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Next generation sequencing holds great promise for applications of phylogeography, landscape genetics, and population genomics
in wild populations of nonmodel species, but the robustness of inferences hinges on careful experimental design and effective
bioinformatic removal of predictable artifacts. Addressing this issue, we use published genomes from a tunicate, stickleback,
and soybean to illustrate the potential for bioinformatic artifacts and introduce a protocol to minimize two sources of error
expected from similarity-based de-novo clustering of stacked reads: the splitting of alleles into different clusters, which creates
false homozygosity, and the grouping of paralogs into the same cluster, which creates false heterozygosity. We present an empirical
application focused on Ciona savignyi, a tunicate with very high SNP heterozygosity (∼0.05), because high diversity challenges the
computational efficiency of most existing nonmodel pipelines while also potentially exacerbating paralog artifacts. The simulated
and empirical data illustrate the advantages of using higher sequence difference clustering thresholds than is typical anddemonstrate
the utility of our protocol for efficiently identifying an optimum threshold from data without prior knowledge of heterozygosity.
The empirical Ciona savignyi data also highlight null alleles as a potentially large source of false homozygosity in restriction-based
reduced representation genomic data.

1. Introduction

As population genomic applications of next generation
sequencing continue to expand beyond model organisms
to nonmodel species and wild populations, reduced rep-
resentation libraries (RRL) have been used to subsample
genomes in a repeatable manner. Here, “nonmodel” refers
to species with few genomic resources and in particular the
absence of a reference genome. Early efforts, especially within
plants, focused on RRL methods that could avoid highly
repetitive genomic fractions. Two generalizable approaches
to RRL construction have beenCot analysis to isolate the low-
copy fraction of a genome [1] and screening of restriction
enzymes for those that yield the desired fragment size range,
in some cases taking advantage of enzyme methyl sensitivity
to target certain genomic regions [2, 3]. Compared with Cot

analysis, restriction digestion is a rapid and easy method of
generating an RRL whether size selection is gel-based (e.g.,
RAD-tags, [4]) or a consequence of PCR and sequencing
biases (genotyping-by-sequencing or GBS [5]). When a
related genome sequence is available, in silico digests can help
determine the optimum restriction enzyme with respect to
fragment size distribution and avoid repetitive elements [6].
The simplicity of this restriction-based approach has made
it the method of choice for genomic sampling apart from
transcriptomes and hybridization-based sequence capture
[7], but with the expectation that some portion of the data
will be frommulticopy DNA sequences and will possibly bias
estimates of genetic diversity.

With nonmodel taxa, analysis of reduced representational
data must contend with a potentially large fraction of repet-
itive DNA without the quality control benefits of mapping

Hindawi Publishing Corporation
BioMed Research International
Volume 2014, Article ID 675158, 9 pages
http://dx.doi.org/10.1155/2014/675158

http://dx.doi.org/10.1155/2014/675158


2 BioMed Research International

to a reference genome. Also, the clustering or binning of
homologous sequences into allelic loci without the benefit
of a reference genome has the potential to create multiple
artifacts with different effects on inferred heterozygosity.
When the goal is to simply find a set of single nucleotide
polymorphisms to analyze spatially among population sam-
ples, stringent quality filtering can yield valuable data at
the cost of enormous data loss. In contrast, when the goal
is to identify individual candidate loci using genome scans
or association mapping, or to make inferences requiring
unbiased estimates of heterozygosity, results will be sensitive
to biases and artifacts introduced by library construction,
quality filtering, or allelic clustering methods. These latter
applications are where the full and exciting potential of
next generation sequence data hold the greatest promise to
transform the questions that can be empirically addressed in
natural populations, bymaking it possible to find and analyze
both neutral and potentially nonneutral genomic variation.
Therefore, our goal was to investigate the potential for large
biases from repetitive DNA and copy number variation and
explore novel de novo clustering methods that can minimize
heterozygosity biases.

In what follows, we focus on reduced representation
methods of genomic sampling such as RADseq and GBS.
These methods focus sequencing effort on loci (sometimes
referred to as “tags”) that are no larger than the sequence
read length from high-throughput platforms (currently 100–
150 bp read lengths). Usually in these protocols there is no
“assembly” of partially overlapping sequences into longer
contigs (e.g., [9]) but instead there is simple “stacking” or
clustering of similar-sequence reads [10]. Our focus here is
also on data from single individuals because many studies are
barcoding individuals within multiplexed population sam-
ples, allowing for bioinformatic quality control and analysis
at this informative organismal level when there is at least
moderate (5–10 reads per locus) average coverage.

