
Research Article
Privacy-Preserving Restricted Boltzmann Machine

Yu Li,1 Yuan Zhang,2,3 and Yue Ji4

1 Computer Science and Engineering Department, State University of New York at Buffalo, Buffalo, NY 14260, USA
2 State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210046, China
3 Computer Science and Technology Department, Nanjing University, Nanjing 210046, China
4Tian Jia Bing Hall, Nanjing Normal University, Nanjing 210097, China

Correspondence should be addressed to Yue Ji; yueji78@gmail.com

Received 5 March 2014; Accepted 31 May 2014; Published 24 June 2014

Academic Editor: Tingting Chen

Copyright © 2014 Yu Li et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

With the arrival of the big data era, it is predicted that distributed data mining will lead to an information technology revolution.
Tomotivate different institutes to collaborate with each other, the crucial issue is to eliminate their concerns regarding data privacy.
In this paper, we propose a privacy-preserving method for training a restricted boltzmann machine (RBM). The RBM can be
got without revealing their private data to each other when using our privacy-preserving method. We provide a correctness and
efficiency analysis of our algorithms.The comparative experiment shows that the accuracy is very close to the original RBMmodel.

1. Introduction

With the rapid development of information technology and
modern network, huge amounts of personal data are gen-
erated every day, and people care deeply about maintaining
their privacy.Therefore, there is a need to focus on developing
privacy-preserving data mining algorithms. With the rapid
growth of social networks like Facebook and LinkedIn,
increasingly more research will be based on personal data,
such as advertising suggestion. In another scenario, doctors
always collect patients’ personal information before the diag-
nosis of a disease or the treatment of an illness. However,
in order to prevent the leakage of these privacy data, the
Health Insurance Portability andAccountability Act (HIPPA)
has set up a series of regulations that protect the privacy of
individually identifiable health information.

Data mining is an important interdisciplinary field of
computer science and has been widely extended to the
fields of bioinformatics, medicine, and social networks. For
example, when a research institute wants to study the DNA
sequence and related genetic diseases, they need to collect
patients’ DNA data and apply data mining or machine
learning algorithms to obtain a relevant model. However, if
scientists from other institutes also want to use these DNA
sequences, ensuring that the patients’ personal information

is protected is an example of the problem at hand. In another
scenario, some researchers want to combine the personal data
from Facebook and LinkedIn to undertake a study. However,
neither company wants to reveal the personal information of
their subscribers, and they especially do not want to give it
to a competitor. Therefore, we propose a privacy-preserving
machine learning method to ensure that individuals’ privacy
is protected.

The restricted Boltzmann machine (RBM) [1] is increas-
ingly being used in supervised or unsupervised learning sce-
narios, such as classification. It is a variant of the Boltzmann
machines (BMs)which is a type of stochastic recurrent neural
network invented by Hinton and Sejnowski. It has been used
as windows of mel-cepstral coefficients that represent speech
[2], bags of words that represent documents [3], and user
ratings of movies [4].

In this paper we propose a privacy-preservingmethod for
training the RBM, which can be used for information sharing
without revealing personal data from different institutions to
each other.We provide a correctness and efficiency analysis of
our algorithms. The comparative experiment shows that the
accuracy is very close to original RBMmodel.

The rest of this paper is organized as follows. Section 2
describes the related work. We introduce the restricted
Boltzmannmachine, Gibbs sampling, contrastive divergence,
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and cryptograph scheme in more detail in Section 3. In
Section 4, we describe our privacy-preserving method for
training the RBM. The analysis of our model is described in
Section 5. Section 6 gives the design of our experiments in
detail. Last, Section 7 is the conclusion of this paper.

2. Related Work

In [5], Hinton gives a practical guide for training the
restricted Boltzmann machine. It is widely used in collabora-
tive filtering [4]. In [6], Agrawal and Srikant and [7] Lindell
and Pinkes propose separately thatmuch of future research in
data mining will be focused on the development of privacy-
preserving techniques. With the development of privacy-
preserving data mining techniques, it can be divided into
two classes: the randomization-basedmethod like [7] and the
cryptograph-based method like [6].

