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Abstract

The first examples of Lewis base-catalyzed enantioselective boryl conjugate additions (BCA) that

generate boron-substituted quaternary carbon stereogenic centers are disclosed. Reactions are

performed in the presence of 1.0–5.0 mol % of a readily available chiral accessible N-heterocyclic

carbene (NHC) and commercially available bis(pinacolato)diboron; cyclic or linear α,β-

unsaturated ketones can be used and rigorous exclusion of air or moisture is not necessary. The

desired products are obtained in 63–95% yield and 91:9 to >99:1 enantiomeric ratio (e.r.). The

special utility of the NHC-catalyzed approach is demonstrated in the context of an enantioselective

synthesis of natural product anti-fungal (−)-crassinervic acid.
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Reliable, efficient, and selective catalytic methods for synthesis of organoboron compounds

are of considerable importance.[1] A challenge in organoboron chemistry is the development

of catalytic protocols that furnish C–B bonds enantioselectively. There are enantioselective

protocols for boron-hydride,[2] diboron,[3] proto-boryl,[4] and conjugate additions[5] to

unsaturated compounds as well as allylic substitutions[6] that form B-substituted stereogenic

centers and are promoted by transition metal-containing catalysts; related boryl additions to

imines have been introduced as well.[7] In the case of boron conjugate addition (BCA)

reactions, chiral Lewis base catalysts provide effective alternatives to the Cu-based

complexes (Scheme 1);[8] chiral N-heterocyclic carbenes (NHCs) promote enantioselective

BCA,[9] offer distinctive chemoselectivity profiles that are otherwise unavailable (Scheme

1).[8d] The large majority of the above protocols, however, relate to the formation of tertiary

C–B bonds, and the small number of disclosures focused on the difficult enantioselective
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BCA processes that generate boron-substituted quaternary carbon centers[10,11] have

remained in the domain of Cu catalysis.[12] The lone report involving allylic substitutions

furnishing allyl–B(pin) products involves the use of an enantiomerically pure Cu-containing

complex.[6b] To the best of our knowledge, there are no examples of Lewis base-catalyzed

enantioselective reactions that furnish quaternary B-substituted carbons; such

transformations would constitute a notable addition to the collection of catalytic

enantioselective C–B bond forming processes.

Herein, we disclose the first instances of Lewis base-catalyzed enantioselective BCA

transformations that deliver cyclic or acyclic products with a boron-substituted quaternary

carbon; products are obtained in 63–95% yield and 91:9 to >99:1 enantiomeric ratio (e.r.).

The catalytic method’s unique features are highlighted by an enantioselective synthesis of

natural product crassinervic acid.

We first probed a number of easily accessible chiral NHCs that might be used to catalyze the

formation of 4a efficiently and enantioselectively (Table 1). C2-Symmetric carbenes derived

from 1a–b promote the BCA in moderate yield and e.r. (entries 1–2, Table 1). There is

complete substrate consumption in 14 h when C1-symmetric 2a[13] is used; 4a is obtained in

88:12 e.r. (entry 3). Reaction with the m-iPr-substituted derivative 2b is less efficient and

selective (68% conv., 67:33 e.r.; entry 4). When the NAr moieties of the NHC catalysts are

dissymmetric (i.e., 3a–c in entries 5–7), BCA is efficient (>90% conv.) and highly

enantioselective (>90:10 e.r.). Transformation with 3c furnishes 4a in 90% yield and 96:4

e.r. Additional noteworthy points are:

1. When the reaction is carried out with 1.0 mol % 3c and 5.0 mol % dbu, under

otherwise identical conditions, there is 87% conversion to 4a (84% yield, 95:5 e.r.).

2. Rigorous exclusion of air and moisture is not required with the NHC-catalyzed

transformations; 4a can be isolated in 92% yield and 95:5 e.r. when the reaction is

performed in a typical fume hood.[14

3. Preparation of 3c is more efficient[14] than the catalyst precursor identified

previously as optimal for BCA of the disubstituted cyclic enones.[8d]

4. Generally, NHC-catalyzed BCA processes that furnish B-substituted quaternary

carbon stereogenic centers are more enantioselective than those involving

disubstituted cyclic enones (e.g., β-B(pin)-substituted cyclohexanone formed in

87:13 e.r. vs. 96:4 e.r. for 4a).