When clustering reads without a reference genome, a
major biological factor affecting the potential for artifacts and
biased heterozygosity is sequence diversity among paralogs
versus alleles. First, the amount of repetitive DNA or large
scale genomic duplication in the genome being sequenced
is a potential concern, with high levels of recent duplication
increasing the chances of mistakenly clustering paralogous
sequences with alleles at a locus. However, typical mea-
sures of genome complexity and repetitive DNA content,
when known, are of uncertain relevance for predicting the
frequency of confounding paralogs at the specific scale
of sequence read comparisons (∼100 bp). Using high read
counts to filter out problematic clusters is an intuitive
approach to remove highly repetitive loci, but high stochastic
variation in read counts among single copy locimakes it prac-
tical to remove only the most egregious and obvious artifacts
with this type of filter. More recently a “ploidy informed”
filter has been proposed wherein clustering involves all high-
quality unique sequences but the resulting clusters with >2
distinct sequences per individual are removed from consider-
ation [11, 12]. Because false heterozygosity can still result from
clustering of two homozygous paralogous loci, particularly

in more homozygous populations, one of our goals was to
evaluate the effectiveness of the ploidy-based paralog filter.

Second, many natural populations have a wide range of
sequence differences among selectively neutral alleles, and
an even wider range must be considered to detect different
forms of selection. In many cases, especially in populations
with large effective population size and high heterozygosity or
recent genome duplication events, the distribution of allelic
sequence differences is likely to overlap with the distribution
of paralogous sequence differences (Figure 1(a)), increasing
the odds that paralogs will create false heterozygosity under
a wide range of de novo clustering parameters. It is not
possible to distinguish similarly divergent sequences from
this distribution overlap without a reference genome, so
either to be conservative or to be because of computational
constraints, many studies and analysis pipelines consider
only minimal allelic differences (1-2 bp per read; [10, 13]).
Low allowable sequence differences will tend to split real
alleles into separate clusters, or putative loci, creating false
homozygosity. Other studies have used a subset of the data
for computationally intensive de novo clustering allowing
higher sequence difference thresholds, and after discarding
clusters deemed to be artifact-prone used the concatenated
contigs as a reference formapping all sequence reads [11].This
latter procedure would benefit from an empirical method for
determining, from the data, a minimum sequence difference
threshold for clustering that eliminates false homozygosity.
The optimum clustering threshold will strike a balance by
minimizing false homozygosity, but avoiding higher thresh-
olds because they increase computational demands and have
greater potential for false heterozygous calls due to clustering
of paralogs. Therefore, our second goal was to develop
and assess a protocol for evaluating clustering thresholds
using short read data in single individuals in order to avoid
arbitrary thresholds and reduce both the amount of discarded
data and the homozygosity bias of resulting data.

2. Methods and Materials

2.1. Simulations

2.1.1. Genome Data. Genome assemblies were obtained
for three species with published genomes: (1) Gasteros-
teus aculeatus (stickleback) genome assembly gasAcu1.0
([14]; Broad Institute, http://www.broadinstitute.org/models/
stickleback), (2) Glycine max (soybean) genome assembly
Glyma1.1 ([8]; Joint Genome Institute, http://www.phyto-
zome.net/dataUsagePolicy.php?org=Org Gmax v1.1), and (3)
Ciona savignyi genome assembly version 2.1 ([15]; Broad
Institute, http://mendel.stanford.edu/sidowlab/ciona.html).

2.1.2. Genome Repetitiveness Evaluation. For each of the three
genome sequences we defined a confounding divergence
parameter (CDP) as the amount of divergence between paral-
ogous sequences that would mirror average allelic divergence
within the organism. For CDP in each species we used
integer values approximating their genomic SNP heterozy-
gosity: 1%, 2%, and 5% for stickleback, soybean, and Ciona,
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Figure 1: Pairwise divergence distribution for simulated allelic loci (green) and polyploidy duplicated loci (blue) in soybean (a), and pairwise
divergence distribution of stickleback (pink), soybean (green), andC. savignyi (orange) simulated alleles (b).The shaded region in (a) between
0.02 and 0.08 pairwise divergence represents the “confounding duplication” region in which alleles and paralogs are indistinguishable during
de novo assembly.The divergence of polyploidy duplicated paralogs in (a) is derived from [8]. Dashed vertical lines in (b) indicate distribution
means. Different ranges are used for the𝑋- and 𝑌-axis values in (a) and (b).