Randomization-based privacy-preserving data mining,
which perturbs data or reconstructs the distribution of the
original data, can only provide a limited degree of privacy
and accuracy but is more efficient when the database is very
large. In [8], Du and Zhan present a method to build decision
tree classifiers from the disguised data. They have conducted
experiments to compare the accuracy of their decision tree
with the one built from the original undisguised data. In [9],
Huang et al. study how correlations affect the privacy of a
dataset disguised via the random perturbation scheme and
propose two data reconstruction methods that are based on
data correlations. In [10], Aggarwal and Yu develop a new
flexible approach for privacy-preserving data mining, which
does not require new problem-specific algorithms since it
maps the original dataset into a new anonymous dataset.

Cryptograph-based privacy-preserving data mining,
which can provide a better guarantee of privacy when
different institutes want to cooperate to meet a common
research goal, is always subject to its efficiency when the
dataset is very large. In [11], Wright and Yang propose
a cryptographic-based privacy-preserving protocol for
learning the Bayesian network structure. Chen and Zhong
[12] present a cryptographic-based privacy-preserving
algorithm for backpropagation neural network learning. In
[13], Laur et al. propose cryptographically secure protocols
for kernel perceptron and kernelized support vector
machines. In [14], Vaidya et al. propose a privacy-preserving
naive Bayes classifier on both vertically and horizontally
partitioned data.

To the best of our knowledge, we are the first to provide
a privacy-preserving RBM training algorithm for vertical
partitions.

3. Technical Preliminaries

In the section, we give a brief review of RBM and the
cryptograph method we have used in our privacy-preserving
algorithm. First, we introduce RBM and the learning method
for the binary unit. Much of the description about RBM and
its training method in this section is adapted from [5, 15].

Second, we introduce the cryptograph technology [12] that
we have used in our work.

3.1. RBM. The Boltzmann machine (BM) [16] is a stochastic
neural network with symmetric connections between units
and no connection in the same unit. The BMs can be used
to learn important aspects of an unknown probability distri-
bution based on its samples. Restricted Boltzmann machines
(RBMs) further restrict that BMs do not have visible-visible
and hidden-hidden connections [15], thus simplifying their
learning process. A graphical depiction of an RBM is shown
in Figure 1. V
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𝐸 (V, ℎ) = − ∑

𝑖∈hidden
𝑐
𝑖
ℎ
𝑖
− ∑

𝑗∈visible
𝑏
𝑗
V
𝑗
−∑

𝑖,𝑗

ℎ
𝑖
𝑤
𝑖𝑗
V
𝑗
, (1)

where V and ℎ are the vectors consisting of states of all visible
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associated with unit 𝑖 and unit 𝑗, respectively, and 𝑤
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weight between units 𝑖 and 𝑗. The energy determines the
probability distributions over the hidden units’ and visible
units’ state vectors using an energy function as follows:
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,
(2)

where 𝑍 is the sum of 𝑃(V, ℎ) for all possible (V, ℎ) pairs.

3.2. RBM with Binary Units. When units’ states are binary,
according to [18], a probabilistic version of the usual neuron
activation function that is commonly studied can be simpli-
fied to
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⋅ V) ,
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⋅ ℎ) ,

(3)

where sigm denotes the sigmoid function and 𝑊
𝑖
(and 𝑊

𝑗
,

resp.) is the 𝑖th row vector (the 𝑗th column vector, resp.) of
𝑊.

