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Abstract

Immunologic dysregulation is the cause of many non-infectious human diseases such as

autoimmunity, allergy and cancer. The gastrointestinal tract is the primary site of interaction

between the host immune system and microorganisms, both symbiotic and pathogenic. Here we

discuss findings which indicate that developmental aspects of the adaptive immune system are

influenced by intestinal bacterial colonization. We also highlight the molecular pathways that

mediate host–symbiont interactions that regulate proper immune function. Finally, we present

recent evidence to support an emerging concept whereby disturbances in the bacterial microbiota

result in immunological dysregulation that may underlie disorders such as inflammatory bowel

disease. Perhaps the mammalian immune system which appears designed to control microbes is, in

fact, controlled by the microbes themselves.

Humans represent a scaffold upon which diverse microbial ecosystems are established.

Immediately after birth, all mammals are initiated into a life-long process of colonization by

foreign microorganisms that inhabit most environmentally exposed surfaces (such as the

skin, mouth, gut and vagina)1,2. Shaped by millennia of evolution, some host–bacterial

associations have developed into beneficial relationships creating an environment for

mutualism. A key example of such an environment is provided by the vast numbers and

diversity of bacteria that are harboured by the lower gastrointestinal tract of mammals3,4,1,5.

By young adulthood, both humans and other mammals support one of the most complex

microbial ecosystems on the planet, with over 100 trillion bacteria comprised of potentially

many thousands of microbial species in the distal gut6,7. Symbiotic bacteria of the

mammalian gut have long been appreciated for the benefits they provide to the host: through

provision of essential nutrients, metabolism of indigestible compounds, defence against

colonization by opportunistic pathogens and even contribution to the development of the

intestinal architecture8. Moreover, it seems that certain basic developmental features and

functions of the mammalian immune system depend on interactions with the human

microbiome9. Unlike opportunistic pathogens, which elicit immune responses that result in

tissue damage during infection, some symbiotic bacterial species have been shown to

prevent inflammatory disease during colonization (see below). Surprisingly, the ‘normal’

microbiota also contains microorganisms that have been shown to induce inflammation

under particular conditions. Therefore, the microbiota has the potential to exert both pro-
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and anti-inflammatory responses, and balances in the community structure of gut bacteria

may be intimately linked to the proper function of the immune system.

By virtue of its responsibility to recognize, respond and adapt to countless foreign and self

molecules, the immune system is central to the processes of health and disease. While the

classical view of the immune system is that it evolved to protect organisms from infection

by microbial pathogens, we peacefully co-exist with our vast and complex microbiota. In

fact, the magnitude of the molecular interactions between the microbiota and the host

immune system appear to be extensive. Here, we discuss recent evidence that suggests a

beneficial partnership has evolved between symbiotic bacteria and the immune system.

These molecular interactions seem to direct the development of immune responses, and in

turn, the immune system shapes the composition of the microbiota. We highlight seminal

examples of microorganisms that have a role in preventing inflammatory bowel diseases

(IBD), and the beneficial immune responses they elicit during protection. Furthermore,

technological advances now allow a more detailed understanding of the alterations of the

microbial population of the gut during IBD. If some bacteria are actively shaping a healthy

immune system, does the absence of these organisms lead to disease? It has recently been

proposed that the mammalian genome does not encode the information (i.e., molecules)

capable of carrying out all functions required for health, and that products of our

microbiome (the collective genomes of the microbiota) are crucial for protection from

various diseases10. It is possible that alterations in the development or composition of the

microbiota (known as dysbiosis) disturb the partnership between the microbiota and the

human immune system, ultimately leading to altered immune responses that may underlie

various inflammatory disorders in humans.

Insights gained from germ-free mice

Developmental defects in germ-free mice

Several important effects of the microbiota on the host immune system have been

determined by studies of gnotobiology, which is the selective colonization of germ-free

(sterile) animals. Immune responses in germ-free animals can be considered naïve to the

‘education’ provided by molecules of both pathogenic and beneficial microorganisms.

Germ-free animals show extensive deficits in the development of the gut-associated

lymphoid tissues (GALT)9,11. In addition to numerous defects in antibody production (Box

1), germ-free animals have relatively fewer and smaller Peyer's patches and mesenteric

lymph nodes (MLNs) compared to animals housed under specific pathogen free (SPF)

conditions (Table 1). A recent report has shown that germ-free animals display impaired

development and maturation of isolated lymphoid follicles (ILFs)12. These inducible

structures seem to form normally following the introduction of gut bacteria, suggesting a

dynamic relationship between the immune system and the microbiota. Together with various

morphological tissue defects observed in the intestines of germ-free animals, it appears that

the entire ultrastructural development of the gut is intimately connected to intestinal

bacteria. For example, intestinal epithelial cells (IECs), which line the gut and form a

physical barrier between luminal contents (including the microbiota) and the underlying

cells of the immune system, have altered patterns of microvilli formation and decreased
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rates of cell turnover in germ-free animals compared with wild-type animals13. Gut bacteria

have been shown to direct the glycosylation of lumenally-exposed surface proteins of the

epithelium14. IECs have many immunological functions (Table 1): they can secrete and

respond to various cytokines and express molecules (such as major histocompatibility

molecules) that directly interact with lymphocytes. Expression and localization of pattern-

recognition receptors (e.g., Toll-like receptors; TLRs) by the epithelium is influenced by

bacterial colonization of the gut, and expression of defensins and other antimicrobial

proteins are deficient in germ-free animals (Table 1). Consistent with this notion, the Gram-

negative commensal organism Bacteroides thetaiotaomicron, but not the Gram-positive

microbe, Bifidobacterium longum, induces the expression of the antimicrobial peptide,

RegIIIγ, by specialized IECs known as Paneth cells15, 16. Intriguingly, the specificity of

RegIIIγ is directed toward specific Gram-positive bacteria. It is therefore tempting to

speculate that symbiotic bacteria direct innate immune responses of the gut in an effort to

protect their environment. Collectively, these observations of developmental defects in

germ-free mice at the tissue, cellular and molecular levels suggest that ‘normal’ immune

function may be impaired in the absence of the microbiota.

