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Proteins in living organisms express various important functions by interacting with other proteins and molecules. Therefore,
many efforts have been made to investigate and predict protein-protein interactions (PPIs). Analysis of strengths of PPIs is
also important because such strengths are involved in functionality of proteins. In this paper, we propose several feature space
mappings from protein pairs using protein domain information to predict strengths of PPIs. Moreover, we perform computational
experiments employing twomachine learningmethods, support vector regression (SVR) and relevance vector machine (RVM), for
dataset obtained from biological experiments. The prediction results showed that both SVR and RVM with our proposed features
outperformed the best existing method.

1. Introduction

In cellular systems, proteins perform their functions by
interacting with other proteins and molecules, and protein-
protein interactions (PPIs) play various important roles.
Therefore, revealing PPIs is a key to understanding biological
systems, and many investigations and analyses have been
done. In addition, a variety of computational methods to
predict and analyze PPIs have been developed, for example,
methods for predicting PPI pairs using only sequences infor-
mation [1–5], for predicting amino acid residues contributing
to PPIs [6–8], and for assessing PPI reliability in PPI networks
[9, 10]. As well as studies of PPIs, analyses of strengths of
PPIs are important because such strengths are involved in
functionality of proteins. In terms of transcription factor
complexes, if a constituent protein has aweak binding affinity,
target genes may not be transcribed depending on intracellu-
lar circumstance. For example, it is known that multi-subunit
complex NuA3 in Saccharomyces Cerevisiae consists of five
proteins, Sas3, Nto1, Yng1, Eaf6, and Taf30, acetylates lysine
14 of histone H3, and activates gene transcription. However,
only Yng1 and Nto1 are found solely in the complex, and

interaction strengths between each component protein are
thought to be different and transient. Hence, Byrum et al.
proposed a biological methodology for identifying stable and
transient protein interactions recently [11].

Although many biological experiments have been con-
ducted for investigating PPIs [12, 13], strengths of PPIs
have not been always provided. Ito et al. conducted large-
scale yeast two-hybrid experiments for whole yeast proteins.
In their experiments, yeast two-hybrid experiments were
conducted for each protein pair multiple times, the number
of experiments that observe interactions, or the number of
interaction sequence tags (ISTs), was counted. Consequently,
they decided that protein pairs having three or more ISTs
should interact and reported interacting protein pairs.

The ratio of the number of ISTs to the total num-
ber of experiments for a protein pair can be regarded as
the interaction strength between their proteins. On the
basis of this consideration, several prediction methods for
strengths of PPIs have been developed. LPNM [14] is a
linear programming-basedmethod; ASNM [15] is a modified
method from the association method [16] for predicting
PPIs. Chen et al. proposed association probabilistic method
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(APM) [17], which is the best existing method for predicting
strengths of PPIs as far as we know.

These methods are based on a probabilistic model of PPIs
and make use of protein domain information. Domains are
known as structural and functional units in proteins andwell-
conserved regions in protein sequences. The information of
domains is stored in several databases such as Pfam [18] and
InterPro [19]. The same domain can be identified in several
different proteins. In these prediction methods, interaction
strengths between domains are estimated from known inter-
action strengths between proteins, and interaction strengths
for target protein pairs are predicted from estimated strengths
of domain-domain interactions (DDIs).

On the other hand, Xia et al. proposed a feature-based
method using neural network with features based on con-
stituent domains of proteins [20], and they compared their
method with the association method and the expectation-
maximization method [21]. For the feature-based prediction
of PPI strengths, we also utilize domain information and
propose several feature space mappings from protein pairs.
We use supervised regression and perform threefold cross
validation for dataset obtained from biological experiments.
This paper augments the preliminary work presented in con-
ference proceedings [22]. Specifically, major augmentations
of this paper and differences from the preliminary conference
version are summarized as follows.

(i) We employ two supervised regression methods: sup-
port vector regression (SVR) and relevance vector
machine (RVM).Note that we used only SVRwith the
polynomial kernel in the preliminary version [22].

(ii) The Laplacian kernel is used as the kernel function for
SVR and RVM, and kernel parameters are selected via
fivefold cross validation.

(iii) We prepare the dataset from WI-PHI dataset [23]
with high reliability.