Based on (2) and (3), the log-likelihood gradients for an
RBM with binary units [15] can be computed as

−

𝜕 log𝑃 (V)
𝜕𝑊
𝑖𝑗

= 𝐸V [𝑃 (ℎ𝑖 | V) ⋅ V𝑗] − V(𝑖)
𝑗
⋅ sigm (𝑊

𝑖
⋅ V(𝑖) + 𝑐

𝑖
) ,

−

𝜕 log𝑃 (V)
𝜕𝑐
𝑖

= 𝐸V [𝑃 (ℎ𝑖 | V)] − sigm (𝑊
𝑖
⋅ V(𝑖)) ,

−

𝜕 log𝑃 (V)
𝜕𝑏
𝑗

= 𝐸V [𝑃 (V𝑗 | ℎ)] − V(𝑖)
𝑗
.

(4)

These gradients will be used in guiding the weight matrix’s
updates during the training procedure of the RBMs.
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Figure 1: Restricted Boltzmann machine.

3.3. Sampling and Contrastive Divergence in an RBM.
Using Gibbs sampling as the transition operator, samples
of 𝑝(𝑥) can be obtained by running a Markov chain to
convergence [15]. To sample a joint of 𝑛 random variables
𝑋 = (𝑋

1
, . . . , 𝑋

𝑛
), Gibbs sampling performs a sequence of

𝑛 sampling substeps of the form𝑋
𝑖
∼ 𝑃(𝑋

𝑖
| 𝑋
−𝑖
), where𝑋

−𝑖

represents the ensemble of the 𝑛 − 1 random variables in 𝑋
other than𝑋

𝑖
.

An RBM consists of visible and hidden units. However,
since they are conditionally independent, we can perform
block Gibbs sampling [15]. In this condition, hidden units are
sampled simultaneously when given fixed values of the visible
units. Similarly, visible units are sampled simultaneously
when given the hidden units. A step in the Markov chain is
thus taken as follows [15]:

ℎ

(𝑛)
∼ sigm (𝑊


⋅ V(𝑛) + 𝑐) ,

V(𝑛+1) ∼ sigm (𝑊 ⋅ ℎ

(𝑛)
+ 𝑏) ,

(5)

where ℎ(𝑛) refers to the set of all hidden units at the 𝑛th step
of the Markov chain. What it means is that, for example,
ℎ

(𝑛)

𝑖
is randomly chosen to be 1 (versus 0) with probability

sigm(𝑊
𝑖
V(𝑛)+𝑐

𝑖
), and similarly V(𝑛+1)

𝑗
is randomly chosen to be

1 (versus 0) with probability sigm(𝑊
𝑗
ℎ

(𝑛)
+ 𝑏
𝑗
) [15].This can

be illustrated graphically in Figure 2. Contrastive divergence
does not wait for the chain to converge. Samples are obtained
only after k-steps of Gibbs sampling. In practice, 𝑘 = 1 has
been shown to work surprisingly well [15].

3.4. ElGamal Scheme. In our privacy-preserving scheme,
we use ElGamal [19], which is a typical public encryption
method, as our cryptograph tool. Reference [20] has shown
that the ElGamal encryption scheme is semantically secure
[21] under a standard cryptographic assumption. In [12], the
authors develop an elegant secure computing sigmoid func-
tion method and a secure computing product of two integer
algorithms based on ElGamal’s homomorphic property and
probabilistic property.Herewe give a brief reviewof these two
algorithms. As shown in Algorithm 1, first Party 𝐴 computes
that 𝑦(𝑥

1
+ 𝑖) − 𝑅, and 𝑖 is all the possible input of Party 𝐵.

Specifically, 𝑦 is the sigmoid function. Similarly, as shown in
Algorithm 2, Party 𝐴 holds𝑀 and Party 𝐵 holds𝑁. Party 𝐴
computes 𝑀 × 𝑖 for all possible inputs of Party 𝐵 and then
sends all encrypted messages to Party 𝐵. Then, Party 𝐴 and
Party 𝐵 can obtain the secret share of𝑀×𝑁 [12].
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Figure 2: Gibbs sampling.