respectively [8, 15, 16]. Genome repetitiveness was estimated
for each of the three genomes with the corresponding CDP
value as follows: using the gem mappability component of
the GEM software library [17], each possible 100 bp fragment
in the genome (sliding window, single bp increments) was
assigned a value corresponding to the number of times that
fragment had a match in the same genome with a divergence
less than or equal to the CDP value for that genome. Single
copy loci were identified as the class of 100 bp fragments with
only one match.

2.1.3. Read Simulation. For the three representative taxa we
simulated the equivalent of paired-end Illumina GBS reads
from single diploid genomes. We selected the six-base pair
sequence GCAGCA as a digest pattern and performed in
silico digest of the three genome assemblies using custom
scripts. This GC-rich pattern was selected in order to pref-
erentially select gene-rich regions [18, 19] that are typically
targeted by the GBS protocol [5]. The sequence was selected
to represent a general sampling of these regions, and does not
correspond to any specific restriction enzyme. For Ciona the
version 2.1 assembly used was a merger of the best segments
from two haplome assemblies [15]. We removed any in silico
digested fragments with a length greater than 800 bp or less
than 200 bp, and read the first and last 100 bp of sequence
from the remaining fragments.

From this pool of haploid sequences, we simulated an
alternative allele for each locus in each species in a coalescent
framework. First, we sampled a coalescence time for the
two alleles from an exponential distribution with a rate of 1,

followed by sampling the number of differences between
the simulated alleles from a Poisson distribution with a rate
equal to the coalescence time scaled by the average allelic
divergence observed in the organism and the length of the
sequence. Second, we calculated a per-base pair probability
of mutation by dividing the number of differences sampled
from the Poisson distribution by the length of the sequence.
Finally, the 100 bp sequence (corresponding to a simulated
error-free Illumina read) was duplicated and each nucleotide
of the duplicate read was changed with probability equal
to the per-base pair probability of mutation, replacing it
with a nucleotide chosen with equal probability among the
other three nucleotides. As a result of this process, for each
genome we simulated allele pairs at each locus (referred to
below as simulated reads) with a divergence between alleles
sampled from a coalescence-adjusted Poisson distribution
(Figure 1(b)). Indel polymorphisms and sequencing error
were not simulated. A FASTQ [20] format file was generated
for these reads, with the basecall quality value set to 40 for
each nucleotide.

2.1.4. Simulated Read Clustering and Clustering Threshold
Optimization. The simulated reads for each genome were
assembled de novo without the use of the reference sequence.
First, the pool of reads was reduced to a nonredundant set
using the tool SEED [21] allowing for no mismatches or gaps.
Second, the nonredundant set was searched against itself
for matching reads with a divergence of 15% or less using
the tool SlideSort [22]. In order to illustrate the effects of
splitting alleles into distinct clusters and combining paralogs
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into the same clusters, the 15% pairwise divergence threshold
value for the high end of the clustering series was selected
such that it was much larger than the largest average allelic
pairwise divergence in our dataset (∼5% in Ciona; [15]) and
large enough to include polyploidy duplicated paralogs in
soybean (Figure 1; [8]). Each read was paired to every other
matching read sequentially, each pair of sequences and their
divergence were recorded, and transitive clusters were built
for all pairs whose divergence was below a given divergence
threshold. A transitive cluster is a grouping of sequences such
that, given three sequences A, B, and C, if the divergence
between sequence A and B is below the chosen threshold, and
the divergence between B and C is also below the threshold,
then A, B, and C are grouped together regardless of the
divergence between A and C. This clustering process was
repeated for each integer threshold between 0 and 15%, and
an “optimal threshold” was selected for each organism that
maximized the number of clusters with two haplotypes and
simultaneously minimized the number of clusters with one
haplotype (see discussion).We selected clusters at the optimal
mismatch threshold for further evaluation. Simulated data
had no redundancy (multiple reads per allele), therefore read
count thresholds were not applied and sequence sampling
error was not evaluated.