The computational experiments showed that the average
rootmean square error (RMSE) by our proposedmethodwas
smaller than that by the best existing method, APM [17].

2. Materials and Methods

In this section, we briefly review a probabilistic model and
related methods, and propose several feature space mappings
using domain information.

2.1. ProbabilisticModel of PPIs Based onDDIs. There are some
computational prediction methods for PPI strengths, and
they are based on the probabilistic model of PPIs proposed
by Deng et al. [21].Thismodel utilizes DDIs and assumes that
two proteins interact with each other if and only if at least
one pair of the domains contained in the respective proteins
interacts. Figure 1(a) illustrates an example of this interaction
model. In this example, there are two proteins 𝑃

1
and 𝑃

2
,

which consist of domains 𝐷
1
, 𝐷
2
and domains 𝐷

2
, 𝐷
3
, 𝐷
4
,

respectively. According to Deng’s model, if 𝑃
1
and 𝑃
2
interact,

at least one pair among (𝐷
1
, 𝐷
2
), (𝐷
1
, 𝐷
3
), (𝐷
1
, 𝐷
4
), (𝐷
2
,

𝐷
2
), (𝐷
2
, 𝐷
3
), and (𝐷

2
, 𝐷
4
) interacts. Conversely, if a pair,

for instance, (𝐷
2
, 𝐷
4
), interacts, 𝑃

1
and 𝑃

2
interact. From

the assumption of this model, we can derive the following
simple probability that two proteins 𝑃

𝑖
and 𝑃

𝑗
interact with

each other:

Pr (𝑃
𝑖𝑗
= 1) = 1 − ∏

𝐷
𝑚
∈𝑃
𝑖
,𝐷
𝑛
∈𝑃
𝑗

(1 − Pr (𝐷
𝑚𝑛

= 1)) , (1)

where 𝑃
𝑖𝑗

= 1 indicates the event that proteins 𝑃
𝑖
and 𝑃

𝑗

interact (otherwise, 𝑃
𝑖𝑗
= 0), 𝐷

𝑚𝑛
= 1 indicates the event

that domains 𝐷
𝑚
and 𝐷

𝑛
interact (otherwise, 𝐷

𝑚𝑛
= 0), and

𝑃
𝑖
and 𝑃

𝑗
also represent the sets of domains contained in 𝑃

𝑖

and 𝑃
𝑗
, respectively. Deng et al. applied the EM (expectation

maximization) algorithm to the problem of maximizing log-
likelihood functions, the estimated probabilities that two
domains interact, Pr(𝐷

𝑚𝑛
= 1), and proposed a method for

predicting PPIs using the estimated probabilities ofDDIs [21].
Actually, they calculated Pr(𝑃

𝑖𝑗
= 1) using (1) and determined

whether or not 𝑃
𝑖
and 𝑃

𝑗
interact by introducing a threshold

𝜃; that is, 𝑃
𝑖
and 𝑃

𝑗
interact if Pr(𝑃

𝑖𝑗
= 1) ≥ 𝜃; otherwise, the

proteins do not interact.
AsDeng’smethod, typical PPIs predictionmethods based

on domains have the following two steps. First the interaction
between domains contained in interacting proteins is inferred
from existing protein interaction data. And then, an inter-
action between new protein pairs is predicted on the basis
of the inferred domain interactions using a certain model.
Figure 1(b) illustrates the flow of this type of PPIs prediction.
Since interacting sites may not be always included in some
known domain region, it can cause the decrease of prediction
accuracy in this framework.

2.2. Association Method: Inferring DDI from PPI Data. As
described previously, probability of PPIs could be predicted
based on probabilities of DDIs. In this subsection, we will
briefly review related methods to estimate a probability of
interaction for domain pair.