4. Privacy-Preserving Restricted
Boltzmann Machine

4.1. Overview and Algorithm of Our Privacy-Preserving
Restricted BoltzmannMachine. In order to use cryptographic
tools in our privacy-preserving RBM, we use probability as
the value of the hidden unit and visible unit. That means that
when we are undertaking the Gibbs sampling process, we use
the probability instead of {0, 1} as the value of the hidden
unit and visible unit. Therefore, we can use the ElGamal
scheme to encrypt the probability after rounding the decimal.
However, there will be some accuracy loss when we use
this approximation. We will evaluate this accuracy loss in
Section 5.

In our privacy-preserving RBM training algorithm, we
assume the data are vertically partitioned. That means that
each party owns some features of the dataset. Our privacy-
preserving RBM is the first work on training restricted
Boltzmann machine over a vertically partitioned dataset. We
will look in detail at our training algorithm.

For each training iteration, two parties,𝐴 and 𝐵, own the
inputs V0

𝐴
= (V0
1
, V0
2
, . . . , V0

𝑚𝐴
) and V0

𝐵
= V
𝑚𝐴+1

, . . . , V
𝑚𝐴+𝑚𝐵

separately. The main idea of our privacy-preserving RBM
is that when training our model, we use the cryptograph
method (Algorithms 1 and 2) [12] to secure each step without
revealing the original data to each other’s party.

First, we let each party sum up their visible data of each
sample.Then Party𝐴 computes sigmoid(∑

𝑘≤𝑚𝐴
(𝑤
𝑗𝑘
V0
𝑘
+𝑐
𝑘
)+

𝑖)−𝑅 for all possible 𝑖, where𝑅 is a randomnumber generated
by Party𝐴.ThenParty𝐴 rounds all these results to the integer
and encrypts them. Then Party 𝐴 sends the cipher message
to Party 𝐵 in the increasing order of 𝑖. Then Party 𝐵 picks
𝑖, which is their sum-up value, rerandomizes it, and sends
it to Party 𝐴, who partially decrypts this message and sends
it back to Party 𝐵, who decrypts it and gets the value of
sigmoid(∑

𝑘≤𝑚𝐴
(𝑤
𝑗𝑘
V0
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𝑅. Specifically, ℎ0
𝑗1

is 𝑅 and ℎ0
𝑗2
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(𝑤
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V0
𝑘
+ 𝑐
𝑘
)) − 𝑅 as shown in the Privacy-

Preserving Distributed Algorithm for RBM. Then, using
the same method we can perform the rest of the privacy-
preserving Gibbs sampling process.
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Initialize
Step 1.

Party 𝐴 first generates a random number 𝑅 and computes 𝑦(𝑥
1
+ 𝑖) − 𝑅 for each 𝑖, 𝑖 is the possible inputs of Party 𝐵.

We define𝑚
𝑖
= 𝑦(𝑥

1
+ 𝑖) − 𝑅,𝑚

𝑖
is the plain text. Party 𝐴 encrypts each𝑚

𝑖
using the ElGamal scheme and gets 𝐸(𝑚

𝑖
, 𝑟
𝑖
),

where each 𝑟
𝑖
is a new random number. Party 𝐴 sends each 𝐸(𝑚

𝑖
, 𝑟
𝑖
) in the increasing order of 𝑖.

Step 2.
Party 𝐵 picks 𝐸(𝑚

𝑥2
, 𝑟
𝑥2
), rerandomizes it and sends 𝐸(𝑚

𝑥2
, 𝑟


) back to Party 𝐴,

where 𝑟 = 𝑟
𝑥2
+ 𝑠, and 𝑠 is only known to Party 𝐵.

Step 3.
Party 𝐴 partially decrypts 𝐸(𝑚

𝑥2
, 𝑟


) and sends the partially decrypted message to Party 𝐵.

Step 4.
Party 𝐵 finally decrypts the message (by doing partial decryption on the already partially decrypted message)
to get𝑚

𝑥2
= 𝑦(𝑥

1
+ 𝑥
2
) − 𝑅. Note that 𝑅 is only known to Party 𝐴 and𝑚

𝑥2
is only known to Party 𝐵.

