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Abstract

Microcalcifications are an early mammographic sign of breast cancer and a target for stereotactic

breast needle biopsy. Here, we develop and compare different approaches for developing Raman

classification algorithms to diagnose invasive and in situ breast cancer, fibrocystic change and

fibroadenoma that can be associated with microcalcifications. In this study, Raman spectra were

acquired from tissue cores obtained from fresh breast biopsies and analyzed using a constituent-

based breast model. Diagnostic algorithms based on the breast model fit coefficients were devised

using logistic regression, C4.5 decision tree classification, k-nearest neighbor (k-NN) and support

vector machine (SVM) analysis, and subjected to leave-one-out cross validation. The best

performing algorithm was based on SVM analysis (with radial basis function), which yielded a

positive predictive value of 100% and negative predictive value of 96% for cancer diagnosis.

Importantly, these results demonstrate that Raman spectroscopy provides adequate diagnostic

information for lesion discrimination even in the presence of microcalcifications, which to the best

of our knowledge has not been previously reported.
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Raman spectroscopy and multivariate classification provide accurate discrimination among lesions

in stereotactic breast biopsies, irrespective of microcalcification status.
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1. Introduction

Breast cancer poses a singular public health problem in both developed and developing

countries and constitutes approximately 23% of all cancers (excluding non-melanoma skin

cancers) in women worldwide [1]. Indeed, it is estimated that one in every eight women is

likely to develop breast cancer in her lifetime, which translates to more than 225,000 new

cases annually in the US alone [2]. Furthermore, significant economic costs are associated

with breast cancer care in the US alone ($7 billion in 2007), a substantive fraction of which

(approximately $2 billion) is spent on late-stage breast cancer treatment [3]. Evidently, early

detection can alleviate much of the challenges from a healthcare perspective (i.e. by

reducing breast cancer morbidity and mortality) as well as the financial burden related to

this disease.

In terms of early breast cancer detection methodologies, X-ray mammography is the only

accepted routine screening tool [4]. Numerous studies have reported that early detection by

screening mammography reduces mortality and increases treatment options [1]. One of the

crucial aspects of mammographic investigation is the detection of microcalcifications, which

are localized mineral deposits of calcium species that are considered to be early indicators of

breast cancer [5]. Microcalcifications discerned radiologically are typically employed as bio-

markers for pathology determination, due to the close correlation of type I and II

microcalcifications with benign and malignant (including invasive and in situ cancer)

lesions, respectively. Despite this acknowledged association with disease type [6], clinical

mammograms are unable to reliably discriminate between these two types of

microcalcifications. As a consequence, tissue biopsy must be performed to clearly identify
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whether or not the observed microcalcifications are associated with foci of cancer. To this

end, most patients with mammographically detected microcalcifications undergo vacuum-

assisted stereotactic core needle biopsies. However, investigators have reported that despite

state-of-the-art stereotactic guidance, microcalcifications are not successfully retrieved in

nearly 15% of all biopsies performed [7]. Clearly, this represents an undesirable situation as

the outcome of the aforementioned cases of unsuccessful retrieval of microcalcifications

would be non-diagnostic or false negative biopsies, which would necessitate the patient to

undergo a repeat biopsy, frequently as a surgical procedure.

Given the current clinical scenario, there is a substantive unmet need for a real-time clinical

tool that can accurately detect microcalcifications as well as diagnose breast lesions in their

presence. Such a tool would provide important feedback to radiologists during stereotactic

core needle biopsy procedures enabling more efficient retrieval of microcalcifications. In

this context, several investigators, as well as our own laboratory, have employed Raman

spectroscopy with promising results, due to its exquisite chemical specificity and real-time

capability (i.e. stemming from its lack of sample preparation requirements) for disease

diagnostics [8–11] including detection of breast cancer [12, 13]. Raman spectroscopy is a

fundamental form of molecular spectroscopy that is widely used to investigate the structures

and properties of molecules from their vibrational transitions. In Raman scattering, there is a

shift between the initial and final vibrational energy states, which appears in the form of

characteristic spectral patterns or Raman fingerprints.