2.1.5. Simulated Clustering Evaluation. For the simulated
data each haplotype had a known chromosomal origin, and
each locus contained at most two haplotypes. Therefore,
the heterozygosity of the simulated data can be computed
directly, and the difference between the exact simulated
heterozygosity and the inferred heterozygosity from de novo
clustering represents the expected inaccuracy of assemblies
for the given organism that results solely from the interaction
between simulated allelic divergence, the amount of genome
duplication, and the clustering threshold employed.

2.2. Ciona savignyi Sequencing and Clustering

2.2.1. Source Material, Library Preparation, and Sequencing.
Genomic DNA from a wild-collected single diploid Ciona
savignyi individual, previously used for genomic sequencing
[15], was kindly provided byA. Sidow.TheDNAwas prepared
for genotyping-by-sequencing as described in Elshire et al. [5]
and barcoded separately from other samples. Paired-end (2×
88 nucleotides) data was collected on an Illumina Genome
Analyzer (Illumina Inc., San Diego, California, USA) in the
Cornell Laboratory Core.

2.2.2. Sequence Cleanup and Clustering. Using custom
scripts, raw sequence files in the QSEQ format [23] for an
individual were scanned for any barcode tag, sequencing
adaptor, and enzyme cut site sequence and these were
trimmed from the sequence ends. After trimming we
removed from analysis any sequences shorter than 75 bp,
containing internal enzyme cut sites, or containing at least
one nucleotide quality value less than 20. The remaining
sequences were assembled into unique tag clusters using
the same pipeline as the simulated reads (see above), with
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Figure 2: Potentially confounding duplication across all possible
100 bp fragments in three genomes. At this scale of comparison
most loci are single-copy in each genome (copy class 1) and do
not present a paralog clustering problem when trying to de novo
assemble alleles. Paralogous loci from copy class 2 have the potential
to be clustered together and if each paralog is homozygous, the
cluster will be incorrectly interpreted as a diploid heterozygous locus
even after a ploidy-informed filter. In principle, a ploidy-informed
filter should be able to identify and remove most clusters derived
from loci in the 3+ copy class.

the following modifications: (1) any tag that did not have
at least four confirming reads was discarded from further
analysis prior to the nonredundant reduction step using
SEED, and (2) in the SlideSort pairwise matching step,
internal indel mismatches were counted as one mismatch
regardless of indel size, and edge indels were not counted
towards the total number of mismatches between two reads.
Finally, to reduce the probability of false homozygosity due
to sequence sampling error below 1%, given a minimum of 4
reads supporting each allele (calculations in Supplementary
Material S1; see S1 in SupplementaryMaterial available online
at http://dx.doi.org/10.1155/2014/675158), we only analyzed
clusters (putative loci) that had 11 or more reads assigned to
them within the single individual.

3. Results

3.1. Genome Characteristics. The three genomes selected for
study vary greatly in size, GC content, and amount of
duplication within the genome. For stickleback, the reference
genome sequence is 401Mbp in size with a GC content of
43.49%. The soybean reference genome is 974Mbp in size
with a GC content of 34.10%, and the C. savignyi reference
genome is 177Mbp in size with a GC content of 35.89%. The
amount of genome repetitiveness is presented in Figure 2,
with the 1-copy class representing the proportion of 100 bp
loci that had a single copy in the genome, the 2-copy class
representing the proportion of loci that had exactly one other
(paralogous) match in the genome, and the 3+ copy class
representing the proportion of loci with multiple matches
across the genome. As expected given its history of whole
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genome duplication [24], soybean had the largest percentage
of loci duplicated across the genome. When sequencing
reduced representation libraries, sequences sampled from the
2 and 3+ copy classes for a given organism have the potential
to confound de novo clustering of reads as their paralogous
divergence is within the expected divergence range for alleles
within the organism (Figure 1(a)).

3.2. Simulated and Sequenced Reads. Summary of statistics
for the simulated GBS data are presented in Table 1. For
the experimental data from a C. savignyi individual, we
obtained 12,188,018 high quality reads of 75 bp each. These
reads were collapsed into 3,033,429 nonredundant sequences
(representing both allelic variants and different loci). Of
these, 427,919 (14.11%) had 4 ormore reads supporting the tag
sequence, and these were used for further analysis.