Deficiencies in immune responses in germ-free mice

Germ-free animals are more susceptible to infection by certain bacterial, viral and parasitic

pathogens. When challenged with the Gram-negative enteric pathogen Shigella flexneri,

germ-free animals showed decreased immune resistance to infection and increased mortality

compared with conventionally colonized animals17. Prior colonization with specific

commensal bacteria antagonized S. flexneri infections, whereas colonization with control

species such as E.coli did not, implying that some members of the microbiota provide

protection against intestinal bacterial pathogens18. Infection by the Gram-positive

intracellular pathogen Listeria monocytogenes results in decreased bacterial clearance in

germ-free compared with colonized animals19.The mechanism for this increased

susceptibility has been attributed to a T cell trafficking defect in germ-free animals to the

site of Listeria infection. L-selectin and CD44 are known to be involved in homing of

lymphocytes to sites of inflammation. Listeria infected germ-free mice have decreased

accumulation of CD44+L-selectin+ T cells resulting in increased bacterial burden compared

to SPF animals20. Salmonella typhimurium is known to cause a more severe acute

gastroenteritis in germ-free animals21, however the reasons for this remain unclear.

Establishing an infection requires the initial task of colonizing the host. For intestinal

pathogens this can pose a difficult problem as all mammals are stably colonized by a

consortium of bacteria that can act as a barrier to infection (“colonization resistance”).

Recent studies suggest that inflammation induced in response to S. typhimurium changes the

composition of the microbiota and suppresses its regrowth. Moreover, S. typhimurium

exploits this deficiency in “colonization resistance” to establish infection and cause

disease22. While important for maintaining a barrier to the colonization of potentially

pathogenic organisms, it appears that the microbiota may also provide the host immune

benefits. Supporting this, germ-free animals show reduced antigen-specific systemic

immune responses to S. typhimuirum23. These studies support the idea that enteric pathogens

such as S. typhimurium may have developed strategies to counter both the immune system

and the microbiota during the infectious process.
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Although significant work is still required to determine the beneficial immune responses

induced by the microbiota, it is exciting to consider the teleological notion that indigenous

bacteria actively prevent enteric disease by infectious microorganisms to fortify their niche.

If true, then an evolutionary alliance has been forged between mammals and beneficial

bacteria that is critical in maintaining the long-term survival of both. In other words, is our

wellbeing dependent on the microbes we harbour?

The microbiota and inflammatory bowel disease

Immune system regulation during IBD

The impact of the microbiota on human health is best exemplified by studies in IBD, such as

Crohn's disease and ulcerative colitis24-26. Both represent serious medical disorders marked

by aberrant inflammation within the human gastrointestinal (GI) tract, resulting in severe

clinical outcomes in affected patients. The causes for these diseases are complex, and

include the contributions of genetic, geographic and habitual factors27. IBD (particularly

Crohn's disease) is generally thought to be driven by T lymphocytes. The disease has

classically been characterized by increases in pro-inflammatory cytokines such as tumour-

necrosis factor (TNF) and interferon-γ (IFNγ). Recently, a new population of inflammatory

T cells, termed T helper 17 (TH17) cells, have been implicated in the pathogenesis of human

and experimental colitis28-33These cells are characterized by their expression of the pro-

inflammatory cytokine interleukin-17 (IL-17), and require IL-23 for their maintenance and

function. Specialized T cells, known as regulatory T (TReg) cells act to counter-balance these

pro-inflammatory responses. FOXP3 is a transcription factor believed to be the ‘master

regulator’ of TReg cells, and its absence results in massive multi-organ lymphoproliferative

disease34. The mechanisms by which Tregs are able to suppress inflammation are quite

diverse. These include the expression of inhibitory cytokines such as IL-10, TGF-β, and

IL-35; disruption of cellular metabolism by expression of the IL-2 receptor, CD25;

cytolysis, and targeting the maturation of DCs through surface expression of molecules such

as CTLA-4 and LAG-335. A population of intestinal dendritic cells expressing the surface

antigen CD103 have recently been demonstrated to be instrumental in the development and

function of intestinal Foxp3+ Tregs. CD103+ DCs, but not CD103− DCs are able to

‘convert’ CD4+Foxp3− T cells into CD4+Foxp3+ Tregs cells in a TGF-β and retinoic acid

dependent manner36, demonstrating that specialized mechanisms exist within the intestine to

promote induction and maintenance of Tregs.

