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ABSTRACT Protein folding is a relatively fast process
considering the astronomical number of conformations in
which a protein could find itself. Within the framework of a
lattice model, we show that one can design rapidly folding
sequences by assigning the strongest attractive couplings to
the contacts present in a target native state. Our protein
design can be extended to situations with both attractive and
repulsive contacts. Frustration is minimized by ensuring that
all the native contacts are again strongly attractive. Strik-
ingly, this ensures the inevitability of folding and accelerates
the folding process by an order ofmagnitude. The evolutionary
implications of our findings are discussed.

Understanding the mechanism of protein folding is a funda-
mental problem in molecular biology (1). Key issues include
the prediction of three-dimensional protein structure from
one-dimensional sequence information and the inverse prob-
lem of designing sequences that fold into a desired three-
dimensional structure. One of the puzzles of the dynamics of
protein folding, called the Levinthal paradox (2), is the rapidity
with which a polypeptide chain folds into the native state even
though an exhaustive search is ruled out, due to the enormous
number of all possible conformations. More generally, the
dynamics of protein folding is one of a class of optimization
problems involving the minimization of a fitness function
characterized by complex structure and many local minima
(for example, see refs. 3-8).

It is well known that lattice models, in spite of their
simplicity, capture many of the features of protein folding
(9-12). Sali, Shakhnovich, and Karplus (SSK) (13, 14) have
carried out extensive studies of a simple model of a 27-bead
self-avoiding chain on a simple cubic lattice to determine what
the thermodynamic and kinetic requirements are to obtain
rapid folding to the global energy minimum. They find that as
long as the native state is a pronounced global minimum on the
potential surface and the temperature is high enough to
overcome the barriers between local minima, the ground state
is reached within 50 million time steps in a Monte Carlo (MC)
simulation-the protein is said to have folded. The SSK study
(13, 14) used overall attractive contact energies (denoted by
Bij) similar to those of real proteins as described by Miyazawa
and Jernigan (15) that were randomly assigned to the mono-
mers of the self-avoiding chain and captured the hydrophobic
effect in globular proteins. The attractive interactions lead to
compact conformations of the polypeptide chain being favored
and allow for a complete enumeration of the low-energy
portion of the conformation space.
A protein contains 20-25% of acidic and basic groups (16)

that are ionized or protonated under physiological conditions.
The repulsion between like charges leads to the interactions
becoming frustrated. [Iori et al. (17) have shown that linear
heteropolymers with quenched frustrated interactions have a

unique folded phase.] In addition, frustration in heteropoly-
mers can arise from geometrical effects of excluded volume or
an inability to satisfy all the hydrophobic and hydrophilic
interactions simultaneously. Wolynes and collaborators (8,
18-21) have shown that the principle of minimum frustration
distinguishes between natural proteins and random hetero-
polymers-in proteins, side chains contribute coherently to
supersecondary structures and there is a harmonious relation
between secondary structures and tertiary folds (9). This
principle leads naturally to a large stability gap that is a
measure of the energy gap between the states with a structure
similar to that of the native state and the lowest energy state
among those that bear little structural resemblance to the
native structure. In simple situations, the stability gap may be
correlated with the energy gap (13, 14) between the native and
the first excited state. Goldstein et al. (20, 21) have used the
maximization of the stability gap of proteins of known se-
quences and structures as a means of determining the optimal
interactions between amino acids and have successfully pre-
dicted folding structures for new sequences.
A key issue is whether this propensity of proteins to fold

rapidly is due to the evolutionary selection of sequences that
tend to have larger stability gaps than random sequences and
how one may design such proteins. We will demonstrate that
an idea similar to the notion of strong disorder in spin glasses
(22, 23) can indeed be used to design protein sequences that
are strongly folding. When the exchange interactions in an
Ising spin glass are widely separated, frustration, or the
inability of a spin to satisfy all the exchange interactions of its
neighbors simultaneously, while present, is irrelevant and the
nontrivial ground state of the spin glass can be obtained
trivially. Operationally, this can be achieved by rank-ordering
the exchange interactions in decreasing magnitude and arrang-
ing the mutual spin orientations to satisfy as many of these as
possible in order of decreasing strength. We will use this
rank-ordering idea in our protein design-however, we will not
require the monomer interactions to be widely separated. We
first select a compact conformation as the target structure of
the folded protein and identify the contacts-two monomers
i and j are in contact with a contact energy Bij if they are not
successive in sequence and yet next to each other. We work
with the same distribution ofBy values as SSK (13, 14). There
are 28 contacts for compact self-avoiding chain conformations.
Our 27-monomer chain on a simple cubic lattice has 14
odd-numbered monomers and 13 even-numbered monomers.
The two-sublattice structure of the lattice ensures that odd-
numbered monomers have only even-numbered monomers as
neighbors and vice versa. Thus the total number of possible
contacts is 156 obtained by noting that each of the 13 even-
numbered monomers can possibly have at most 12 contacts
(monomers that are successive in sequence are not considered
contacts). We rank order the 156 Bij values in decreasing order
(by magnitude) and assign the first 28 values randomly to the