Our recent publication has highlighted, for the first time, the ability of Raman spectroscopy

to identify microcalcifications from core needle breast biopsy specimens [14]. Previously,

our group had also distinguished type I and II breast microcalcifications and discriminated

type II microcalcifications associated with benign and malignant breast lesions [12] in

Raman microscopy studies of formalin-fixed, paraffin-embedded breast biopsies, using a

combination of principal component analysis and logistic regression. Stone and co-workers

had subsequently validated and extended our proof-of-concept results in similar paraffin-

embedded breast tissue samples using FTIR (Fourier transform infrared) imaging [15] and

also used deep Raman spectroscopy to determine the level of carbonate substitution in type

II microcalcifications [16].

Nevertheless, for successful clinical translation of Raman spectroscopy, it is imperative that

the spectral measurements are able to accurately diagnose the specific type of breast lesion

associated with microcalcifications. Our prior attempts in this direction were restricted to

diagnosis of breast cancer and benign lesions, such as fibrocystic change (FCC) and

fibroadenoma (FA), in the absence of microcalcifications [17, 18]. Like the new algorithms

reported here, the algorithm in these studies was based on multivariate analysis (logistic

regression) and employed fit coefficients (FC) derived from modeling of the Raman spectra

as the relevant inputs. However, this algorithm is unsuitable for breast lesion diagnosis in

the presence of microcalcifications due to the substantial Raman spectral contributions from

calcium hydroxyapatite (typically associated with type II microcalcifications) and/or

calcium oxalate (typically associated with type I microcalcifications).
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In this article, we report the first Raman spectroscopy-based algorithms for the diagnosis of

breast cancer, irrespective of the presence (or absence) of microcalcifications. These new

algorithms are developed on freshly excised tissue from patients undergoing breast core

needle biopsies and are therefore not subject to potential variations/changes induced by

formalin fixation and paraffin embedding. Importantly, the current algorithms can be used in

real-time spectroscopic guidance of stereotactic core needle biopsy procedures, as a large

number of the targeted lesions are associated with microcalcifications, and the proposed

algorithms enable lesion discrimination even when such calcified deposits are present.

Furthermore, an additional goal of this study is to perform comparative evaluation of

discrimination efficiency for multivariate algorithms including logistic regression (LR),

decision tree (C4.5), k-nearest-neighbor (kNN) and support vector machine (SVM). Recent

cancer research has applied a wide variety of such algorithms for lesion prediction by

correlating spectral patterns with the results of histopathological or radiological

examination, since the prediction accuracy (and reliability) depends both on the input dataset

and the robustness of the discrimination methodology. Here, we seek to combine the

physical interpretability of a breast constituent model fit-coefficient based analysis with the

accuracy and enhanced robustness provided by these multivariate algorithms. It is worth

noting that the aforementioned algorithms provide a representative, but not exhaustive, set

of discrimination techniques commonly used in spectral analysis. The objective here is to

obtain a concise understanding of the advantages and drawbacks of each through the

findings of this study.

2. Materials and methods

2.1 Experimental section

This study was performed on the Raman spectroscopy data set previously acquired for the

development of microcalcification detection algorithms in stereotactic core needle breast

biopsy specimens [14]. Briefly, a portable Raman spectroscopic instrument was designed

and assembled at the Laser Biomedical Research Center (LBRC), Massachusetts Institute of

Technology (MIT, Cambridge, MA). This clinical unit consists of an 830 nm diode laser

(Process Instruments, Salt Lake City, UT) as an excitation source and f/1.8i spectrograph

(HoloSpec, Kaiser) with TE-cooled deep-depletion CCD (PIXIS 256, 1024 × 256 pixel

array, Princeton Instruments) for spectral acquisition. A customized optical fiber probe,

comprising of a single central excitation fiber surrounded by nine collection fibers (each of

200 μm diameter), is used to deliver light to and from the tissue surface. A detailed

description of the probe can be found in our laboratory’s previous publications [19].

Approximately 100 mW of power was incident on a spot size of ca. 1 mm for our

investigations. Based on light transport theory as well as Monte Carlo simulations, the

sampling depth for our Raman probe is estimated to be 1.27 mm [20]. The tissue Raman

spectra were recorded by summing 10 successive frames, each with acquisition time of 0.25

s for a total collection time of 2.5 seconds/spectrum.