Furthermore,𝑚
𝑥2
+ 𝑅 = 𝑦(𝑥

1
+ 𝑥
2
) = 𝑓(𝑥).

Algorithm 1: Securely computing the sigmoid function [12].

Initialize
Step 1.

Party 𝐴 first generates a random number 𝑅 and computes𝑀 ⋅ 𝑖 − 𝑅 for each 𝑖, 𝑖 is the possible input of Party 𝐵.
Then define𝑚

𝑖
= 𝑀 ⋅ 𝑖 − 𝑅,𝑚

𝑖
is the plain text. Then Party 𝐴 encrypts each𝑚

𝑖

using ElGamal scheme and gets 𝐸(𝑚
𝑖
, 𝑟
𝑖
), where each 𝑟

𝑖
is a new random number.

After that, Party 𝐴 sends each 𝐸(𝑚
𝑖
, 𝑟
𝑖
) to Party 𝐵 in the increasing order of 𝑖.

Step 2.
Party 𝐵 picks 𝐸(𝑚

𝑁
, 𝑟
𝑁
), rerandomizes it, and sends 𝐸(𝑚

𝑁
, 𝑟


)

back to Party 𝐴, where 𝑟 = 𝑟
𝑁
+ 𝑠, and 𝑠 is only known to Party 𝐵.

Step 3.
Party 𝐴 partially decrypts 𝐸(𝑚

𝑁
, 𝑟


) and sends the partially decrypted message to Party 𝐵.

Step 4.
Party 𝐵 finally decrypts the message (by doing partial decryption on the already partially decrypted message)
to get𝑚

𝑁
= 𝑀 ⋅ 𝑁 − 𝑅.

Note that 𝑅 is only known to Party 𝐴 and𝑚
𝑁
is only known to Party 𝐵. Furthermore,𝑚

𝑁
+ 𝑅 = 𝑀 ⋅ 𝑁.

Algorithm 2: Securely computing the product of two integers [12].

For the second updating weight part, we use Algorithm 2
[12] to securely compute the products V0ℎ0 and V1ℎ1 sep-
arately. Specifically, ℎ0 = ℎ

0

1
+ ℎ

0

2
, V1 = V1

1
+ V1
2
, and

ℎ

1
= ℎ

1

1
+ ℎ

1

2
, where the number on the top indicates the

Gibbs step and the number on the bottom indicates the
party the data belongs to. So we can get V0ℎ0 − V1ℎ1 =

V0(ℎ0
1
+ ℎ

0

2
) − (V1

1
+ V1
2
)(ℎ

1

1
+ ℎ

1

2
). Regardless of which party

V0 belongs to, we can get the same result. Furthermore, we
get V0ℎ0 − V1ℎ1 = V0ℎ0

1
+ V0ℎ0
2
− V1
1
ℎ

1

1
− V1
1
ℎ

1

2
− V1
2
ℎ

1

1
− V1
2
ℎ

1

2
.

Therefore, we use Algorithm 2 to securely compute these
products. As one example, V0

1
ℎ

0

2
indicates that V0

1
belongs to

Party 𝐴, which computes all V0
1
× 𝑖 − 𝑅

 for all 𝑖, rounds all
these result to the integer and encrypts them, and then sends
the cipher message to Party 𝐵 in the increasing order of 𝑖.
Then Party 𝐵 picks 𝑖, which is their ℎ0

2
value, rerandomizes it,

and sends it to Party 𝐴, who partially decrypts this message
and sends it back to Party 𝐵, who decrypts it and gets the
value of V0

1
ℎ

0

2
− 𝑅

. Specifically, 𝑟0
11

is 𝑅 and 𝑟0
12
= V0
1
ℎ

0

2
− 𝑅



as shown in the Privacy-Preserving Distributed Algorithm
for RBM (Algorithm 3). Then, using the same method, we

can perform the rest of the privacy-preserving product
process.