Abbreviations: SSK, Sali, Shakhnovich, and Karplus; MC, Monte
Carlo.
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Table 1. Summary of the results

Sequence Eo Foldicity CC Gap Minmc Maxmc T(X = 0.8)

Purely attractive
1 -95.606 1.0 0.615 7.385 0.66 21.81 2.77
2 -90.282 0.9 0.576 2.623 1.00 26.70 2.30
3 -92.613 0.8 0.610 5.267 0.14 5.38 2.83
4 -93.614 1.0 0.622 6.282 0.10 6.23 2.92
5 -93.220 1.0 0.598 8.058 0.54 32.89 2.66
6 -100.843 0.9 0.638 6.859 0.59 23.73 3.25
7 -91.879 0.9 0.574 4.318 0.57 8.57 2.50
8 -96.076 1.0 0.595 6.043 0.46 13.58 2.82
9 -91.702 1.0 0.587 3.794 0.07 4.01 2.53
10 -98.524 1.0 0.575 8.983 0.05 3.01 3.39

Partially repulsive
1 -76.686 1.0 0.597 11.013 0.0058 0.401 6.37
2 -81.672 1.0 0.592 18.235 0.0299 0.731 6.12
3 -82.069 1.0 0.590 15.338 0.0818 0.162 5.78
4 -89.214 1.0 0.590 13.653 0.0746 1.228 6.53
5 -87.411 1.0 0.605 8.686 0.0422 1.126 6.47
6 -84.543 1.0 0.627 13.165 0.0292 6.262 6.19
7 -82.726 1.0 0.596 11.501 0.0454 0.890 6.90
8 -79.187 1.0 0.599 14.288 0.0110 0.086 6.47
9 -79.289 1.0 0.586 15.489 0.0304 0.168 6.04

10 -84.221 1.0 0.580 16.136 0.0263 0.292 5.73

MC simulations were carried out as described in refs. 13 and 14. The MC procedure starts with a random self-avoiding conformation. Local MC
moves of one or two successive monomers that maintain bond length and the self avoidance of the chain are carried out with the Metropolis
algorithm. For each sequence, 156 random Bij values with a Gaussian distribution of mean -2 and width 1 were generated. In the partially repulsive
case, half of these numbers were reversed in sign. Eo denotes the native state energy. A sequence is defined to have folded if it reaches the native
state within 50 million MC steps. The foldicity of a sequence is defined as the fraction of 10 MC runs starting from different initial configurations
that succeeds in folding. CC denotes the Pearson correlation coefficient (24) between the interaction matrix and the native contact map. The gap
denotes the energy difference between the native state and the first excited state among the compact self-avoiding conformations. Minmc and
Maxmc are in units of 106 MC steps and denote the minimum and maximum time required to fold the sequence from 10 starting conformations.
(Only the cases in which folding took place within 50 million MC steps have been considered.) The order parameter (7) is X(T) = 1 - Yp2, where
pi = exp(-Ei/kBT)/Z, Z = Xexp(-Ei/kBT), Ei is the energy, and only maximally compact self-avoiding conformations are considered. X(7) is a
measure of the degeneracy of the heteropolymer chain and may be used to characterize the transition between a state with many equivalent
conformations to a unique folded state. We find a small value ofX over a wide range of low temperatures indicating the relative stability of the
native state. The last entry in the table denotes the temperature at whichX = 0.8. The value of T(X = 0.8) is significantly higher for the partially
repulsive case underscoring the relative stability of the native state among the compact conformations. The MC simulations were carried out at
a temperature of 1.3, which is the mean value of T(X = 0.8) for the folding sequences in the SSK study (13, 14). It is important to note that, in
our studies, this temperature is low enough that the native state is more stable than the denatured states (26, 27). Considering only the maximally
compact conformations, the probability that the system is in the native state is equal to 1/2 at temperatures between 2.1 and 6.7 for the cases studied.
The energy gaps between the native state and the first excited state among the maximally compact conformations are larger than in the SSK study
(13, 14) and are between 2 and 14 times the temperature of the MC runs. We also carried out several runs at a temperature of 1.0 and found similar
behavior. The temperatures are measured in units of the width of the Bij distribution.

28 contacts and the remaining 128 values randomly to the
noncontacts. This ensures that the target structure is the

ground state and also leads naturally to a large gap between the
ground state and the first excited state. Our scheme results in
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FIG. 1. Energy spectra of the
self-avoiding maximally compact
conformations for 10 sequences for
the purely attractive case (A) and
for the partially repulsive case (B).
The 400 lowest energies are shown.
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an increase of the correlation between the interaction matrix
and the native contact map-the Pearson correlation coeffi-
cient (24) is around 0.6 compared with a value around 0.35 for
the random sequences of SSK (13, 14) and 1 in an earlier study
of Go and Abe (25) in which monomers that are in contact in
the native state interact attractively while other monomers do
not interact at all. Our MC folding simulations [identical to
that carried out by SSK (13, 14)] show that the mean foldicity
of the designed proteins is 0.95 compared to the 0.13 obtained
by SSK (13, 14) for randomly chosen sequences. Thus our
choice of maximizing the compatibility of the interacting
monomers effectively ensures the stability of the native state
over a range of temperatures and allows for kinetic accessi-
bility of this state.
The situation when some of the Bij values are repulsive

cannot be investigated within the framework of the original
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FIG. 2. Typical MC trajectory at T = 1.3 for the purely attractive
case (sequence 8) (A) and the partially repulsive case (sequence 1) (B).
The energy, E, is measured in units of T Nc is the number of contacts,
Qo denotes the fraction of contacts in common with the native state,
and Qf is the number of repulsive contacts divided by 28. For a
maximally compact conformation, Nc = 28.

