signaled IL-12

production sets into motion an uncontrolled proinflammatory cytokine cascade.62 It has also

been reported that parasites engineered to lack expression of SAG-1, a major tachyzoite

surface protein, lose their ability to trigger ileitis, suggesting that this molecule might also be

involved in lesion pathogenesis.119 Conversely, a rhoptry kinase called ROP16 seems to act

as an ‘off’ switch to protect against intestinal damage.120 Toxoplasma-induced disease

requires the presence of gut flora.63 Accordingly, it is possible that the trigger for

inflammation is provided by localized epithelial barrier disruption during early invasion and

replication of the parasites, resulting in bacterial translocation and activation of innate

immunity (Figure 3).

It is known that Toxoplasma suppresses TLR signaling in macrophages and dendritic cells,

and possibly emergence of inflammation results from this activity.121 Macrophages from

CD patients have been reported to be defective in cytokine secretion, and it has also been

found that neutrophil recruitment is impaired.122–124 One proposal is that pathogenesis

involves defective macrophage sentinel responses to occasional bacterial ingress, resulting

in failure to recruit neutrophils that would otherwise control infection.124 Loss of early

control would then result in an overwhelming inflammatory reaction to translocated

bacteria. Possibly, Toxoplasma achieves the same effect through its immunosuppressive

effects on macrophages and dendritic cells.

Could Toxoplasma be a trigger for IBD in humans? It has long been speculated that an

infectious agent may underlie onset of IBD, although no single pathogen has ever been

identified.7 Intracellular bacteria have been suggested as an IBD trigger, and there is strong
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evidence that Johne's disease in cattle, which resembles CD, is caused by Mycobacterium

avium paratuberculosis.7 A role for Toxoplasma in human IBD seems unlikely, based on the

fact that intestinal disease is rarely associated with acute infection. Yet, one recent study

found a higher rate of Toxoplasma seropositivity among CD-afflicted individuals compared

with normal or UC patients.125 Conceivably, Toxoplasma might actually serve as an

etiological agent of human disease with the appropriate environmental conditions and

genetic predisposition, although we emphasize that this is highly speculative.

Conclusions:Toxoplasma-Induced Inflammation as a Model for Human IBD

The overall pathogenesis of IBD during Toxoplasma infection in mice parallels what has

been posited for human disease.3,7 The individual must possess an underlying genetic

susceptibility (examples in humans are Nod2 or IL23R susceptibility alleles, in mice the

C57BL/6 background) on which a trigger event is superimposed. In the mouse model this is

Toxoplasma infection, in humans a trigger has not been identified. This results in dysbiosis

in the intestine leading in turn to fulminant IBD. An advantage of the Toxoplasma trigger

model is that disease onset is rapid (on the order of 7–10 days) and extremely reproducible.

As pointed out by others,126 the model is unlike human IBD in that it is not a chronic

relapsing inflammation. This suggests that the major value of peroral Toxoplasma infection

is as a tool to understand IBD pathogenesis.

Histopathologically, Toxoplasma-triggered intestinal inflammation resembles CD in that it

preferentially occurs in the ileum, a site that is involved in ∼two-thirds of CD patients. Like

CD lesions, those induced by T. gondii are discontinuous and transmural damage is often

seen. Unlike CD, parasite-induced inflammation does not observably involve granuloma

formation at sites of inflammation. Emergence of intestinal lesions during Toxoplasma

infection, as in CD, is associated with increased numbers of gram-negative bacteria that

display epithelial adhesiveness and translocation into the mucosa.

In immunological terms there are many interesting parallels between CD and Toxoplasma-

triggered ileitis. Both are associated with upregulation of CCR2 and its ligands, and

recruitment of CCR2+CD4+ T cells is found in both cases. It is also notable that IL-23

signaling is implicated in both cases, although whether Th17 responses are involved in

Toxoplasma-triggered disease is presently unclear. Although CCR5 seems to contribute to

parasite-induced ileitis, there is no evidence for a role of this chemokine receptor in CD,

based upon analysis of Ccr5 gene polymorphisms in CD patients and normal controls.127,128

Regardless, Th1 cytokines are a prominent characteristic of both Toxoplasma-triggered

disease and CD, and blocking TNF-α action can ameliorate the disease in both cases. The

many parallels between CD and Toxoplasma-induced ileitis argue that the T. gondii-trigger

system is a highly useful addition to the collection of IBD mouse models.

Future Directions

Toxoplasma is normally the cause of benign infection, but as discussed here the parasite

causes IBD in C57BL/6 strain mice. The recent identification of cells such as IEL and

immune receptors such as CCR2 in the Toxoplasma model offers potential new strategies for

therapy in human IBD. Other findings are that novel interactions between LP T cells and
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IEL mediate intestinal damage, but precisely how this occurs is not known. Important

matters to address in the future are the antigen specificity and MHC restriction of these cell

types. The major effector molecules of damage and necrosis in the intestine also await

identification. Also, the function of intestinal dendritic cells as proinflammatory lesions

emerge is unexplored. The tractability of the Toxoplasma trigger model suggests that these

issues are amenable to resolution, and working towards this goal can provide us with insight

into the intestinal mucosa in health and disease. By translating these findings from the bench

to the bedside, the Toxoplasma trigger model ultimately may prove valuable in identifying

new cells, receptors and soluble mediators as targets to treat IBD in humans.
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Figure 1.
Toxoplasma-induced immunopathology in the C57BL/6 ileum. (a), Non-infected mouse,

showing normal architecture of the intestinal mucosa. (b) Typical ileal lesions occurring 8

days following oral infection of C57BL/6 mice (100 cysts; ME49 parasite strain). Damage is

characterized histopathologically by transmural inflammation, sloughing of epithelial tips,

fusion of villi and increased necrosis.
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Figure 2.
Bacteria and Toxoplasma are present in the lamina propria. C57BL/6 strain mice were orally

infected and the lamina propria compartment was isolated 8 days later. Neutrophil-like cells

containing intracellular bacteria (a) and Toxoplasma tachyzoites (b) are readily identified.

Panel c shows a cell containing an intracellular parasite (arrow) and intracellular bacteria

(arrowhead).
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Figure 3.
Model for emergence of intestinal pathology during Toxoplasma infection. (a) At 24–48hr

after cyst ingestion invasive parasites cross the small intestinal epithelium to initiate

infection in cells such as macrophages and dendritic cells. (b) Dendritic cells recognize and

initiate immunity to Toxoplasma. They also respond to intestinal bacteria, possibly as a

result of translocation occurring as parasites cross the epithelial barrier. (c) Early

inflammation results in recruitment of CD8+ T cells into the intraepithelial lymphocyte

compartment, detectable 4–5 days after infection. (d) In turn, IEL are involved in recruiting

lamina propria CD4+ T cells into the intraepithelial compartment. (e) This results in damage

to the intestine and bacterial translocation with fulminant Th1-type immunopathology that

peaks around 7–9 days post-infection. In ways that are not clear, concurrent with emergence

of disease, the intestinal microbiota increases in number and shifts from a predominantly

gram-positive population (f) to a gram-negative population with increased adherence

characteristics (g).
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