Raman spectra were acquired ex vivo from freshly excised (i.e. within 30 minutes of

excision) breast tissue cores obtained from 33 female patients (ages 38–79 years) during

stereotactic core needle breast biopsies in the Breast Health Center at University Hospitals-
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Case Medical Center. The tissue core biopsies were approximately 2.0 cm in length and

ranged from 1.0 to 2.8 mm in maximum diameter. The aforementioned investigations were

approved by the Case Cancer Institutional Review Board and the Massachusetts Institute of

Technology Committee On the Use of Humans as Experimental Subjects, in accordance

with assurances filed with and approved by the U.S. Department of Health and Human

Services. Informed consent was obtained from all subjects prior to their core needle biopsy

procedures.

For acquisition of Raman spectra, the optical fiber probe was gently positioned on the tissue

surface. To block collection of stray signals the tissue cores themselves were located inside a

specially designed black chamber. Raman spectra were recorded from multiple tissue sites

of interest from each biopsy core and generally consisted of both grossly normal and grossly

abnormal (including lesions with and without microcalcifications) tissue types. The presence

of microcalcifications was further validated based on radiographic assessment. It is worth

noting that spectra were also acquired from several tissue cores in each biopsy, such that the

number of spectra varied from patient to patient.

Following acquisition of tissue Raman spectra, the respective specimen sites were marked

with multicolored colloidal inks and were then fixed in 10% neutral buffered formalin and

paraffin embedded. Next, tissue sections were obtained and stained with hematoxylin and

eosin (H&E) for microscopic examination by an experienced breast pathologist. The

radiographic assessments based on the specimen radiograph and the histopathology

diagnoses were combined to provide the final gold standard for comparison with

spectroscopic results.

Prior to comparison with the radiography and histopathology results, the recorded Raman

spectra were analyzed in real time to generate the linear FCs for the constituents of the

breast tissue model (including epithelial cell nuclei and cytoplasm, fat, cholesterol-like

deposits, β-carotene, collagen, oxyhemoglobin, calcium hydroxyapatite, calcium oxalate and

water) and the two fiberoptic probe materials (namely, epoxy and sapphire), a detailed

description of which can be found in a previous report [21]. Briefly, ordinary least squares

(OLS) fitting was performed on the acquired Raman spectra (with the help of the basis

spectra of the above constituents) to generate the model FCs, which offer valuable insight

into the morphological and chemical tissue composition. The model FCs were subsequently

used to develop the lesion discrimination algorithms using the multivariate classification

methods detailed in the subsequent paragraphs.

2.2 Brief description of multivariate classification methods

While the FCs provide substantive insight into the composition of the tissue, the main

purpose of such analysis is to establish a quantitative spectral-based classification algorithm

to distinguish breast tissues according to specific pathological diagnoses, irrespective of the

presence of microcalcifications. To this end, we have employed the FCs in three nonlinear

classification models, namely C4.5 decision tree, kNN and SVM, to evaluate their relative

performance and compare the results with the more widely used methodology for this type

of predictive analysis, logistic regression (LR) [17]. In the following, we provide a brief

outline of the underlying concepts and advantages of these methods.

Dingari et al. Page 5

J Biophotonics. Author manuscript; available in PMC 2014 July 11.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



LR is a statistical model extensively used for probabilistic binary classification, though it is

not limited to this use. Specifically, LR is a type of regression analysis used for predicting

the outcome of a categorical (a variable that can take on a limited number of categories or

classes) criterion variable based on one or more predictor variables. In the present study, the

categorical variable is the diagnostic classes (namely, normal tissue, FCC, FA and cancer)

and the predictor variables are the constituent FCs. Notably, LR, which is a member of the

generalized linear models family, is useful because it can transform a predictor variable

input in the range of −∞ to +∞ to a probability value between 0 and 1, due to the inherent

sigmoidal characteristics of the logistic function. Also, the logit (i.e. log-odds) itself is equal

to the corresponding linear regression equation of the predictor variables and thus provides a

convenient link to the standard (linear) regression methods without imposition of the latter’s

constraints (such as the assumption that the error is normally distributed and is

homoscedastic).