2.3. Association Method. Let P be a set of protein pairs
that have been observed to interact or not. The association
method [16] gives the following simple score for two domains
𝐷
𝑚
and𝐷

𝑛
using proteins that include the following domains:

ASSOC (𝐷
𝑚
, 𝐷
𝑛
)

=

󵄨󵄨󵄨󵄨󵄨
{(𝑃
𝑖
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𝑗
) ∈ P | 𝐷

𝑚
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𝑖
, 𝐷
𝑛
∈ 𝑃
𝑗
, 𝑃
𝑖𝑗
= 1}

󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨
{(𝑃
𝑖
, 𝑃
𝑗
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∈ 𝑃
𝑖
, 𝐷
𝑛
∈ 𝑃
𝑗
}
󵄨󵄨󵄨󵄨󵄨

,

(2)

where |𝑆| indicates the number of elements contained in
the set 𝑆. This score represents the ratio of the number of
interacting protein pairs including 𝐷

𝑚
and 𝐷

𝑛
to the total

number of protein pairs including 𝐷
𝑚
and 𝐷

𝑛
. Hence, it can

be considered as the probability that𝐷
𝑚
and𝐷

𝑛
interact.

2.4. Association Method for Numerical Interaction Data
(ASNM). Originally the association method has been de-
signed for inferring binary protein interactions. To pre-
dict numerical interactions such as interaction strengths,
Hayashida et al. proposed the associationmethod for numer-
ical interaction (ASNM) by the modification of the original
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Figure 1: (a) Illustration of protein-protein interactions (PPIs) model based on domain-domain interactions (DDIs). (b) Schematic overview
of PPIs prediction based on DDIs.

association method [15]. This method takes strengths of
PPIs as input data. Let 𝜌

𝑖𝑗
represent the interaction strength

between 𝑃
𝑖
and 𝑃

𝑗
, and we suppose that 𝜌

𝑖𝑗
is defined for all

(𝑃
𝑖
, 𝑃
𝑗
) ∈ P. Then, the ASNM score for domains 𝐷

𝑚
and 𝐷

𝑛

is defined as the average strength over protein pairs including
𝐷
𝑚
and𝐷

𝑛
by
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(3)
If 𝜌
𝑖𝑗
always takes only 0 or 1, ASNM(𝐷

𝑚
, 𝐷
𝑛
) becomes

ASSOC(𝐷
𝑚
, 𝐷
𝑛
).

2.5. Association Probabilistic Method (APM). Although
ASNM is a simple average of strengths of PPIs, Chen et al.
proposed the association probabilistic method (APM) by
replacing the strength with an improved strength [17]. It is
based on the idea that the contribution of one domain pair to
the strength of PPI should vary depending on the number of
domain pairs included in a protein pair. They assumed that
the interaction probability of each domain pair is equivalent
in a protein pair, and transformed (1) as follows:

Pr (𝐷
𝑚𝑛

= 1) = 1 − (1 − Pr (𝑃
𝑖𝑗
= 1))
1/|𝑃
𝑖
||𝑃
𝑗
|

. (4)

Thus, by substituting the numerator of ASNM, APM is
defined by

APM (𝐷
𝑚
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𝑛
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=
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, 𝐷
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}
󵄨󵄨󵄨󵄨󵄨

.

(5)

They conducted some computational experiments, and
reported that APM outperforms existing prediction methods
such as ASNM and LPNM.

2.6. Proposed Feature Space Mappings from Protein Pairs.
The association methods including ASNM and APM are
based on the probabilistic model of PPIs defined by (1),
and infer strengths of PPIs from estimated DDIs using
given frequency of interactions or interaction strengths of
protein pairs. On the other hand, we can also infer PPI
strengths utilizing features obtained from given information
such as sequence and structure of proteins with machine
learning methods. Xia et al. proposed a method to infer
strengths of PPIs using artificial neural network with features
from constituent domains of proteins [20]. In this paper,
for predicting strengths of PPIs, we propose several feature
space mappings from protein pairs making use of domain
information.