3.3. Clustering Threshold Series. For each of the three sim-
ulated data sets and the experimental Ciona data, we gen-
erated clustering threshold series in order to evaluate the
impact of the maximum allowable mismatch threshold on
the proportion of clusters free from artifacts. The simulated
data for all three species showed a trend with increasing
mismatch thresholds from 2% to 14% whereby single hap-
lotype clusters (putative homozygous loci) decreased and
two-haplotype clusters (putative heterozygous loci) increased
(Figures 3(a)–3(c)). The greatest degree of disparity between
simulated read cluster heterozygosity and true simulated
heterozygosity occurred at low mismatch thresholds. For
simulated stickleback reads, clusters with only one haplotype
were minimized at mismatch thresholds of 4% and greater;
at lower mismatch values oversplit alleles inflated the total
cluster number and apparent homozygosity (Figure 3(a)).
The number of clusters with 3 or more distinct sequences
was negligible at all thresholds, and therefore the number
of both homozygous and heterozygous clusters converged
to the true value once the clustering threshold was raised
to ≥4%. For simulated soybean (Figure 3(b)) the symme-
try of changes in cluster proportions is more apparent as
increasingly larger mismatch thresholds convert oversplit 1-
haplotype clusters into heterozygous clusters. The magnitude
of the artifact at low mismatch thresholds scales with het-
erozygosity. As mismatch thresholds increase, the inferred
number of heterozygous clusters increases dramatically in
both soybean (37% to 55%, Figure 3(b)) and Ciona (∼35%
to 77%, Figure 3(c)). The proportion of paralogous clusters
slowly increases with increasing mismatch threshold but is
typically small, reaching a maximum among these species
of 11% in soybean at a 14% mismatch threshold. Because
artifactual heterozygosity in the 2-haplotype class is expected
to be minor, these results suggest that an optimummismatch
thresholdwould be the point at which there exists 1-haplotype
and 2-haplotype cluster proportions asymptote or 4%, 8%,
and 12% maximum sequence difference for stickleback, soy-
bean, and Ciona, respectively (Figure 3, vertical dashed line).
At higher mismatch thresholds there may be diminishing
returns, with paralogs contributing to more new 2-haplotype
clusters than collapsing oversplit clusters. The experimental

C. savignyi data (Figure 3(d), sequence differences included
variant nucleotides and indels) showed the same tendency
to asymptote at higher sequence difference thresholds, but a
large bias toward homozygosity remained at the asymptote.

3.4. Computational Streamlining of Threshold Determination.
For experimental data sets from high heterozygosity species
it can be computationally intensive to determine the cluster
category distribution at large sequence difference thresholds.
For the C. savignyi experimental data the calculation across
the entire clustering threshold range took approximately 4
days on a modern quad-core Intel processor machine with
16GB RAM, with the time limiting step being the SlideSort
pairwise alignment. Two procedures were implemented to
streamline these computations. First, clustering with a full
all by all alignment was restricted to the maximum sequence
difference threshold, and cluster results at lesser thresholds
were rapidly estimated by pruning according to pairwise
sequence difference. Specifically, we recorded the pairwise
distance between all reads in the set used for maximum dif-
ference threshold clustering. Then to estimate cluster results
for each lower threshold, read pairs with a divergence above
this new threshold were separated as unpaired reads, and
transitive clusters were built anew to account for multiread
clusters being separated into new 1-read and 2-read clusters.
Second, in order to evaluate whether subsampled data could
generate robust clustering threshold series to determine an
asymptote, we generated themaximum divergence clustering
series (14 bp difference) using subsets of the C. savignyi
experimental data uniformly subsampled without replace-
ment to represent a range between 10% and 100% of the
total reads. It should be noted that subsampling can inflate
specific estimates of homozygosity due to unsampled alleles,
and estimates of these specific values should be done with
the full data set. However, as shown in Figure S2 the shape
of the clustering series curve generally holds at all levels of
subsampling, and it quickly converges to the shape and values
of the full data set once 20–30% or more of the data are used.

4. Discussion

In order to explore genomic repetitiveness and allelic diver-
gence distributionswith simulated data, we selected three ref-
erence genomes from organisms with very different genomic
parameters. The two genomes with low amounts of duplica-
tion (stickleback and Ciona, Figure 2) have very low and very
high heterozygosity, with 0.5% and ∼5% average divergence
between alleles in stickleback and Ciona, respectively. The
soybean genome, by contrast, has a history of polyploidy
leading to large parts of the genome being maintained in
multiple copies (Figure 1) but its heterozygosity falls in
between the two extremes above. Simulated data from these
genomes is therefore expected to illustrate the effects of
duplication and heterozygosity on clustering quality under
different read clustering regimes. However, since additional
factors contribute to clustering errors in an experimental
dataset, we also compared the results of our simulations with
de novo assemblies of reads from genotyping-by-sequencing
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Table 1: Simulated restriction-based genome sampling for the three species.