Despite its widespread usage in the biomedical analysis, however, LR has its own restrictive

assumptions that make it disadvantageous in particular instances. For example, the implicit

assumption of linearity in terms of the logit function (versus the predictor variables) may be

unreasonable for a range of diagnostic conditions (such as changes in turbidity [22, 23] and

temperature [24]). Furthermore, LR is only applicable, strictly speaking, to between-subject

study designs and cannot be applied to within-subject ones. Here, our sample set consists of

multiple patients (between-subject samples) but also multiple tissue sites per individual

patient (within-subject samples), which may potentially violate the LR assumption of

independence of errors. Also, the relatively small number of the breast cancer and FA

sample sets may produce inaccurate estimates because LR models typically require large

sample sizes in comparison to the number of predictor variables used. These limitations are

largely absent or considerably more relaxed with the other three classification algorithms

tested, described below.

To compare with the above LR model, a decision tree algorithm was first constructed. Such

an algorithm repetitively splits the dataset based on a criterion that maximizes the separation

of the tissue type (i.e. binary discrimination rule), resulting in a tree-like structure [25, 26].

Importantly, this organization structure from the root node to the leaf node facilitates the

ready visualization and interpretation of the model thereby providing an intuitive

understanding of the relative importance of different model FCs (so-called “white box”

model in contrast to the “black box” models such as SVM and artificial neural networks) in

the classification of lesions. In this article, C4.5, a commonly employed statistical classifier,

is used to build the decision trees, using the concept of information entropy. In particular, at

each node of the tree, the C4.5 algorithm selects one data attribute based on normalized

information gain that most effectively splits its set of samples into subsets enriched in one

class or the other.

Nevertheless, while decision trees are easy to interpret and reveal information about the

underlying relationship between the predictor variable (model FC) and the response variable

(tissue diagnostic class), they are often not very accurate in classifying large and complex

datasets (such as tissue spectral matrices) [27–29]. To potentially enable more effective

classification of the breast tissue lesions, kNN and SVM models were constructed. k-nearest
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neighbor (kNN) classification uses the data directly for discrimination, without construction

of a prior model [30, 31], and therefore is widely used when there is little or no prior

knowledge about the distribution of the data. The only adjustable parameter in such a model

is k, which represents the number of nearest neighbors considered for estimation of class

membership. By appropriately tuning k, the model flexibility can be enhanced or reduced.

Typically, larger values of k reduce the effect of noise on the classification, but make

boundaries between classes less distinct. The optimal value of k is usually selected by

various heuristic techniques, e.g. cross-validation (as detailed in the Algorithm Development

sub-section). The advantage of such an algorithm is that the class membership can be

articulated in terms of that of its own neighbors and is therefore simple in its interpretation

and implementation. Finally, we have also developed support vector machines (SVM) with

appropriate kernel functions for non-linear classification. The SVM approach, which is

based on statistical learning theory and structural risk minimization, builds optimal

separating boundaries between classes by solving a constrained quadratic optimization

problem [32, 33]. Using the so-called kernel trick that enables the separation of classes in a

higher dimensional space, varying degrees of non-linearity and flexibility can be

incorporated in the SVM model.

2.3 Algorithm development

A total of 228 breast biopsy tissue sites were probed using Raman spectroscopy. However,

as detailed in our previous publication [14], 69 tissue sites were excluded from further

analysis for the following reasons: 1) pertaining to inadequate histopathology/radiology

examination (n = 59) (e.g. histopathology diagnosis could not be rendered due to improper

paraffin embedding of the biopsy), 2) the spectral data was identified as outliers using

Student’s t-test employing a Mahalanobis distance function (n = 10). The previous

microcalcification-based classification of the core needle biopsy specimens was performed

on a total of 159 tissue sites. In addition, 6 more sites were removed from the current

analysis as they were diagnosed with pathologic changes other than the target lesions (fat

necrosis, healing reaction and a naked microcalcification without accompanying breast

tissue) on closer histopathological examination. Thus, FCs from 153 tissue sites were used

to build the multivariate classification models. The 153 tissue sites included at least one site

from all 33 patients.

For the LR model, a likelihood ratio test was performed to select the FCs important for

lesion diagnosis. The diagnostic FCs, namely calcium hydroxyapatite, cholesterol, fat,

collagen, epithelial cell cytoplasm and oxyhemoglobin, reflected the major tissue

components that are likely to undergo a substantive change based on the presence of lesion.