The importance of Tregs in regulation of intestinal homeostasis is best demonstrated by the

ability of these cells to prevent induction of experimental colitis upon transfer into diseased

hosts 37. The ability of Tregs to secrete IL-10 and IL-35 has been reported to be important

during protection. Indeed, Treg cells deficient in either of the two subunits of IL-35 (Ebi3

and IL-12a), are unable to cure experimental colitis38. Additionally, animals in which the

anti-inflammatory cytokine IL-10 has been specifically ablated from CD4+FOXP3+ T cells

succumb to inflammatory disease of the intestine (as well as skin and lung), but show no

signs of autoimmunity. Thus, it appears that cytokine production by Treg cells may be a

primary protective mechanism that limits uncontrolled immune responses at

environmentally-exposed surfaces such as the gut.
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Recent evidence has begun to reveal mechanisms of intestinal immune modulation by the

microbiota. Germ-free animals are deficient in the development of TH17 cells in the small

intestine39. In this report, the reduction in IL-17 production is reciprocally coupled to an

increase in CD4+FOXP3+ TReg cells in the germfree colon. Reconstitution of animals with a

complex and diverse microbiota that does not contain the prominent phyla Bacteroidetes is

unable to restore proper immune balance, suggesting that discrete organisms may have the

capacity to modulate pro- and anti-inflammatory responses in the gut. The identity of

specific bacterial species and particular molecules with dedicated functions to regulate T-

helper/TReg-cell profiles in the gut remain unknown. However, ‘general’ bacterial products

appear to have immunomodulatory affects. ATP produced by intestinal bacteria specifically

increases colonic IL-17 production (and not IFNγ production)40. Consistent, with this, germ-

free animals have reduced IL-17 and ATP levels in the colon. Additionally, commensal

bacterial DNA triggers TLR9 to confer resistance to the enteric parasite Encephalitozoon

cuniculi 41. Antibiotic treatment of animals to eliminate gut bacteria results in increased

susceptibility to infection by this parasite, consistent with findings from studies in germ-free

mice. Treatment of infected animals with DNA extracted from the intestinal microbiota

upregulated Th1 and Th17 responses, while suppressing Treg activity resulting in decreased

parasite burden. Previous work had implicated TLR signaling as being important for gut

homeostasis42; therefore these recent findings extend this observation to suggest that a

molecular dialogue between immune receptors and microbial molecules confers resistance

to enteric infection.

The contribution of the microbiota to the development of TRegcells remains unclear as

multiple studies have revealed conflicting results. An earlier report demonstrated a

deficiency in the percentage of Foxp3+ cells within the CD4+CD25+ subset within the

MLNs of germfree mice when compared to conventionally colonized animals. Foxp3

mRNA levels were also lower in CD4+CD25+ isolated from total lymph nodes of germfree

mice. Supporting this, another study reported lower expression of the Foxp3 transcript in

CD4+CD62L− T cells from germfree mice.43. Additionally, studies have shown that TReg

cells from germ-free animals were not as potent in suppressing CD4 T-cell proliferation in

vitro as cells from conventionally colonized animals44. Populations of TReg cells from germ-

free animals expressed less IL-10, and were unable to prevent disease in a transfer model of

experimental colitis45. In contrast, recent studies have reported no change in the percentage

of CD4+Foxp3+ subset of T cells within the colonic lamina propria46, while yet another

study reported elevated percentages of CD4+TCRβ+Foxp3+ within the small intestine39.

These differences might be attributable to the specific subsets of TReg analyzed, differences

in experimental methodologies and/or the tissues from which TReg were harvested.

Alternatively, the particular diet given to the animal might influence Treg subsets within the

intestine as most animal food, even if autoclaved, may have varying amounts of microbial

molecules (such as TLR ligands). However, these data collectively suggest that intestinal

bacteria interact with the mammalian immune system to direct the linage differentiation of

both pro- and anti- inflammatory T-cell populations. Therefore, induction of effector T-cell

responses and modulation of TReg -cell function by the microbiota may be a crucial

component of diseases such as IBD. It is possible that different classes (or even species) of

bacteria induce diverse immunological functions. Therefore, the equilibrium between
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inflammation and regulation in the gut may be due to the community structure of the

microbiota.

IBD and a breakdown in tolerance to gut bacteria

IBD involves a shift from a regulated intestinal immune responses to one that is driven by

unrestrained immune-cell activation and pro-inflammatory cytokine production474849. The

cause of this increase in immune stimulation is of great interest, and several lines of

evidence indicate a significant role for commensal bacteria in the progression of disease 50.

Patients with IBD respond favorably to antibiotic treatment and fecal diversion, and have

greater antibody titers against indigenous bacteria than unaffected individuals51,52,53. In

addition, inflammatory lesions are more pronounced in areas of the intestine that contain the

greatest number of bacteria. The data in animal models provide further evidence for the

involvement of gut bacteria in IBD. Pre-treatment with antibiotics has been shown to

alleviate intestinal inflammation in several animal models54,55. HLA-B27-transgenic rats,

interleukin-10 (IL-10)-and IL-2-deficient mice spontaneously develop chronic colitis,

whereas germ-free animals of all backgrounds fail to develop intestinal inflammation56,57,58.

In a model of disease induced by the adoptive transfer of pathogenic T cells into

immunodeficient (Scid−/− or Rag−/−) recipient mice, colonization of animals with intestinal

pathogens such as Helicobacter hepaticus was found to exacerbate inflammation59.