Lastly, if Party 𝐴 owns V0, it can compute V0
1
ℎ

0

1
+ 𝑟

0

11
−

V1
1
ℎ

1

1
− 𝑟

1

11
− 𝑟

1

21
, and Party 𝐵 computes 𝑟0

12
− V1
2
ℎ

1

2
− 𝑟

1

12
− 𝑟

1

22
.

Then Party 𝐵 sends this to Party 𝐴, and Party 𝐴 sums up
these two to get the final value of V0ℎ0 − V1ℎ1. Then Party 𝐴
can perform gradient descent to update the weight. Using the
same method, we can update the bias of visible unit 𝑏 and the
bias of hidden unit 𝑐.

A privacy-preserving testing algorithm can be easily
derived from the Gibbs sampling part of the privacy-
preserving training algorithm.

4.2. Analysis of Algorithm Complexity and Accuracy Loss.
The running time of one iteration of training consists of two
parts, the Gibbs sampling and updating the weights. First, we
analyze the execution time of the Gibbs sampling process.
According to [12], Algorithm 1 takes𝑇 = (2×Domain+1)𝐸+
2𝐷, whereDomain is the total number of 𝑖 in Algorithm 1 and
E andD are the costs of encryption anddecryption.Therefore,
in theGibbs sampling process, we assume there are 𝑆 samples,
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Initialize
all weights (𝑊, 𝑏, 𝑐) to small random numbers and make them known to both parties.
Repeat
for all training sample {V0

𝐴
, V0
𝐵
} do

\\This part mainly uses (5). Samples are obtained after only one step of Gibbs sampling
because one-step Gibbs has been shown to work surprisingly well [22].
Step 1. Gibbs Sampling
{

For each hidden layer node ℎ0
𝑗
, Party 𝐴 computes ∑

𝑘≤𝑚𝐴
(𝑤
𝑗𝑘
V0
𝑘
+ 𝑐
𝑘
), and Party 𝐵 computes ∑

𝑚𝐴≤𝑘≤𝑚𝐴+𝑚𝐵
(𝑤
𝑗𝑘
V0
𝑘
+ 𝑐
𝑘
)

Using Algorithm 1, Parties 𝐴 and 𝐵 jointly compute the sigmoid function for ℎ0
𝑗
, obtaining the random shares ℎ0

𝑗1
and ℎ0

𝑗2
,

respectively, s.t. ℎ0
𝑗1
+ ℎ

0

𝑗2
= 𝑓 (∑

𝑘
𝑤
𝑗
V0
𝑘
+ 𝑐
𝑘
)

For each visible layer node V1
𝑖
, after that Party 𝐴 computes ∑

𝑘≤𝑚𝑛
(𝑤
𝑖𝑘
ℎ

0

1𝑘
+ 𝑏
𝑘
), and Party 𝐵 computes ∑

𝑘≤𝑚𝑛
(𝑤
𝑖𝑘
ℎ

0

1𝑘
+ 𝑏
𝑘
)

then again using Algorithm 1, Parties 𝐴 and 𝐵 jointly compute the sigmoid function for V1
𝑖
,

obtaining the random shares V1
𝑖1
and V1

𝑖2
, respectively, s.t. V1

𝑖1
+ V1
𝑖2
= 𝑓 (∑

𝑘
𝑤
𝑖
ℎ

0

𝑘
+ 𝑏
𝑘
)

For each hidden layer node ℎ1
𝑗
, Party 𝐴 computes ∑

𝑘≤𝑚𝐴
(𝑤V1
𝑘
+ 𝑐), and Party 𝐵 computes ∑

𝑚𝐴≤𝑘≤𝑚𝐴+𝑚𝐵
(𝑤V1
𝑘
+ 𝑐)

Using Algorithm 1, Parties 𝐴 and 𝐵 jointly compute the sigmoid function for ℎ1,
obtaining the random shares ℎ1

1
and ℎ1

2
, respectively, s.t. ℎ1

1
+ ℎ

1

2
= 𝑓 (∑

𝑘
𝑤V1
𝑘
+ 𝑐)

}

return V0
1
, V0
2
and ℎ1

1
, ℎ

1

2
to two parties.