(It should be noted that the parameters which contribute most to the fit of spectroscopic data

to a model may not be the parameters with the most diagnostic utility [34].) The likelihood

ratio test also provided the probability thresholds, based on these FCs, which correctly

discriminated the most tissue sites. LR code from the Statistics Toolbox in MATLAB

(version 7.12, The Mathworks, Inc., MA) was used for developing the LR tissue

discrimination models.
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To implement C4.5 decision tree classification, J48 (an implementation of C4.5 algorithm)

was employed and the analysis was carried out in the Weka data-mining tool [35]. For the

kNN and SVM classification models, the open source Orange data mining suite (http://

www.ailab.si/orange/) was used [36]. In the kNN algorithm, the Euclidean distance metric

was selected for case neighborhood determination. The optimal value of k was selected

based on the minimization of classification error in leave-one-out cross-validation (LOOCV)

analysis (the protocol for which is explained below). For our dataset, this resulted in an

optimal k value of 7. C-SVM was used for SVM analysis [37]. A radial basis function (RBF)

kernel with a Gaussian envelope was used to address potential non-linearity in the spectra-

class relationship and the cost and kernel parameters were optimized through an automated

grid search algorithm.

In order to perform comparative evaluation of the different algorithms and their ability to

discriminate lesion types (irrespective of the presence of microcalcifications), we employed

LOOCV analysis. A standard recommendation in classification analysis is to not employ the

same data samples for training and for prediction – otherwise, the class prediction accuracy

may be artificially boosted. To overcome this problem with a limited dataset, LOOCV

analysis is frequently pursued. In this procedure, the data from a single tissue site is

eliminated, and the specific algorithm (such as LR, kNN etc.) is developed on the remaining

tissue sites (optimizing agreement with the gold standard diagnoses). The resulting

classification model is then used to predict the class membership of the excluded site. This

process is successively applied to each of the sites. The predictions are then compared with

the gold standard diagnoses for evaluation of algorithm sensitivity (SE), specificity (SP),

positive predictive value (PPV), negative predictive value (NPV), overall accuracy (OA) and

the area under the receiver operating characteristic (ROC) curve (AUC) [34].

3. Results

The information embedded in the tissue Raman spectra was first transformed to the chemical

and morphological constituent compositional data in terms of the breast model FCs. It is

worth noting before commencement of the FC-based analysis that the signal-to-noise ratio

(SNR) of the Raman spectra varied slightly based on the tissue type (with the normal breast

tissue, lesions without microcalcifications and lesions with microcalcifications showing an

average SNR of 38.87 dB, 38.69 dB and 38.30 dB) (the interested reader is referred to the

representative spectra shown in Figure 2 of Saha et al. [14]). Despite the small disparities,

the large value of the SNR ensures the reproducibility (and precision) of the spectral

measurements.

Figure 1 shows a multi-dimensional radial visualization plot of FCs obtained from the tissue

site Raman spectra. The FCs plotted here were selected using the likelihood ratio test in LR,

as mentioned in the Materials and Methods section. This nonlinear radial visualization

method maps the FC data dimensions onto a two dimensional space for the purpose of

clustering [38]. The FCs describing tissue site characteristics are equally spaced around the

perimeter of a circle and provide dimension anchors, where the values of each dimension

(FC) are standardized between 0 and 1. Here, each tissue site is shown as a point inside the

unit circle with its location determined by the influence of its dimension anchors [39],
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thereby providing an intuitive understanding of the importance of specific FCs in

determining class labels (i.e. tissue type, irrespective of microcalcification status). From the

figure, one can readily observe a certain degree of clustering behavior for each of the tissue

classes, especially for normal breast tissue and cancerous lesions. For example, the normal

tissue specimens are found to have a substantially larger contribution of fat and smaller

contribution of collagen than any of the other categories (which is consistent with our

previous findings in breast cancer investigations [14, 17, 18]). In contrast, the benign lesions

(namely, FA and FCC) exhibit overlap, probably arising from the competing contributions

of collagen and calcium hydroxyapatite (in cases where lesions are associated with

microcalcifications). Clearly, a linearly separable algorithm cannot provide adequate

discrimination capability for such lesions, although it is easy to see that Raman spectroscopy

does provide diagnostic information even when microcalcifications (as indicated by the

content of calcium hydroxyapatite) are present.