Moreover, pathogenic T cells can be transmitted to healthy animals through the adoptive

transfer of T cells that are reactive against specific commensal organisms50,60. The only

organism reported to be strongly associated with Crohn's disease is adherent-invasive E.coli

(AIEC)61. However, it appears that inflammatory responses during human and experimental

IBD are directed towards certain subsets of commensal organisms with pathogenic potential

such as Helicobacter, Clostridium and Enterococcus species. Curiously, these organisms are

abundant commensals, and not typically infectious pathogenic agents. As the microbiota of

all mammals contains these potentially harmful species, known as pathobionts (commensals

with pathogenic potential), the reason why inflammation ensues only in subjects affected by

IBD is not entirely known. Genetic factors play an important role in the pathogenesis of

IBD. This is demonstrated by familial aggregation of IBD and increased concordance for

IBD in monozygotic twins. Genome wide association studies have identified genetic defects

which are highly linked to disease. Mutations in bacterial sensing (NOD2/Card15)62 and T

cell immunity (IL-23R)30 have highlighted the connection between microbes and

inflammation in IBD. Additionally, experimental systems have demonstrated the importance

of host genetics during induction of IBD. Indeed, microorganisms such as E.coli and E.

faecalis, that do not initiate disease in an immunologically competent host, do so when

introduced into genetically pre-disposed strains 63. Some have predicted that IBD, at least in

part, results from an imbalance in the normal microbiota (termed dysbiosis) without

acquisition of an infectious agent64. It remains unclear whether dysbiosis directly causes

disease or is a result of the altered intestinal environment. Future studies using animal

models whereby the microbiota can be selectively manipulated during the course of

experimental disease may begin to address this important issue.

Genetic and habitual/lifestyle factors play a crucial role in maintaining health, however, the

notion that dysbiosis influences intestinal disease has gained much attention5,65,66. Recent
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studies have now begun to show evidence that the composition of the microbiota alone (and

not genetics or environment) may be important to the induction of disease. T-bet (tbx21) is a

T-box transcription factor that controls the type 1 pro-inflammatory response in both

adaptive and innate immune cells67. Loss of T-bet in mice lacking an adaptive immune

system (Rag−/−) develop spontaneous and penetrate intestinal inflammation that resembles

ulcerative colitis68. Treatment of these mice with broad spectrum antibiotics cured the

intestinal disease, demonstrating that inflammation was driven by the microbiota. Finally,

when wild-type animals are co-housed with T-bet−/−Rag−/− colitic mice, they develop a

comparable colitis like disease68. Therefore, the transfer of colitigenic microbes alone (the

identity of which is still uncertain) was sufficient to induce experimental ulcerative colitis.

The second study addressing the sufficiency of dysbiosis have come from metagenomic

analysis of the microbiota during obesity. Ob/ob mice display symptoms of obesity and are

used as a model system of human disease. Remarkably, transfer of the microbiota from

ob/ob animals into germ-free wild-type animals results in an increase in the mean body fat

of recipient animals69,70. Moreover, the proportion of Bacteroidetes is decreased in obese

people when compared to lean people, demonstrating the possibility that alterations in the

human microbiota may affect disease. Much like IBD, obesity appears to have a strong

genetic component71. The complex interplay between host genotype and its effects on the

microbiota are an area very worthy of further investigation. However, studies such as these,

where bacterial transfer into wild-type animals induces , argue for a prominent role for

dysbiosis.

Similar to animal studies, dysbiosis has been implicated in human disease. Many

investigations have shown a significant alteration in the microbiota of patients with

IBD 72,73,74. A recent metagenomic (culture-independent analysis of microbial community

structure) case-control study compared the microbiota of patients with IBD to that of non-

IBD controls74. The results revealed a statistically significant difference between the

microbial compositions of IBD patients and non-IBD patient controls. Furthermore, the

authors reported that an ‘IBD-specific’ microbiota displays a reduction in the levels of two

phyla of bacteria, the Firmicutes and Bacteriodetes, both prominently represented in non-

IBD controls. Longitudinal studies are required to determine if this particular profile (that is,

the loss of certain classes of bacteria) can be used as a diagnostic tool to identify people with

a greater likelihood of developing IBD. Although our understanding of how dysbiosis may

affect IBD is still preliminary, novel sequencing technologies promise to provide a platform

to analyze many thousands of microbiomes of both healthy and diseased individuals75. With

increased knowledge of species-specific alterations during disease, the molecular

mechanisms that link dysbiosis of the microbiota to intestinal inflammation can

systematically be explored in both experimental and human studies.

Beneficial gut bacteria promote immune homeostasis

The evidence presented so far has implicated the microbiota in shaping immune system

responses during disease, but the question still remains as to which particular organisms are

mediating these beneficial responses and, more importantly, how this is achieved. Here we

review the mechanisms by which symbiotic bacteria affect the mammalian immune system

that result in the prevention or treatment of experimental and human IBD.
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In the early 1900s, Ilya Mechnikov was the first to propose the use of live microorganisms

to maintain bowel health and prolong life. Now, the term ‘probiotic’ is used to describe

dietary microbes that are able to confer a health benefit on the host76. As shown in Table 2,

many individual or combinations of bacterial species have been shown to ameliorate the

symptoms of IBD in humans and mouse models. Although many of these probiotic strains

decrease toxic microbial metabolic activities, more recent evidence demonstrates the

capacity of these organisms to modulate intestinal immune responses. The common feature

of almost all bacterial species used as probiotics is the ability of these organisms to control

inflammation. Bacterial species can act on several cell types (epithelial cells, dendritic cells