5. When the transformation in entry 7 of Table 1 is carried out with 5.0 mol % CuCl,

4a is obtained in only 67:33 e.r. (>98% conv., 89% yield), underscoring the

disparate mechanistic attributes of the NHC-catalyzed pathways.

β-Substituted cyclohexenones, including those containing an alkyl (cf. 4b–e) or different

aryl groups (cf. 4f–j), undergo NHC-catalyzed BCA to afford products in 63–95% yield and

93:7–97:3 e.r. (Scheme 2). Alkyl-substituted cyclic enones with a terminal alkyne (cf. 4d) or

an allene (cf. 4e) are effective substrates. As the data for 4f–g and 4j indicate, 1.0 mol % 3c
and 5.0 mol % dbu may be used with similar effectiveness. Catalytic BCA to enones with a

relatively bulky substituent is somewhat less enantioselective; for example, the
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transformation of β-iPr-cyclohexenone delivers the expected β-boryl-cyclohexanone in 71%

yield (75% conv.) and 86:14 e.r. (at 4 °C). The X-ray structure of 4c establishes the absolute

stereochemistry of the BCA process.[15] When enantioselective synthesis of alkyne-

containing 4d was attempted under the Cu-catalyzed conditions introduced by Shibasaki (12

mol % (R,R)-QuinoxP*, 10 mol % CuPF6(MeCN)4, 15 mol % LiOtBu, 1.5 equiv. B2(pin)2,

dmso, 22 °C, 12 h), [12a] the product was isolated in 45% yield and 88:12 e.r.; with allene-

bearing 4e, a complex mixture of unidentified products was formed. Such discrepancies are

likely rooted in competitive reaction of the Cu–B(pin) complex with alkyne[16] and allene

moieties.[17]

β-Substituted cyclopentenones undergo reaction to furnish 5a–d in 89–91% yield and 92:8–

99:1 e.r. (Scheme 3). Additions to cyclopheptenone (cf. 6) and (for the first time)

cyclooctenone (cf. 7) afford the desired products in 77–78% yield and 95:5 e.r.

Transformations of acyclic aryl- or alkyl-substituted enones[18] deliver linear β-boryl

ketones in 56–94% yield and up to >99:1 e.r. (Scheme 4). In some cases, simple

recrystallization delivers materials of exceptional enantiomeric purity. Unlike cyclic enones,

reactions proceed most enantioselectively with imidazolinium salt 2a.[19] For example,

when 3c is used in the NHC-catalyzed BCA to enone 8b, β-boryl ketone 9b is isolated in

69% yield and 89:11 e.r. (vs. 90% yield and 91:9 e.r.). We have shown that BCA promoted

by a chiral NHC–Cu complex leading to phenylketone 12a proceeds with lower

selectivity [12b] in spite of being performed at −78 °C (82.5:17.5 in 24 h vs. 97:3 e.r. with 2a
at 35 °C in 14 h).

A deficiency of the NHC–Cu-catalyzed BCA is its ineffectiveness with enoates. We have

established that treatment of a β-boryl product with common household bleach for 12 hours

at 70°C[20] converts the C–B bond to a tertiary alcohol and the methyl ketone to a carboxylic

acid (Scheme 5). At room temperature, β-hydroxyl ketone 15 is obtained in 95% yield after

two hours.[21]

The study of enantioselective synthesis of anti-fungal natural product (−)-crassinervic

acid,[22] elucidates the advantages of present approach [Table 2 and Eq. (1)].[23] It should be

noted that generally efficient and enantioselective aldol additions to ketones are yet to be

developed.[24] Under NHC-catalyzed and two of the more effective conditions involving

phosphine- and NHC–Cu complexes (conditions A–C, respectively), there is complete

consumption of acetal-containing enone 17, but it is the NHC-catalyzed BCA that delivers

the highest e.r. (84:16 vs. 60:40 and 61:39). Subjection of 18, containing a phenol and an

aldehyde group, to the NHC-catalyzed BCA conditions affords 23 in 72% yield and 95:5 e.r.