To quantify this diagnostic information content, we first built LR models using the six FCs

(namely, calcium hydroxyapatite, cholesterol, fat, collagen, epithelial cell cytoplasm and

oxyhemoglobin) and applied them in a LOOCV protocol. Table 1(A) provides the confusion

matrix for the LR models, where each column of the matrix represents the instances in a

Raman predicted class, while each row represents the instances in a histopathological

reference class. It should be noted that 7 tissue sites (including 1 normal, 1 FCC without

microcalcifications, 4 FCC with microcalcifications and 1 ductal carcinoma in situ with

microcalcifications) were unallocated based on their relatively low probability of belonging

to any class. To ensure consistency in the ensuing analysis, we have removed these 7 tissue

sites from further consideration thereby restricting our overall sample set to 146 specimens.

These 146 specimens included 53 normal breast tissue (3 of which were associated with

microcalcifications), 60 FCC (43 of which are associated with microcalcifications), 17 FA

(all of which are associated with microcalcifications) and 16 breast cancer sites (14 of which

are associated with microcalcifications). From Table 1(A), we observe that the normal breast

tissue and FCC as well as cancer sites are classified with reasonable accuracy. However, a

majority of the FA sites (15 out of 17) were misdiagnosed by the LR Raman algorithm as

FCC. We suspect that for these tissue sites, microcalcifications are the dominant spectral

contributors and the spectral contributions from the other tissue components (such as

cholesterol-like, fat and collagen) are similar for FA and FCC lesions. Indeed, there was no

FA site without microcalcifications in the analyzed dataset. As a consequence, the

classification probability was reasonably similar for either tissue type (namely, FA and

FCC) and the misclassifications are due to uncertainty in spectroscopic measurement as well

as the fact that FCC has a substantially larger population of specimens in the analyzed

dataset thereby skewing the overall algorithm to over-predict its probability of occurrence.

Nevertheless, it bears emphasizing that these misclassifications of FA as FCC are of

relatively little clinical significance, since the Raman diagnosis would indicate that these

biopsies harbor benign breast lesions with microcalcifications. Importantly, however, the

current LR algorithm reports 7 false negative and 2 false positive misclassifications of

cancer, which is not ideal.
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In comparison, as shown in Figure 2, the C4.5 decision tree algorithm employs selective

utilization of the FCs to successively construct binary discrimination rules resulting in

classification of each tissue site. This provides an alternative perspective on the significance

of specific FCs with respect to the radial visualization plot of Figure 1. In accordance with

our previous observations from Figure 1, collagen, oxyhemoglobin, fat, and calcium

hydroxyapatite were identified as the most important diagnostic FCs. In particular, fat and

collagen played key roles in discriminating normal tissue from other lesions. The main

advantage of using the decision tree approach over the previous radial visualization plot is

that it quantifies the discrimination rules with respect to the predictor variables (FCs).

However, in terms of actual discrimination efficiency, the performance of the C4.5 decision

tree (Table 1(B)) was considerably inferior compared to the LR models described above. In

fact, the total number of misdiagnosed sites for C4.5 is 45 (out of 146 sites), whereas that for

LR is 36. Notably, the number of false positives and false negative misdiagnoses of cancer is

7 and 12, respectively, a substantial increase over the LR algorithm.

In order to enhance the discrimination efficiency over the levels obtained using LR, we

subsequently developed kNN and SVM models using the aforementioned LOOCV protocol.