(DCs) and T cells), but recent evidence suggests that induction of regulatory T cells by these

organisms is crucial to limiting inflammation and disease. Treatment of colitic mice with the

probiotic cocktail, VSL#3, increased the production of IL-10 and the percentage of TGFβ-

expressing T cells77. More importantly, transfer of lamina propria mononuclear cells from

VSL#3-treated mice was able to prevent colitis in recipient mice, indicating the ability of the

VSL#3 cocktail to initiate the generation of a protective population of cells. Depletion of

TGFβ-bearing CD4+ T cells from probiotic treated mice before the transfer of lamina

propria cells abolished the protective capacity of these cells77. More recently, in a model of

pathogen-induced inflammation, treatment of mice with Bifidobacteria infantis led to a

downregulation of intestinal inflammation and increases in the number of CD4+CD25+ TReg

cells78. Adoptive transfer of the CD4+CD25+ TReg-cell population from mice fed with B.

infantis inhibited inflammation-induced activation of nuclear factor-κB (NF-κB) in recipient

mice.

Naive CD4+ T cells can adopt a regulatory phenotype through interactions with intestinal

DCs36. Foligne et al.79 demonstrate that bone-marrow-derived DCs (BMDCs) internalize

Lactobacillus rhamnosus, yet maintain an immature phenotype. Transfer of BMDCs

incubated with L.rhamnosus can protect from inflammation and disease when transferred

into a recipient animal with colitis79. Moreover, depletion of the CD4+CD25+ T-cell subset

abolished the ability of the probiotic-treated DCs to protect from disease, suggesting that L.

rhamnosus-treated DCs can initiate TReg-cell activity79. It has recently been shown that

some patients with Crohn's disease showed a specific reduction in a prominent gut microbe,

Faecalibacterium prausnitzii80. Intriguingly, this organism or its secreted substances were

able to induce anti-inflammatory responses (such as IL-10 expression) and ameliorate

induction of TNF-α and intestinal disease when orally administered to experimental

animals. This seminal study thus directly linked the numerical reduction of a beneficial

bacterium from the human microbiota to the development of disease, suggesting that

symbiotic microbes may be directly mediating health. The specific molecules made by these

particular bacterial species that guide immune responses remain unknown; however current

data support the idea that symbiotic organisms actively communicate with the host immune

system to modulate anti-inflammatory processes.

The first demonstration that a single molecule made by a commensal microorganism could

shape beneficial immune responses was provided by the identification of polysaccharide A

(PSA) produced by the human symbiont Bacteroides fragilis (Figure 1). Colonization of

germ-free mice with B. fragilis or treatment with purified PSA directs the cellular and

Round and Mazmanian Page 8

Nat Rev Immunol. Author manuscript; available in PMC 2014 July 14.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



physical development of the immune system, including expansion and differentiation of

splenic CD4+ T cells81. The novel immunomodulatory activities of PSA during B. fragilis

colonization of germ-free mice include correcting systemic T-cell deficiencies, T-helper cell

imbalances and directing lymphoid organogenesis. The importance of B. fragilis in

maintenance of a healthy immune response was recently illustrated by the finding that

colonization by B. fragilis or treatment with purified PSA can protect from the induction of

experimental IBD66. Moreover, mice that are colonized by a mutant form of this

microorganism that lacks expression of PSA (B. fragilis ΔPSA) are no longer protected from

disease. Oral treatment of mice with purified PSA protects recipients from weight loss,

decreases levels of the pro-inflammatory cytokines TNFα, IL-17 and IL-23, and inhibits

epithelial hyperplasia and neutrophil infiltration to the gut associated with disease induction

in these models66. To provide insight into the mechanistic basis for PSA-mediated

protection, it was shown that increases in local induction of IL-10 were required for the anti-

inflammatory properties of PSA. PSA is unable to protect from induction of colitis in IL-10-

deficient mice, demonstrating that PSA functions by inducing the production of IL-10..

Based on this observation, we tested the ability of PSA to induce IL-10 in CD4+ T cells.

Indeed, CD4+ T cells purified from MLNs during PSA-mediated protection of colitis

showed increased levels of IL-10 compared with PBS treated control mice. Finally, transfer

of IL-10-deficient CD4+ T cells into Rag−/− recipient mice abolished the ability of PSA to

protect from experimental colitis66. These data have identified a single molecule made by a

symbiotic microorganism that stimulates CD4+ T cells to make IL-10, required for the

suppression of the inflammatory process during colitis, and suggest that other beneficial

bacteria may produce factors that can positively shape the host immune response during

IBD.

For many years, IL-10-producing CD4+ T cells (so called Tr1 cells) were considered to be

distinct from ‘natural’, thymic-derived TReg cells that are characterized by the expression of

FOXP382. It is now apparent that there is overlap between these two populations and that

IL-10-producing regulatory T cells can be found in the Foxp3+ T cell subset and are

imperative for the control of experimental colitis. While IL-10 producing T cell clones

specific for cecal bacterial contents have been generated 83the ability of a molecule from

symbiotic bacteria to regulate FOXP3+ TReg-cell differentiation and function awaits further

validation. However, it appears that certain beneficial bacteria have evolved molecules

(known as symbiosis factors) that induce protective intestinal immune responses. The

current treatments for IBD are either ineffective in most patients or result in severe side

effects. Knowledge of which beneficial species of bacteria can prevent or cure disease, and

harnessing the potent immunosuppressive potential of symbiosis factors will be important

steps towards designing novel and natural therapeutics for IBD.