2.7. Feature Based onNumber of Domains (DN). As described
above, constituent domains information is useful for infer-
ring PPIs and also can be used as a representation of each
protein. Actually, Xia et al. represented each protein by
binary numbers indicating whether a protein has a domain
or not based on the information of constituent domains, and
used them with the artificial neural network to predict PPI
strengths [20]. Here, it can be considered that the probability
that two proteins interact increases with a larger number of
domains included in the proteins. Therefore, in this paper,
we propose a feature space mapping based on the number
of constituent domains (called DN) from two proteins. The
feature vector of DN for two proteins 𝑃

𝑖
and 𝑃

𝑗
is defined by

𝑓
(𝑚)

𝑖𝑗
= 𝑀(𝐷

𝑚
, 𝑃
𝑖
) for 𝐷

𝑚
∈ 𝑃
𝑖
,

𝑓
(𝑇+𝑛)

𝑖𝑗
= 𝑀(𝐷

𝑛
, 𝑃
𝑗
) for 𝐷

𝑛
∈ 𝑃
𝑗
,

𝑓
(𝑙)

𝑖𝑗
= 0 for 𝐷

𝑙
∉ 𝑃
𝑖
∪ 𝑃
𝑗
,

(6)
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Figure 2: Illustration of restricting an amino acid sequence towhich
the spectrum kernel is applied to the domain regions.

where 𝑇 indicates the total number of domains over all
proteins and 𝑀(𝐷

𝑚
, 𝑃
𝑖
) indicates the number of domains

identified as𝐷
𝑚
in protein 𝑃

𝑖
.

2.8. Feature by Restriction of Spectrum Kernel to Domain
Region (SPD). DN is based only on the number of constituent
domains of each protein, while amino acid sequences of
domains are also considered useful for inferring strength
of PPI. Therefore, we propose a feature space mapping by
restricting the application of the spectrum kernel [24] to
domain regions (called SPD). LetA be the set of 21 alphabets
representing 20 types of amino acids and others. Although
we used the set of 20 alphabets to express 20 types of amino
acids in the preliminary conference version [22], we add one
alphabet to take the ambiguous amino acids such as X into
consideration. Then, A𝑘 (𝑘 ≥ 1) means the set of all strings
with length 𝑘 generated from A. The 𝑘-spectrum kernel for
sequences 𝑥 and 𝑦 is defined by

𝐾
𝑘
(𝑥, 𝑦) = ⟨Φ

𝑘
(𝑥) , Φ

𝑘
(𝑦)⟩ , (7)

whereΦ
𝑘
(𝑥) = (𝜙

𝑠
(𝑥))
𝑠∈A𝑘 and 𝜙𝑠(𝑥) indicates the number of

times that 𝑠 occurs in 𝑥. To make use of domain information,
we restrict an amino acid sequence to which the 𝑘-spectrum
kernel is applied to the domain regions. Figure 2 illustrates the
restriction. In this example, the protein consists of domains
𝐷
1
, 𝐷
2
, 𝐷
3
, and each domain region is surrounded by a

square. Then, the subsequence in each domain is extracted,
and all the subsequences in the protein are concatenated in
the same order as domains. We apply the 𝑘-spectrum kernel
to the concatenated sequence. Let 𝜙(𝑟)

𝑠
(𝑥) be the number of

times that string 𝑠 occurs in the sequence restricted to the
domain regions in protein 𝑥 in the abovemanner.The feature
vector of SPD for proteins 𝑃

𝑖
and 𝑃

𝑗
is defined by

𝑓
𝑙

𝑖𝑗
= 𝜙
(𝑟)

𝑠
𝑙

(𝑃
𝑖
) for 𝑠

𝑙
∈ A
𝑘
,

𝑓
(21
𝑘

+𝑙)

𝑖𝑗
= 𝜙
(𝑟)

𝑠
𝑙

(𝑃
𝑗
) for 𝑠

𝑙
∈ A
𝑘
.

(8)

It should be noted that 𝜙(𝑟)
𝑠

for proteins having the same
composition of domains can vary depending on the amino
acid sequences of their proteins. That is, even if 𝑃

𝑖
and 𝑃

𝑗

have the same compositions as 𝑃
𝑘
and 𝑃

𝑙
, respectively, and

the feature vector of DN for 𝑃
𝑖
and 𝑃

𝑗
is the same as that for

𝑃
𝑘
and 𝑃

𝑙
, then the feature vector of SPD for 𝑃

𝑖
and 𝑃

𝑗
can be

different from that for 𝑃
𝑘
and 𝑃
𝑙
.