Unlike the decision tree, which is based on a multistage or hierarchical decision scheme,

these classification approaches employ the set of features (FCs) collectively to perform

classification in a single decision step. Table 1(C) and 1(D) give the corresponding

confusion matrices for kNN and SVM models. It is evident that both of these methods offer

much improved discrimination performances in comparison to the decision tree and LR

models. In particular, kNN provides better discrimination for FA (where only 7 out of 17

sites, again all with microcalcifications, are misdiagnosed as FCC) in relation to SVM

(which misclassifies 9 out of the 17 FA sites as FCC). However, the SVM model does not

report any false positives; in contrast, the kNN model shows a single false positive for

cancer. Further, both of the models provide the same number of false negatives (6) with 2 of

the cancer sites being misclassified as normal and 4 more being misclassified as FCC. For

the former two cancer sites (histopathologically assessed to be ductal carcinoma in situ with

microcalcifications and lobular carcinoma in situ (without microcalcifications) from two

separate patients), the misdiagnoses as normal can be attributed to the excessively high fat

FC observed in each case. Additionally, three of the other four cancer sites misclassified as

FCC (all ductal carcinoma in situ with microcalcifications) belonged to an individual

patient, the spectral data from whom exhibited tissue features that were not accounted for by

our fit algorithm. Prominently, the consistency of the kNN and SVM confusion matrices

demonstrates that the misclassified sites were not significantly dependent on the type of

modeling, but arise from inaccuracies inherent in the spectral-histopathology relationship

(such as registration errors between the two types of measurement).

4. Discussion

The results of this study demonstrate that Raman spectroscopy has the potential to

discriminate lesions in tissue cores obtained from stereotactic breast needle biopsies.

Importantly, we show the ability for lesion classification with a high degree of accuracy

even when the lesions are associated with microcalcifications. This investigation, to the best

of our knowledge, is the first report of such a finding, which is critical to the successful
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translation of this technology to the clinic where one of the significant geographical targets

for needle biopsies is the presence of microcalcifications. The FC-based analysis reinforces

our existing understanding of the tissue composition and its potential changes due to

histopathology changes in benign and malignant lesions, and additionally provides a

pathway to multivariate classification.

In terms of classification schemes, it is observed that SVM (and to a large extent, kNN)

provide remarkably accurate results, especially as related to the discrimination of breast

cancer lesions. Table 2 provides a comparative evaluation of the diagnostic performance of

each of the classification algorithms (LR, C4.5 decision tree, kNN and SVM) for cancer

detection. Given the overlapping populations seen from Figure 1, it is necessary to clearly

define the most significant measure of algorithm performance, as there is typically a trade-

off between sensitivity and specificity. In this clinical situation, PPV represents the

performance metric of greatest interest, as false positives may have serious adverse

consequences for the patient [34]. This is usually the case when the disease to be diagnosed

is serious, should not be missed and is treatable. Here, one would like to ensure that every

patient with a positive Raman diagnosis has cancer; otherwise (in the case of a false

positive) the radiologist may retrieve only a single tissue core thereby missing the targeted

malignant lesion. Consequently, the patient may have to undergo a second stereotactic or,

more ominously, a surgical biopsy in the near future, suffering additional inconvenience and

perhaps allowing the cancer to further proliferate. Conversely, even if the Raman algorithm

signifies that the tissue to be biopsied is not cancerous when it truly is, the radiologist is

likely to remove (unnecessary) additional tissue cores. This represents an undesirable

situation but does not pose a major health risk to the patient.

Viewed from this perspective, it is evident that SVM provides the best diagnostic

performance (PPV = 100% and NPV = 96%), closely followed by kNN (PPV = 91% and

NPV = 96%). Finally, LR provides PPV and NPV of 82% and 95%, respectively, whereas

C4.5 decision tree gives PPV and NPV of 36% and 91%, respectively. Based on these

findings, it is reasonable to infer that the latter two algorithms (LR and C4.5) are not optimal

in terms of diagnostic performance and SVM (or kNN) should be utilized for development

of the final clinical algorithm. Our sample set is not large enough to perform a

comprehensive point-by-point evaluation of SVM and kNN, although it appears that the

relative performance of these two classification techniques would depend heavily on the

specific data set analyzed. Significantly, if the number of predictor variables (fit coefficients

or spectral features) increase, prediction accuracy of kNN algorithms tend to decrease. Also,

the accuracy of the k-NN algorithm can be severely degraded by the presence of noisy or

irrelevant features, which does not serve as a major impediment here because the FCs are

derived from the (fairly noise-free) basis spectra. Under such circumstances which may

appear if full spectral analysis was pursued, irrelevant attributes easily may overwhelm

information from important ones bringing to the forefront the so-called “curse of

dimensionality” [40]. Thus, appropriate pre-processing steps focusing on removal of

irrelevant attributes would become imperative.