Species Total
fragments

200–800 bp
fragments

Total 100 bp
reads

Homozygous Tags
percentage

Heterozygous Tags
percentage

Mean allele
divergence

Stickleback 345,704 90,974 (26.32%) 181,948 72% 28% 0.5%
Soybean 269,756 36,940 (13.69%) 73,880 39% 61% 1.5%
Ciona 61,102 7,746 (12.68%) 15,492 18% 82% 2.7%

100

90

80

70

60

50

40

30

20

10

0

 T
ot

al
 cl

us
te

rs
 (%

)

0.02 0.04 0.06 0.08 0.1 0.12 0.14

Maximum divergence between 100 bp read pairs within a cluster

1 allele/cluster
2 alleles/cluster

alleles/cluster≥ 3

(a)

100

90

80

70

60

50

40

30

20

10

0

 T
ot

al
 cl

us
te

rs
 (%

)

0.02 0.04 0.06 0.08 0.1 0.12 0.14

Maximum divergence between 100 bp read pairs within a cluster

1 allele/cluster
2 alleles/cluster

alleles/cluster≥ 3

(b)

100

90

80

70

60

50

40

30

20

10

0

0

 T
ot

al
 cl

us
te

rs
 (%

)

0.02 0.04 0.06 0.08 0.1 0.12 0.14

Maximum divergence between 100 bp read pairs within a cluster

1 allele/cluster
2 alleles/cluster

alleles/cluster≥ 3

(c)

100

90

80

70

60

50

40

30

20

10

0

 T
ot

al
 cl

us
te

rs
 (%

)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

Maximum divergence between 100 bp read pairs within a cluster

1 allele/cluster
2 alleles/cluster

alleles/cluster≥ 3

(d)

Figure 3: Clustering mismatch threshold series for simulated stickleback reads (a), simulated soybean reads (b), simulated C. savignyi reads
(c), and experimental C. savignyi data (d). The 𝑌-axis represents the percentage of total clusters for a given organism at a given mismatch
value and the𝑋-axis represents themaximumproportion of differences (mismatches) allowed between readswithin a cluster. Single haplotype
clusters (putative homozygous loci) are represented by a solid blue line and diamonds, two-haplotype clusters (putative heterozygous loci)
are represented by a solid green line and squares, and three or more haplotype clusters (combined alleles from 2 or more paralogous loci)
are represented by a solid red line and triangles. Striped shaded areas for simulated data represent deviation from the true values due to
assembly artifacts such as splitting alleles into different clusters when the threshold is low or combining paralogs into a cluster when the
threshold is high. Solid shaded areas for experimental data represent deviation from the expected simulated values due to assembly artifacts
and null alleles. The uptick in heterozygosity observed between 0.8 and 0.10 in (b) is likely a result of the surge in 2+ paralog clustering over
the same interval, perhaps due to clustering of duplicated loci from the soybean polyploidy event. The mean values of total cluster counts
across assembly thresholds for plots (a)–(d) are 88300 (SD = 1987), 29201 (SD = 4798), 7700 (SD = 1244), and 167824 (SD = 10863).
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results on the genome of the same individual C. savignyi
specimen that was used to generate the publicly available
reference genome sequence.