2.9. Support Vector Regression (SVR). To predict strengths of
PPIs, we employ support vector regression (SVR) [25] with

our proposed features. In the case of linear functions, SVR
finds parameters𝑤 and 𝑏 for 𝑓(𝑥) = ⟨𝑤, 𝑥⟩ + 𝑏 by solving the
following optimization problem:

minimize 1

2
‖𝑤‖
2
+ 𝐶∑

𝑖

(𝜉
𝑖
+ 𝜉
󸀠

𝑖
) ,

subject to 𝑦
𝑖
− ⟨𝑤, 𝑥

𝑖
⟩ − 𝑏 ≤ 𝜖 + 𝜉

𝑖
,

𝑦
𝑖
− ⟨𝑤, 𝑥

𝑖
⟩ − 𝑏 ≥ −𝜖 − 𝜉

󸀠

𝑖
,

𝜉
𝑖
≥ 0, 𝜉

󸀠

𝑖
≥ 0,

(9)

where 𝐶 and 𝜖 are positive constants and (𝑥
𝑖
, 𝑦
𝑖
) is a training

data. Here, the penalty is added only if the difference between
𝑓(𝑥
𝑖
) and 𝑦

𝑖
is larger than 𝜖. In our problem, 𝑥

𝑖
means a

protein pair, and 𝑦
𝑖
means the corresponding interaction

strength.

2.10. Relevance Vector Machine (RVM). In this paper, we
also employ relevance vector machine (RVM) [26] to predict
strengths of PPIs. RVM is a sparse Bayesian model utilizing
the same data-dependent kernel basis as the SVM. Its frame-
work is almost the same as typical Bayesian linear regression.
Given a training data {𝑥

𝑖
, 𝑦
𝑖
}
𝑁

𝑖=0
, the conditional probability of

𝑦 given 𝑥 is modeled as

𝑝 (𝑦 | 𝑥, 𝑤, 𝛽) = N (𝑦 | 𝑤
𝑇
𝜙 (𝑥) , 𝛽

−1
) , (10)

where 𝛽 = 𝜎
2 is noise parameter and 𝜙(⋅) is a typically

nonlinear projection of input features. To obtain sparse
solutions, in RVM framework, a prior weight distribution is
modified so that a different variance parameter is assigned for
each weight as

𝑝 (𝑤 | 𝛼) = ∏

𝑖=0

N (𝑤
𝑖
| 0, 𝛼
−1

𝑖
) , (11)

where𝑀 = 𝑁+1 and 𝛼 = (𝛼
1
, . . . , 𝛼

𝑀
)
𝑇 is a hyperparameter.

RVM finds hyperparameter 𝛼 by maximizing the marginal
likelihood 𝑝(𝑦 | 𝑥, 𝛼) via “evidence approximation.” In
the process of maximizing evidence, some 𝛼

𝑖
approach

infinity and the corresponding 𝑤
𝑖
become zero. Thus, the

basis function corresponding with these parameters can be
removed, and it leads sparse models. In many cases, RVM
performs better than SVM especially in regression problems.

3. Results and Discussion

3.1. Computational Experiments. To evaluate our proposed
method, we conducted computational experiments and com-
pared with the existing method, APM.

3.2. Data and Implementation. It is difficult to directly
measure actual strengths of PPIs for many protein pairs by
biological and physical experiments. Hence, we used WI-
PHI dataset with 50000 protein pairs [23]. For each PPI, WI-
PHI contains a weight that is considered to represent some
reliability of the PPI and is calculated from several different
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Table 1: Results of average RMSE for training and test data.

𝐶 = 1 𝐶 = 2 𝐶 = 5

Training Test Training Test Training Test
SVR + DN 0.10472 0.12573 0.10656 0.12600 0.09982 0.12484
RVM + DN 0.09210 0.12873 0.09178 0.12881 0.09474 0.12908
SVR + SPD (𝑘 = 1) 0.08819 0.12699 0.08080 0.12954 0.07927 0.12903
RVM + SPD (𝑘 = 1) 0.02848 0.12743 0.01504 0.12706 0.03276 0.12792
SVR + SPD (𝑘 = 2) 0.08891 0.12654 0.08188 0.12782 0.08117 0.12909
RVM + SPD (𝑘 = 2) 0.02529 0.12470 0.02301 0.12476 0.02243 0.12493
SVR + APM 0.06846 0.13112 0.06795 0.13247 0.06791 0.13277
RVM + APM 0.07052 0.13556 0.07037 0.13550 0.07032 0.13493
APM Training = 0.06811, Test = 0.13517