\\This part mainly uses (4).
Step 2. Update Weights
{

Parties 𝐴 and 𝐵 compute V0
1
ℎ

0

1
, V1
1
ℎ

1

1
, V0
2
ℎ

0

2
and V1

2
ℎ

1

2
respectively.

Parties 𝐴 and 𝐵 apply Algorithm 2 to securely compute the product V0
1
ℎ

0

2
,

obtaining random shares 𝑟0
11
and 𝑟0
12
, respectively,

s.t. 𝑟0
11
+ 𝑟

0

12
= V0
1
ℎ

0

2
. Similarly, they compute the random partitions of V0

2
ℎ

0

1
, 𝑟0
21
, and 𝑟0

22
, s.t. 𝑟0

21
+ 𝑟

0

22
= V0
2
ℎ

0

1
.

Parties 𝐴 and 𝐵 apply Algorithm 2 to securely compute the product V1
1
ℎ

1

2
,

obtaining random shares 𝑟1
11
and 𝑟1
12
, respectively,

s.t. 𝑟1
11
+ 𝑟

1

12
= V1
1
ℎ

1

2
. Similarly, they compute the random partitions of V1

2
ℎ

1

1
, 𝑟1
21
, and 𝑟1

22
, s.t. 𝑟1

21
+ 𝑟

1

22
= V1
2
ℎ

1

1
.

If Party 𝐴 owns the visible unit, which is V0
1
, then Party 𝐴 computes V0

1
ℎ

0

1
+ 𝑟

0

11
− V1
1
ℎ

1

1
− 𝑟

1

11
− 𝑟

1

21
,

and Party 𝐵 computes 𝑟0
12
− V1
2
ℎ

1

2
− 𝑟

1

12
− 𝑟

1

22
. Then Party 𝐵 sends this value to Party 𝐴,

who can add these two numbers to get the log-likelihood gradients
−(𝜕 log𝑝(V)/𝜕𝑊

𝑖𝑗
) for an RBM.

If Party 𝐵 owns the visible unit, then the same method can be used to calculate the value.
Then using these log-likelihood gradients Party 𝐴 can update the parameter𝑊 of this RBM.

𝑤new = 𝑤 − 𝜂(𝜕 log𝑝(V)/𝜕𝑊𝑖𝑗)
}

return new𝑊 to two parties
Using the same method, we can update parameters 𝑏 and 𝑐
end for
Until (termination condition)

Algorithm 3: Privacy-Preserving Distributed Algorithm for RBM.

𝐻 hidden units, and 𝑉 visible units. We can get the time cost
as𝐻×𝑇+𝑉×𝑇+𝐻×𝑇 = (2𝐻+𝑉)[(2×Domain+1)𝐸+2𝐷].

In the updating weights process, Algorithm 2 also takes
𝑇 = (2×Domain+1)𝐸+2𝐷.Therefore, the total time used to
encrypt and decrypt is 2 ×𝐻 ×𝑉 × 𝑇 = 2𝐻𝑉[(2 ×Domain +
1)𝐸 + 2𝐷].

Combining the time for the two stages, we obtain the
running time of one round of privacy-preserving RBM
learning as (2𝐻+𝑉+2𝐻𝑉)𝑇 = (2𝐻+𝑉+2𝐻𝑉) [(2×Domain+
1)𝐸 + 2𝐷].