SSK study (13, 14), since the native state for randomly chosen
contact energies of either sign (repulsive or attractive) is not
necessarily nor likely to be maximally compact. Since an
exhaustive search of only the maximally compact conforma-
tions is feasible, it is not possible to identify the ground state
of the chain. Our simple idea of protein design allows us to
assign the strongest attractive interactions to the native con-
tacts thus ensuring that the ground state is maximally compact
and known. This scheme is consistent with both maximal
compatibility and minimal frustration (8, 18-21). To study this
case, we have carried out another set ofMCfolding simulations
in which, for simplicity, the interactions are randomly attrac-
tive or repulsive with equal probabilities. Strikingly, now the
measured foldicity is 1 and the folding is much faster than in
the purely attractive case (Table 1).

Fig. 1 demonstrates that the energy gaps between the native
and first excited state are indeed large. (Note that while the
ground state is exact, the first excited state is obtained just
within the set of maximally compact conformations. The true
first excited state in the partially repulsive case may not be
maximally compact.) The relative stability of the native state
among the maximally compact configurations is significantly
higher for the partially repulsive case. Typical MC trajectories
are shown for both the purely attractive and partially repulsive
cases (Fig. 2). In both cases, the dynamics are similar and entail
the collapse of the random coil state to a more compact form
(due to the attractive interactions). The second stage involves
an evolution in the manifold of the semicompact globular state
until a rapid folding into the native state occurs. We observed
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FIG. 3. Plot of (E - Eo) vs. Qo for the trajectories of Fig. 2. (A) The
purely attractive case. (B) The partially repulsive case. The instanta-
neous values are plotted every 1000 time steps inA and every 44 time
steps in B so that there are 9162 points in each case (there is a

significant overlap of the points). The scatter plots demonstrate the
dramatic reduction in the phase space explored on allowing for
repulsive interactions.
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significant variations in the duration of the second stage (8,
28). The incorporation of repulsion hastens the process of
folding by about an order of magnitude (Table 1) due to a
significant reduction in the phase space that the chain needs to
explore (Fig. 3)-an energetic funnel to the native state has
been created. This speeding up is consistent with the increase
in the folding transition temperature (8), which is a measure of
the thermodynamic stability of the native state, for the partially
repulsive case. The number of repulsive contacts remains small
(typically c3) during most of the MC run (Fig. 2).
Our results may have implications for real proteins. They

suggest that sequences of proteins may have evolved in such a
way as to minimize the frustration and maximize the compat-
ibility of its elements and, thus, have a large propensity to fold.
This may also apply to the structure of RNA and other
self-assembly processes. It is interesting to note that a sequence
will fold to its unique native state when the most favorable
interactions are alloted to the native contacts independent of
the precise nature of the assignment (in our model, there are
28! ways of doing this). This suggests that nonhomologous
sequences can have the same structure (29-32). Our results
raise the possibility that changes in activity and stability of a
protein take place through convergent evolution whereas the
acquisition of a specific conformation by nonhomologous
proteins may have a divergent evolutionary origin.
Our results have implications for protein design and engi-

neering. Extensive experimental studies have shown that it is
possible to successfully design proteins that fold into approx-
imately correct structures (33). While protein design is gen-
erally carried out at the level of monomers to obtain the
desired conformation of a fragment of protein, a few studies
have focused on tuning the interactions (34) or generating
alternative interactions (35, 36) at specific parts of proteins.
The present study is an example of the latter approach and
involves the engineering of interactions to design sequences.
Further, to achieve the goal of designing unique native struc-
tures, the idea of negative design to block certain structures of
protein segments is rapidly gaining importance (37). For
example, the protein helix has been designed to block un-
wanted alternatives of reverse topology of helix bundles
whereas betabillin excludes edge to edge aggregation of
(3-sheets (37). Our studies of the reduction of phase space
during the folding process of the partially repulsive hetero-
polymer chains is an example of the general concept of
negative design.

In summary, we have worked out the condition for maxi-
mum foldicity of polypeptide chains based on a principle of
maximum compatibility. We have found that the process of
protein folding is speeded up significantly by the presence of
repulsive groups, which suggests a solution to the Levinthal
paradox. While our studies have been carried out in a well-
characterized lattice model, the governing principle ought to
be valid more generally and indeed in real proteins. A crucial
aspect of our work is that the design of the protein as well as
tests of the foldicity have been carried out with the same
interaction potentials. [Our scheme is a simpler version than
that used by Shakhnovich (38) in a different context.] Our
studies have implications in devising algorithms for designing
proteins and for prediction of their structure from the se-
quence information.
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