The microbiota hypothesis and human disease

Does harboring certain strains of bacteria predispose an individual to disease or protect from

it? B. fragilis has been shown to protect its host from inflammatory disease caused by H.

hepaticus in an animal model of experimental colitis66. As symbiotic bacteria seem to have

evolved mechanisms to promote protection from pathobionts found in the same microbiota,

does disease result from the absence of specific organisms and their beneficial molecules? In
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other words, if symbiosis factors actively maintain health, can dysbiosis reduce bacterial-

mediated immune regulation that subsequently leads to inflammation? Reflecting a growing

medical crisis in Western societies, recent epidemiological and clinical reports have revealed

dramatic increases in the incidences of several immune disorders. Incidences of IBD,

asthma, atopic disorders (skin, respiratory, and food allergies), rheumatoid arthritis, type 1

diabetes and multiple sclerosis are increasing dramatically in ‘westernized’ populations,

including those of western European nations, the United States and Japan. The rapidity of

the rise in disease rates appears to argue against a solely genetic basis for these

observations 84. Because the implementation of antimicrobial strategies (including

vaccination, sanitation, ‘western’ diets, and antibacterial therapeutics) does not permit

discrimination between infectious and non-infectious microorganisms, such interventions

have most likely led to changes in our association with the microbial world as a whole.

If improvements in hygiene and health care have altered the process by which a healthy

microbiota is assembled and maintained, then patients with these diseases in developed

countries should display signs of dysbiosis. This indeed appears to be the case, at least

according to a growing number of studies which are now linking ‘Western’ diseases to

alterations in the microbiota. The intestinal bacterial composition of IBD patients differs

greatly from that of healthy controls74. However, over many years, research to identify the

pathogenic organism(s) that elicit inflammation has repeatedly identified reactions only to

intestinal bacteria shared by all humans—healthy and ill. No infectious organisms have ever

been conclusively demonstrated to be involved in IBD, though various studies are still

ongoing. So, perhaps the targets of inflammation in IBD are not pathogens, but pathobionts

that are overrepresented during dysbiosis (Figure 2). When intestinal bacterial species were

analyzed as a factor in asthma development, reports concluded that allergic children from

both an industrialized nation (Sweden) and a developing country (Estonia) had lower levels

of colonization by Bacteroides spp. and higher levels of colonization by aerobic

microorganisms than did non-allergic children from either region85. Epidemiological studies

have linked an altered intestinal microbiota to other allergic disorders, such as atopic eczema

and rheumatoid arthritis86-88. Though cause or effect relationships still remain unresolved, it

seems that deviations in the composition of the gut microbiota may be an influencing

environmental factor underlying the development of disease in genetically predisposed

individuals.

Recent studies have launched a revolution in biology aimed at understanding how (and,

more importantly, why) mammals harbour multitudes of symbiotic bacteria. As discussed

above, the effects of the microbiota on the immune system are becoming increasingly

evident. Astonishingly, the immune disorders for which incidences have increased in

‘Western’ countries all seem to involve reduced TReg-cell activity. It has been shown in

animal models and some human studies that deficiencies in TReg-cell populations or

function underlie asthma, IBD, rheumatoid arthritis, type 1 diabetes and multiple sclerosis89.

CD4+CD25+FOXP3+ TReg cells can prevent, and in some cases, treat these disorders in

laboratory animals. The antagonism between pro-inflammatory TH17 cells and FOXP3+

TReg cells is well documented90. Most remarkably, the numbers and function of certain

TReg-cell populations are reduced in germ-free animals45,43. As mentioned above, germ-free
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animals have numerous other immunological defects that may lead to disease, which

implicates a role for the microbiota in actively supporting health. After millions of years of

co-evolution with our microbial partners, have societal advances paradoxically affected

human health adversely by reducing our exposure to health-promoting bacteria?

Implications for a ‘healthy’ immune system

Although it has been known for decades that we harbour millions of commensal bacteria,

recent studies have only just begun to reveal the extraordinary complexity and diversity of

the human microbiota. This consortium of bacteria contains tenfold more cells than the

human body, 100 times the number of genes than in the human genome and has the

metabolic capacity of the human liver91,92. How is such a complex microbial network

assembled after birth? Relman, Brown and co-workers recently examined the development

of the intestinal microbiota of infants93. They found that in the first few days to weeks of

life, the microbiota of newborns is highly variable and subject to waves of temporal

fluctuations, possibly representing a time of sampling, or ‘trial and error’, to coordinately

assemble a stable microbiota. The first years of life are also a time of significant post-natal

development of the immune system. As commensal gut bacteria have profound influences

on the immune system, deviations from the ‘normal’ development of the microbiota

(through modern strategies such a caesarian section, formula-based diet, hygiene,

vaccination, and use of antimicrobials in infants) may alter the outcome of immune

development and potentially predispose individuals to various inflammatory diseases later in

life (Figure 2).

Based on clinical, epidemiological and immunological evidence, it seems possible that

changes in the intestinal microbiota may be an essential factor in the incidence of numerous

inflammatory disorders. Intestinal bacteria are a critical component in instructing the

development and function of the immune system. It is conceivable that the absence of

beneficial microorganisms (due to dysbiosis) that promote appropriate immune development

leads to the inflammatory responses that underlie various immune diseases in humans.