On the contrary, treatment with the chiral Cu complex derived from diamine 17, effective

for BCA to linear β,β-disubstituted ketones,[12c] affords the desired product in only 19%

yield; with 21[12b] as the catalyst source, <2% conversion is observed.[25] Finally, when 19,

containing a phenol and a carboxylic acid is used, only the NHC-catalyzed process is

efficient. Oxidation of 23 with NaBO3 affords the tertiary alcohol in 93% yield [Eq. (1)],

which has been converted to the target molecule (75% yield).[26]
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(1)

Investigations regarding the elucidation of mechanistic details of the NHC-catalyzed

reactions are in progress and will be reported shortly.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Scheme 1.
Comparison of Cu-catalyzed and Cu-free enantioselective boron conjugate addition (BCA).

B(pin) = (pinacolato)boron.
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Scheme 2.
β-Boryl cyclohexenones can be accessed efficiently and enantioselectively. For general

conditions see Table 1. [a] Proto-deboration byproduct formed (ca. 30%); 63% is the yield

of pure 4h.
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Scheme 3.
NHC-catalyzed BCA reactions can be performed with five- or seven- and eight-membered

enones.
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Scheme 4.
Efficient and highly enantioselective NHC-catalyzed BCA reactions of acyclic enones. [a]

Performed at 35 °C.
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Scheme 5.
Subjection of an enantiomerically enriched BCA product to common bleach at room

temperature affords the ketone aldol product or the derived β-hydroxy-acid (e.s. = product

enantiomeric excess/substrate enantiomeric excess x 100).
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Table 1

Examination of chiral imidazolinium salts as catalyst precursors.[a]

Entry Imidazolinium Salt Conv. [%][b] Yield [%][c] e.r.[d]

1 1a 53 46 84:16

2 1b 96 85 84:16

3 2a >98 79 88:12

4 2b 68 54 67:33

5 3a >98 74 91.5:8.5

6 3b 91 82 90:10

7 3c >98 90 96:4

[a]
Reactions were performed under N2 atmosphere.

[b]
Determined by analysis of 400 MHz 1H NMR spectra of unpurified mixtures (±2%).

[c]
Yields of isolated and purified products (±5%).

[d]
Determined by GC analysis (±2%); see the Supporting Information for details. dbu = 1,8-diazabicyclo[5.4.0]undec-7-ene; Mes = 2,4,6-

Me3C6H2.
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Table 2

Comparison of different Approaches en Route to (−)-Crassinervicn Acid.[a]

Product Conditions Conv. [%][b] Yield [%][c] e.r.[d]

22

A; 0.4 equiv. dbu, 22 °C, 14 h >98 63 84:16

B; 0.15 equiv. LiOtBu, 22 °C, 24 h 87 78 60:40

C; 0.13 equiv. NaOtBu, −30 °C, 24 h >98 (to 23) 82 (of 23) 69:31

23

A; 0.4 equiv. dbu, 35 °C, 8.0 h >98 72 95:5

B; 0.15 equiv. LiOtBu, 22 °C, 24 h >98 19 nd

C; 0.13 equiv. NaOtBu, −30 °C, 24 h >98 <2 na

24

A; 1.4 equiv. dbu, 22 °C, 14 h >98 70 88.5:11.5

B; 1.15 equiv. LiOtBu, 22 °C, 24 h >98 <10 nd

C; 1.13 equiv. NaOtBu, −30 °C, 24 h >98 22 nd

[a]
Conditions: i) HO(CH2)2OH, 10 mol % pTsOH•H2O, tol., reflux, 12 h; 90% yield. ii) 3.0 equiv. tBuLi, thf, −78 °C; geranial, −78 °C, 2.0 h. iii)

1.0 mol % (n-Pr)4NRuO4, N-methylmorpholine N-oxide, CH2Cl2, 22 °C, 2.0 h. iv) 10 mol % pTsOH, acetone, 22 °C, 10 min.; 63% overall yield

for three steps. v) NaClO2, NaH2PO4•H2O, tBuOH, H2O, 2-methyl-2-butene, 22 °C, 3.0 h; 82% yield. Reactions were performed under N2
atmosphere.

[b]
Determined by analysis of 400 MHz 1H NMR spectra of unpurified mixtures (±2%).

[c]
Yields of isolated and purified products (±5%).

[d]
Determined by GC analysis (±2%). See the Supporting Information for details.
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