kinds of PPI datasets in some statistical manner to rank
physical protein interactions. As strengths of PPIs, we used
the value dividing the weight of PPI by the maximum weight
forWI-PHI.We used dataset file “uniprot sprot fungi.dat.gz”
downloaded from UniProt database [27] to get amino acid
sequences, information of domain compositions, and domain
regions in proteins. In this experiment, we used 1387 protein
pairs that could be extracted from WI-PHI dataset with
complete domain sequence viaUniProt dataset.The extracted
dataset contains 758 proteins and 327 domains. Since this
dataset does not include protein pairs with interaction
strength 0, we randomly selected 100 protein pairs that do not
have any weights in the dataset and added them as protein
pairs with strength 0. Thus, totally 1487 protein pairs were
used in this experiment. We used “kernlab” package [28]
for executing support vector regression and relevance vector
machine and used the Laplacian kernel𝐾(𝑥, 𝑦) = exp(−𝜎‖𝑥−
𝑦‖). The dataset and the source code implemented by R are
available upon request.

To evaluate prediction accuracy, we calculated the root
mean square error (RMSE) for each prediction. RMSE is
a measure of differences between predicted values 𝑦

𝑖
and

actually observed values 𝑦
𝑖
and is defined by

RMSE = √
1

𝑁

𝑁

∑

𝑖=1

(𝑦
𝑖
− 𝑦
𝑖
)
2

, (12)

where𝑁 is the number of test data.

3.3. Results of Computational Experiments. We preformed
threefold cross-validation, calculated the average RMSE, and
compared with APM [17]. For APM method, strengths of
PPIs are inferred based on APM scores for domain pairs that
consist of target proteins. However it is not always possible to
calculate APM scores for all domain pairs from training set.
Therefore, as test set, we used only protein pairs that consist
of domain pairs with APM scores calculated via training set.
(In all cases, about 40% of protein pairs in test set were used.)
For the Laplacian kernel employed in both SVR and RVM,
we selected kernel parameter 𝜎 by fivefold cross-validation
from candidate set 𝜎 ∈ {0.01, 0.02, . . . , 0.1}. The parameter
𝐶 for the regularization term in the Lagrange formulation is
set to 𝐶 = 1, 2, 5. Additionally, APM scores for each protein

pair also can be used as input features.Therefore we also used
APM scores as inputs for SVR and RVM and compared the
model using APM scores with the model using our proposed
features to confirm the usefulness of feature representation.
Here, we used candidate set 𝜎 ∈ {3.0, 3.1, 3.2, . . . , 9.0} for
kernel parameter 𝜎 of RVM+APMmodel because themodel
could not be trained with 𝜎 values smaller than 3. On the
other hand, for 𝜎 of SVM + APM model, we used the same
set as other models.

Table 1 shows the results of the average RMSE by SVR and
RVM with our proposed features (DN and SPD of 𝑘 = 1, 2)
and APM score and by APM, for training and test datasets.
For training set, the average RMSEs by RVM with SPD of
𝑘 = 2were smaller than those by APM and others. Moreover,
for test set, all the average RMSEs by RVMwith SPD and DN
were smaller than those by APM. The results suggested that
supervised regression methods, SVR and RVM, with domain
based features are useful for prediction of PPI strengths.
Taking all results together, the model by RVM with SPD of
𝑘 = 2was regarded as the best for prediction of PPI strengths.

Since the average RMSEs of SVR with APM for both
training and test dataset were smaller than those of original
APM, SVR has potential to improve prediction accuracies.
By contrast, the average RMSEs of RVM with APM became
larger than those of original APM, and all average RMSEs
of the models with APM for test set were larger than
those of the models with DN and SPD. Accordingly, the
results suggested that prediction accuracies were enhanced
by feature representation and SPD is especially useful among
these feature representations for predicting strengths of PPIs.
Although DN and SPD of 𝑘 = 1 have 654 and 42 dimensions
for each protein pair, respectively, the average RMSEs with
SPDof 𝑘 = 1 for training setwere smaller than thosewithDN.
It implies that information of amino acid sequence in domain
regions is more informative comparing with information of
domain compositions to make a model fit in with dataset.