Recent studies have shown that at least for experimental IBD, spontaneous disease results

when immune suppression is deficient; thus inflammation appears to be a default

immunological state in the absence of regulation94. Although pathogenic bacteria clearly

induce local inflammation during acute infections, have symbiotic bacteria evolved to

regulate those inflammatory processes that are harmful to the host (and therefore, harmful to

the existence of the symbiont)? Significant research has implicated innate and adaptive

immune suppression during the control of disorders such as IBD, autoimmunity, asthma and

allergy, cancer and infectious diseases. According to a wealth of recent studies, we propose

the notion of a vast, intricate and unexpected level of interdependence between beneficial

bacteria and the immune system. Perhaps genetic and habitual factors shape the composition

of the microbiota, which in turn shapes the immune system of individuals predisposed to

inflammatory disease (Figure 3). The emerging identification of human symbiotic bacteria

with potent anti-inflammatory properties, and their correlative absence during disease,

suggests that certain aspects of human health may depend on the ‘health’ of the microbiota.

The medical and social reconsideration of the microbial world may have profound

consequences for the health of our future generations.
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Glossary

Microbiota The amalgam of microorganisms that make up a complex and diverse

community living within a given anatomical niche (usually an

environmentally exposed surface of the body).

Microbiome The collective genomes of a microbiota.

Symbiosis Symbiosis means “living together” as originally defined, the

relationship must be constant, intimate and between dissimilar

species. Although often used to describe a beneficial relationship,

symbiosis literally does not imply that either partner gains an

advantage.

Symbiont An organism that lives in association with a host (usually for a

lifetime) without obvious benefit or harm to either member.

Mutualism A symbiotic association in which both members benefit from the

relationship.

Commensal From the Latin, com mensa, meaning to ‘share a table’. This term is

frequently used to describe a microorganism which benefits from an

association with no known effects on the host.

Pathogen From the Greek, pathos, meaning ‘suffering’. An opportunistic

organism that rarely comes in contact with the host, but causes acute

or chronic disease upon infection.
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Parasite An opportunistic organism that maintains a prolonged, close

association with the host which benefits the parasite at the expense of

the host.

Pathobiont A symbiont that does not normally elicit an inflammatory response

but under particular conditions (environmentally induced) has the

potential to cause dysregulated inflammation leading to disease.

Dysbiosis Changes in the ‘normal’ or healthy composition of the microbiota

due to lifestyle practices that alter the initial development or stable

maintenance of the microbiota.

Specific
pathogen free
(SPF)

Typically used as conventionally colonized animals, these animals

are reared and maintained in an environment with an unknown

complex microbiota, that is free from known pathogens.

Gut-associated
lymphoid tissues

Lymphoid structures and aggregates associated with the intestinal

mucosa, specifically the tonsils, Peyer's patches, lymphoid follicles,

appendix or cecal patch and mesenteric lymph nodes. They are

enriched in conventional and unconventional lymphocytes and

specialized dendritic-cell and macrophage subsets. They provide the

first line of defence against entry of pathogens through the mucosal

barrier.

Peyer's patches Groups of lymphoid nodules present in the small intestine (usually

the ileum). They occur massed together on the intestinal wall,

opposite the line of attachment of the mesentery. Peyer's patches

consist of a dome area, B-cell follicles and interfollicular T-cell

areas. High endothelial venules are present mainly in the

interfollicular areas.

Mesenteric
lymph nodes

(MLNs). Lymph nodes located at the base of the mesentery. They

collect lymph (including cells and antigens) draining from the

intestinal mucosa.

Cryptopatches Clusters of cKIT+IL-7Rα+Thy1+ T-cell progenitors found in the

crypt lamina propria of both small and large intestinal villi.

Isolated
lymphoid
follicles

Small lymphoid aggregates located in the anti-mesenteric wall of the

small intestine and containing B cells, dendritic cells, stromal cells

and some T cells. They may contain germinal centres. They are

thought to have a role in maintaining equilibrium between the

immune system and the microbiota.

Pattern-
recognition
receptor

(PRR). A host receptor (such as Toll-like receptors) that can sense

pathogen-associated molecular patterns and initiate signaling

cascades (which involve activation of nuclear factor-κB) that lead to

an innate immune response.
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Inflammatory
bowel disease

(IBD). A chronic condition of the intestine that is characterized by

severe inflammation and mucosal destruction. The commonest forms

in humans are ulcerative colitis and Crohn disease.

Crohn's disease A form of chronic inflammatory bowel disease that can affect the

entire gastrointestinal tract, but is commonest in the colon and

terminal ileum. It is characterized by transmural inflammation,

strictures and granuloma formation, and is believed to result from an

abnormal T-cell-mediated immune response to commensal bacteria.

Ulcerative colitis A chronic disease characterized by inflammation of the mucosa and

sub-mucosa of the large intestine

‘Natural’
Regulatory T cell

(TReg cell). A specialized type of CD4+ T cell that can suppress the

responses of other T cells. These cells provide a crucial mechanism

for the maintenance of peripheral self-tolerance and are characterized

by expression of CD25 (the α-chain of the interleukin-2 receptor)

and the transcription factor forkhead box P3 (FOXP3).

VSL#3 A mixture of bacteria consisting of four strains of Lactobacillus (L.

casei, L. plantarum, L. acidophilus, and L. delbrueckii subsp.

bulgaricus), and three strains of Bifidobacterium (B. longum, B.

breve, and B.infantis), and one strain of Streptococcus salivarius

subsp. thermophilus.
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Antibody responses in germ-free animals

One of the first immunologic deficiencies observed in germ-free mice was a profound

reduction in the levels of secretory immunoglobulin A (sIgA) found in the intestine96.