On the other hand, SVM classifiers do not necessitate feature space reduction [41] and as a

result can be more readily applied for full spectral analysis. Notably, SVM also provides an
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advantage over neural networks because it typically offers superior generalization ability

and robustness [42]. In addition, it has been reported that SVM model development may

require only a small training sample set [43–45], although it bears emphasizing that the

burden of proof in a specific study would rest on the investigators to ensure the avoidance of

“curse of dataset sparsity” (i.e. too few samples) [40]. It is pertinent to mention that a large

weight (for the minimization of regression/classification errors) in the SVM objective

function implies that the model bears the risk of over-fitting. In this study, over-fitting is

avoided by using leave-one-out cross-validation. Ideally, given a larger dataset, one would

like to invoke an independent test set for reporting the final results of the model (that has

been optimized using cross-validation) [46]. Such a procedure would further minimize the

possibility of over-fitting.

Finally, the receiver operating characteristic (ROC) curve for SVM prediction for breast

cancer is shown in Figure 3. For comparison, the ROC curve of two indistinguishable

classes (represented by the solid black line) is shown in the figure. The area under the curve

(AUC) is determined to be 0.92 whereas the AUC for a perfect algorithm would be 1.00.

5. Conclusion

We present here a Raman spectroscopic tool for discrimination of lesions in breast tissue

obtained during stereotactic breast needle core biopsies, even in the presence of

microcalcifications. Raman spectroscopy provides ample diagnostic information due to its

exquisite chemical specificity and ability to clearly quantify the chemical composition of the

tissue in terms of primary constituents such as collagen, fat and calcium hydroxyapatite.

Further, we have performed a comparative assessment of classification methodologies with

the resultant optimal SVM-derived Raman diagnostic algorithm exhibiting a PPV of 100%

and NPV of 96% in detection of breast cancer lesions. In totality, one can conclude that

Raman spectroscopy in combination with a suitable classification tool has the potential to

not only detect microcalcifications (based on the calcium oxalate and calcium

hydroxyapatite content) [14], but also identify the specific breast lesions associated with the

microcalcifications in stereotactic breast biopsies as in this study. This study represents a

significant extension of our previous efforts in providing real-time feedback to clinicians

during stereotactic breast needle biopsy procedures, potentially decreasing non-diagnostic

and false negative biopsies.

In addition to the current investigations, we are actively designing and engineering a side-

viewing Raman probe that can be used in conjunction with a vacuum-assisted biopsy needle

for true real-time guidance of biopsy procedures. In this regard, other potential excitation-

collection schemes such as spatially offset Raman spectroscopy (SORS) [47] can also be

investigated. Such clinical studies will allow us to assess the viability of the proposed

approach in vivo. It is possible that the PPV and NPV numbers may decrease (to a small

extent) when the current Raman algorithm(s) are tested in large-scale studies in more diverse

patient populations, thus necessitating suitable fine-tuning of the lesion discrimination

algorithms. Also, extensive clinical testing may present the opportunity to diagnose rare

lesions that have not been addressed in the preliminary studies. We envision that the final

outcome in terms of algorithm development may be a hybrid ensemble of different models
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(including but not limited to the aforementioned classification techniques), specifically

customized for prediction of lesion types with and without microcalcifications. Towards this

end, the domain of full-spectral analysis (and its related feature-selected variant [48]) can

also be explored, in place of the FC-based analysis outlined in this article.
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Figure 1.
Multi-dimensional radial visualization plot of selected breast model fit coefficients obtained

from the tissue Raman spectra. The plot illustrates the clustering behavior of the specimens

belonging to each tissue histopathology class. Further details of the plot and selection of the

fit coefficients are provided in the text.
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Figure 2.
Decision tree generated using the C4.5 algorithm on the fit coefficients obtained from the

tissue Raman spectra. Here, ellipses indicate intermediate nodes and rectangles represent the

final nodes. The binary discrimination rules are represented in the branches following the

nodes and the number of specimens distinguished as a specific class is given in the

rectangle.
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Figure 3.
ROC curve for SVM-derived Raman decision algorithm for the diagnosis of breast cancer.
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