In order to provide the preservation of privacy, we
introduced two approximations in our algorithm. First, we
replaced the binary value by the probability. Second, we
mapped the real numbers to fixed-point representations to

enable the cryptographic operations in Algorithms 1 and 2
[12]. This is necessary in that intermediate results, such as
the values of visible and hidden units, are represented as
real numbers in normal RBM learning, but cryptographic
operations are on discrete finite fields. We will empirically
evaluate the impact of these two sources of approximation on
the accuracy loss of our RBM learning algorithm in Section 6.
Below we give a brief theoretical analysis of the accuracy
loss caused by the fixed-point representations. We assume
that the error ratio bound which is caused by truncating the
real number is 𝜖. In the Gibbs sampling process, Algorithm 1
is applied three times; therefore, the error ratio bound is
(1 + 𝜖)

3
− 1. In updating the weight process, Algorithm 2 is

one for each dataset. The error ratio bound for𝑊 is 𝜖.



6 Computational and Mathematical Methods in Medicine

4.3. Analysis of Algorithm’s Security. In our distributed RBM
training algorithm, except the computations that can be done
by a party itself, all other computations that have to be
done jointly by the two parties protect their input data with
semantically secure encryptions. In addition, all intermediate
computing results are also protected using the secret sharing
scheme. In the semihonest model, both parties follow the
algorithm without any deviation; our algorithm guarantees
that the additional knowledge gained from the execution of
our algorithm by a party is only the final training result.
Therefore, our algorithm protects both parties’ privacy in this
model.

5. Experiments

In this section, we explain the experimental process for
measuring the accuracy loss of our modified algorithms. We
compare the testing error rates to non-privacy-preserving
cases. In the second set, we distinguish two types of approx-
imations introduced by our algorithms: a conversion of
real numbers to fixed-point numbers when applying cryp-
tographic algorithms and an analysis of how they affect the
accuracy of the RBM.

5.1. Setup. The algorithms were implemented in MATLAB.
The experiments were executed on aWindows computer with
a core i5 2.3 GHz Intel processor and 3Gb of memory. The
testing datasets were MINST database of handwritten digits.
We chose the number of hidden nodes based on the number
of attributes. Weights were initialized as uniformly random
values in the range of [−0.1, 0.1]. Feature values in each dataset
were normalized between 0 and 1.

5.2. Effects of Two Types of Approximation on Accuracy. In
this section, we evaluate the loss of accuracy of our modified
trainingmodel. In ourmodel, there exist two approximations.
The first one is that we use probability instead of binary
value as our Gibbs sampling result. The second is that we
truncate the probability to finite digits so that we can shift
the decimal point and then use this number for encryption.
We then distinguish and evaluate the effects of these two
approximation types without cryptographic operations (we
call it approximation test).

First, we compare the loss of accuracy caused by using
probability instead of binary value on the MNIST dataset.
We chose 5,000 samples as training data and 1,000 as testing
data. We then set the 100 hidden units and perform the
experiments by varying the number of epochs and evaluating
the loss of accuracy on different training epochs. In Figure 3,
we can see that the accuracy caused by this approximation
is less than 1%. Since encryption and decryption do not
influence the accuracy of our model, this is the accurate
amount of loss of our privacy-preserving training method.

Second, we compare the accuracy loss caused by truncat-
ing the probability to finite digits. Specifically, we truncate the
number to two digits.We set the parameter as the same as the
first experiment. From the results we can see that the error
rate is still close to the algorithm without approximation.

20 40 60 80 100 120 140 160
0

5

10

15

Nonapproximation
Only probability
Probability and truncation

Figure 3: The error rates on training epochs.

6. Conclusion and Future Work

In this paper, we have presented a privacy-preserving algo-
rithm for RBM. The algorithm guarantees privacy in a stan-
dard cryptographic model, the semihonest model. Although
approximations are introduced in the algorithm, the experi-
ments on real-world data show that the amount of accuracy
loss is reasonable.

Using our techniques, it should not be difficult to develop
the privacy-preserving algorithms for RBM learning with
three or more participants. In this paper, we have proposed
only the RBM trainingmethod. A future research topic would
be to apply it in a practical implementation and to extend our
work to deep networks training.
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