In contrast, the RMSEs by SVR with DN were smaller
than those by others in some cases of test set. Table 2 shows
the numbers of relevance vectors and support vectors and
the 𝜎 values selected by fivefold cross-validation in all cases.
For the models with DN and APM scores, the numbers of
relevance vectors were smaller than the numbers of support
vectors. On the other hand, the numbers of relevance vectors
were larger than the numbers of support vectors for the
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Table 2:The number of relevance vectors (RVs) and support vectors (SVs) for each model with DN, SPD, and APM and the selected 𝜎 values
for each fold.

𝐶 = 1 𝐶 = 2 𝐶 = 5

SVR RVM SVR RVM SVR RVM
SVs (𝜎 value) RVs (𝜎 value) SVs (𝜎 value) RVs (𝜎 value) SVs (𝜎 value) RVs (𝜎 value)

Fold 1

DN 271 (0.02) 113 (0.05) 271 (0.01) 123 (0.07) 308 (0.01) 74 (0.02)
SPD (𝑘 = 1) 367 (0.01) 448 (0.02) 402 (0.02) 680 (0.05) 402 (0.02) 537 (0.03)
SPD (𝑘 = 2) 392 (0.01) 502 (0.03) 409 (0.01) 628 (0.05) 421 (0.01) 628 (0.05)

APM 362 (0.08) 4 (5.00) 361 (0.10) 6 (4.80) 357 (0.04) 6 (5.80)

Fold 2

DN 280 (0.02) 94 (0.08) 281 (0.01) 92 (0.09) 314 (0.01) 82 (0.04)
SPD (𝑘 = 1) 408 (0.01) 617 (0.04) 453 (0.04) 706 (0.06) 411 (0.01) 545 (0.03)
SPD (𝑘 = 2) 430 (0.01) 558 (0.04) 435 (0.01) 618 (0.05) 495 (0.04) 654 (0.06)

APM 375 (0.10) 5 (6.50) 372 (0.10) 6 (6.90) 373 (0.04) 4 (5.50)

Fold 3

DN 321 (0.04) 107 (0.08) 289 (0.01) 107 (0.10) 330 (0.01) 107 (0.08)
SPD (𝑘 = 1) 371 (0.01) 439 (0.02) 412 (0.03) 658 (0.05) 382 (0.01) 305 (0.01)
SPD (𝑘 = 2) 387 (0.01) 625 (0.06) 418 (0.02) 529 (0.04) 398 (0.01) 529 (0.04)

APM 368 (0.08) 3 (7.10) 368 (0.04) 3 (6.70) 372 (0.01) 5 (4.20)

models with SPD feature in spite of the fact that usually
RVM provides a sparse model compared with SVR. In RVM
framework, sparsity of model is caused by distributions of
each weight; that is, the number of relevance vectors is
influenced by values and variances of each dimension of
features rather than by the number of dimensions of features.
Actually, each dimension of SPD feature almost always has
widely varying values. In contrast, DN feature has many
zeros, and APM score is inferred from training dataset and
thereby has similar distribution. Thus, it is considered that
many weights corresponding to features in RVM model did
not become zero and the RVM models with SPD feature
tended to be complex and to overfit the training data.

4. Conclusions
For the prediction of strengths of PPIs, we proposed feature
space mappings DN and SPD. DN is based on the number
of domains in a protein. SPD is based on the spectrum
kernel and defined using the amino acid subsequences in
domain regions. In this work, we employed support vec-
tor regression (SVR) and relevance vector machine (RVM)
with the Laplacian kernel and conducted threefold cross-
validation using WI-PHI dataset. For both training and test
dataset, the average RMSEs by RVM with SPD feature were
smaller than those by APM.The results showed that machine
learning methods with domain information outperformed
existing association method that is based on the probabilistic
model of PPIs and implied that the information of amino
acid sequence is useful for prediction comparing with only
information of domain compositions. However, the models
with SPD feature tended to be complex and overfitted to the
training data. Therefore, to further enhance the prediction
accuracy, improving kernel functions combining physical
characteristics of domains and amino acids might be helpful.
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