4.1. The Paralogs Problem. Regarding the issue of false het-
erozygous clusters due to the clustering of paralogs, our sim-
ulated data shows that even in the case of a highly duplicated
genome their impact is relatively low (Figure 3(b)). Partly, this
is because only duplicationswith divergences within the same
range as allelic divergence present a problem for clustering.
With the exception of extremely recent polyploidy events,
the majority of maintained duplicated loci are expected to be
much older (have much higher divergence) than the alleles
in a population, resulting in only a small number of dupli-
cated loci exhibiting “confounding divergence.” For example,
duplicates from the most recent polyploidy event in soybean
(∼14 million years ago (mya); [25]) have a mean pairwise
divergence of ∼10–20% [8, 24, 25]. The age of the soybean
polyploidy event is typical ofmost recent polyploidy events in
other crop species such as maize (∼12mya; [26]) and cotton
(∼13–20mya; [27]). Therefore, a ploidy-informed cut-off on
the number of haplotypes per cluster per individual appears
to be sufficient to address this issue in most cases. This
result suggests that when devising clustering methods that
minimize paralog clusters while alsominimizing the splitting
of divergent alleles into artifactual 1-haplotype clusters, the
former problem is largely ameliorated by filtering out 3+
haplotype clusters. This provides flexibility to apply generous
sequence difference thresholds to maximize allelic clusters
without large loss of data from the elimination of putative
paralog clusters. In our simulated soybean data, only ∼7% of
putative loci were eliminated by this filter when selecting the
maximum 8 differences threshold (Figure 3(b)).

4.2. Insights from Simulated Data. Given the small amount
of paralog-induced erroneous clustering observed, the clus-
tering quality is mainly reflected by the change in relative
proportions of 1-haplotype and 2-haplotype clusters over
different sequence difference thresholds. As the clustering
threshold increases up to the maximum divergence between
alleles, oversplit allelic clusters are collapsed, decreasing
the proportion of 1-haplotype clusters, with a concomitant
increase in 2-haplotype clusters. Clustering thresholds higher
than allelic divergence are not expected to alter observed
counts of 1-haplotype and 2-haplotype clusters except for
new clustering errors from paralogous loci. Indeed, as the
simulated data in Figure 3 shows, cluster counts plateau
once the threshold reaches a certain value: 4 bp difference
for stickleback, 8 bp for soybean, and 12 bp for Ciona. Only
soybean exhibits a secondary abrupt increase in heterozygous
clusters at high clustering thresholds due to its polyploid
nature. This suggests that as paralog clusters accumulate
at higher mismatch thresholds in species that have not
recently undergone whole genome duplication, they mostly
fall into the 3+ read class and are easily filtered out. Very
few 2-haplotype clusters are accounted for by clustering two
homozygous paralogs. These simulated data comparisons
suggest that the clustering threshold series asymptote marks

an optimal clustering threshold regardless of genomic het-
erozygosity because at that point collapsing of alleles is fully
realized but hidden paralog artifacts are typically minimal.
Even formodel species the distribution of allelic differences in
a particular populationwill be unknown, so it is this empirical
basis for identifying the optimum clustering threshold that
makes this protocol valuable.

4.3. Evaluating Clustering Thresholds with Real Data. From
a computational perspective, the main challenge an inves-
tigator faces when attempting de novo clustering in a
high heterozygosity organism is the practical computational
constraints on clustering with large sequence divergences
allowed. Many tools such as Stacks [10] use a k-mer
based approach to clustering, and its memory requirements
increase exponentially with the average number of allowed
mismatches between reads. Therefore, it is often impractical
to attempt clustering with more than 2 or 3 mismatches
allowed between reads, and in fact some tools limit this
parameter to one mismatch (e.g. UNEAK [13]). As our
simulated data show (Figure 3), low threshold clustering
can easily misidentify heterozygous loci as homozygous by
splitting alleles into different locus clusters even in species
with very low heterozygosity. For example, a 2.5% differ-
ence in estimated heterozygosity is observed for stickle-
back when moving from 2% to 4% sequence difference
thresholds (Figure 3(a)). However, while extremely useful
in assembling partially overlapping reads at a locus, k-mer
based approaches are not necessary (or ideal) for analyzing
restriction based RAD-tag or GBS type data that produce
sequence reads always starting at the same position for a
given locus. Such data are better suited for a classic all-
versus-all read comparison, which does not have as severe
computational divergence limitation.We chose SlideSort [22]
for our analysis, but other similar tools have been available for
over a decade and have been used by other groups for similar
purposes (e.g., CAP3, BLAST).

From a biological perspective, ideal clustering thresholds
are highly species dependent and therefore a priori thresholds
that worked well in one species might not work in another.
Our clustering series approach allows an investigator to
determine an optimal threshold for a given sample directly
from the data. To our knowledge, this is the first time
such an approach has been presented, and the very different
optimal thresholds obtained for the three species simulated
here suggest that such an analysis is worthwhile in order to
improve the quality of de novo assemblies of restriction-based
genome samples.

4.4. Null Alleles. An important question is whether the
approach presented here will work as well to identify cluster-
ing mismatch thresholds in experimental data as it does with
simulated data. At first glance the large difference between
homozygosity asymptotes in simulated versus experimen-
tal Ciona data suggests caution in generalizing from the
former. However, the observed discrepancy can easily be
explained as an expected result of restriction-based sampling
of a high heterozygosity species. Heterozygous restriction
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sites will generate sequence data for only one of the two
homologous chromosomes. The frequency of loci with these
null alleles is directly proportional to genomic heterozygosity.
Impacts of this biased sampling include inflated estimates of
homozygosity, increased coalescent variance across loci, and
increased heterogeneity of locus sampling among individuals
(for polymorphic restriction sites, the locus will not get sam-
pled in homozygous null individuals). In population samples
the bias can be effectively reduced by narrowing analyses to
the set of loci represented in all individuals [28], but only at
the cost of large data loss, so model-based filters are needed.
Methods for estimating the proportion of unsampled loci
due to heterozygous restriction sites have been previously
developed [29], and based on these calculations, we expect
at least 24% of the loci in C. savignyi to be falsely identified as
homozygous due to variation at restriction sites resulting in
null alleles.Homozygosity inC. savignyi simulated data, at the
optimal clustering threshold and with no null alleles, is 18%.
Therefore, the expected homozygosity in the experimental
data when accounting for the expected null alleles is at
least 42%, in agreement with the observed 45% from the
experimental data.

5. Conclusions

In general, the clustering of paralogous sequences is a minor
source of error in restriction-based reduced representation
data for many species and can be effectively addressed by
ploidy-based filtering. False homozygous loci, however, can
produce a potentially strong bias, and both mechanisms
potentially generating this bias, oversplit alleles and null
alleles, have effects that scale with heterozygosity. We have
provided formulae to calculate the read count filter necessary
to achieve a given expected amount of false homozygous loci
due to lack of second allele sampling during sequencing (Eq.
iii, Supplementary 1). More importantly, we demonstrated
an empirical procedure to determine a clustering mismatch
threshold that minimizes the splitting of alleles into arti-
factual 1-haplotype clusters. The clustering threshold series
approach can help select the appropriate cut-off for clustering
the full data set without requiring any a-priori knowledge
about heterozygosity in the organism under study, and this
diagnostic step can be done with a subsample of the data in
order to accelerate analysis.
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[17] T. Derrien, J. Estellé, S. M. Sola et al., “Fast computation and
applications of genome mappability,” PLoS ONE, vol. 7, no. 1,
Article ID e30377, 2012.

[18] B. Aı̈ssani and G. Bernardi, “CpG islands, genes and isochores
in the genomes of vertebrates,”Gene, vol. 106, no. 2, pp. 185–195,
1991.

[19] A. T. Sumner, J. de la Torre, and L. Stuppia, “The distribution
of genes on chromosomes: a cytological approach,” Journal of
Molecular Evolution, vol. 37, no. 2, pp. 117–122, 1993.



BioMed Research International 9

[20] P. J. A. Cock, C. J. Fields, N. Goto, M. L. Heuer, and P. M.
Rice, “The Sanger FASTQ file format for sequences with quality
scores, and the Solexa/Illumina FASTQ variants,” Nucleic Acids
Research, vol. 38, no. 6, pp. 1767–1771, 2009.

[21] E. Bao, T. Jiang, I. Kaloshian, and T. Girke, “SEED: efficient
clustering of next-generation sequences,”Bioinformatics, vol. 27,
no. 18, pp. 2502–2509, 2011.

[22] K. Shimizu and K. Tsuda, “Slidesort: all pairs similarity search
for short reads,” Bioinformatics, vol. 27, no. 4, pp. 464–470, 2011.

[23] Illumina Incorporation, Sequencing Analysis Software User
Guide for Pipeline Version 1.4 and CASAVA Version 1.0, 2009.

[24] R. C. Shoemaker, J. Schlueter, and J. J. Doyle, “Paleopolyploidy
and gene duplication in soybean and other legumes,” Current
Opinion in Plant Biology, vol. 9, no. 2, pp. 104–109, 2006.

[25] J. A. Schlueter, P. Dixon, C. Granger et al., “Mining EST
databases to resolve evolutionary events in major crop species,”
Genome, vol. 47, no. 5, pp. 868–876, 2004.
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