Mono-association of mice with various bacteria leads to increased IgA expression. As

numerous studies have demonstrated that sIgA coats commensal (and pathogenic)

bacteria, some have speculated IgA is involved in limiting the penetration of bacteria into

host tissues. Studies from activation-induced cytosine deaminase (AID)-deficient animals

(which are unable to class switch to IgA), display lymphoid hyperplasia of the gut and an

altered microbiota, favoring the outgrowth of specific classes of bacteria97. Though

experimental evidence does indicate that IgA is involved in protection from some enteric

bacterial and viral infections98, contradictory studies have shown that IgA deficiency

does not cause increased prevalence of disease in animals, and IgA-deficient people

generally live a healthy life. However, pioneering discoveries initially by Macpherson

and colleagues are revealing a mechanistic role for symbiotic bacteria in actively shaping

the production of sIgA. Dendritic cells (DCs) that have acquired gut commensal bacteria

migrate to MLNs where they induce the production of IgA from naïve B cells99. This

process is required to control the penetration of commensal bacteria through the gut

epithelial barrier100. Recently, it has been shown that sensing of symbiotic bacterial

products by TLRs of intestinal epithelial cells results in localized B cell class

switching101, a process that potentially affects immune interactions with the

microbiota102. The discovery that symbiotic bacteria direct the function of a specialized

mucosal DC population that induces IgA class switching also implicates the microbiota

in having evolved defined mechanisms to direct immune responses103. Further, IgA

responses were recently shown to be involved in maintaining host-bacterial mutualism by

limiting innate immune responses to a model gut symbiont104. The recent revitalization

of research into the biological functions of intestinal sIgA promises to provide important

clues regarding the molecular communication between the immune system and the

microbiota.

Round and Mazmanian Page 20

Nat Rev Immunol. Author manuscript; available in PMC 2014 July 14.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 1. Model for Bacteroides fragilis-mediated protection from disease induced by
Helicobacter hepaticus
B. fragilis produces an immunomodulatory polysaccharide (PSA) that induces an

immunoregulatory programme that provides protection from inflammation induced by H.

hepaticus. PSA is taken up by intestinal dendritic cells (DCs), which presumably migrate to

the local mesenteric lymph nodes (MLNs) where they initiate T-cell responses by presenting

PSA on MHC class II molecules to CD4+ T cells. This process helps to restore a balanced T

helper (TH) and regulatory T (TReg) cell profile. Subsequently, naive TH cells adopt anti-

inflammatory functions that include expression of interleukin-10 (IL-10). IL-10 is required

to suppress the production of pro-inflammatory cytokines (such as IL-17, IL-23 and tumour-

necrosis factor (TNF) induced by H. hepaticus during experimental colitis. It is this balance

of the pro-inflammatory responses to H. hepaticus by regulation induced by B. fragilis that

results in the control of intestinal inflammation.
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Figure 2. Immunological dysregulation is the result of dysbiosis in the microbiota
a | A healthy microbiota contains a balanced composition of multiple classes of bacteria.

Commensals are permanent residents of this complex ecosystem and provide no benefit or

detriment to the host (at least to our knowledge). Symbionts are organisms with known

health-promoting functions. Pathobionts are also permanent residents of the microbiota with

the potential to induce pathology. b | During dysbiosis, there is an unnatural shift in the

composition of the microbiota whereby either the numbers of symbionts are reduced and/or

pathobionts are increased. The various causes for this are not entirely clear, but are likely to

include recent societal advances in developed countries. The result is non-specific

inflammation which may predispose certain genetically susceptible people to inflammatory

disease. Pathogens are opportunistic organisms that cause rare and acute inflammation.
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Figure 3. Proposed causes of Dysbiosis
We propose the notion that the composition of the microbiota can shape a healthy immune

response or predispose to disease. Multiple factors can contribute to a dysbiotic state

including host genetics, medical practices, life style, and exposure. a| Host genetics can

potentially influence dysbiosis in multiple ways. Genome wide association studies of IBD

patients have revealed polymorphisms in immune-related genes. An individual lacking

genetic regulatory mechanisms or overactive pro-inflammatory pathways will have an

intestinal environment marked by unchecked inflammation. Studies have demonstrated the

ability of inflammation alone to influence the composition of the microbiota, potentially in

favor of pathobionts. Alternatively, it is possible that genetics of the host can ‘select’ or

exclude the colonization of particular organisms. This selection can be either active (as

would be the case of an organism recognizing a particular receptor on the host) or passive

(the host environment is more conducive to fostering the growth of select organisms).

‘Selection’ of pathobionts by the host could tip the balance in favor of inflammation. b| The

food we consume and even the day-to-day stress95 represent aspects of life style that have

the potential to influence the microbiota. c| Hospitals represent a sterile environment in

which infants are born. While the sterility protects from dangerous pathogens, it also has the

potential to prevent early exposure to health-promoting bacteria. d| The advent of antibiotics

represents a major medical breakthrough; however, antibiotics do not have the capacity to

distinguish between pathogenic or symbiotic microorganism s and may adversely alter the

microbiota.
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Table 1

Intestinal immunologic defects in germ-free mice

Intestinal organ development Site Phenotype in Germfree mice

Small Intestine

Peyers Patches fewer, less cellular

Lamina propria thinner, less cellular

Germinal centers fewer plasma cells

Isolated lymphoid follicles smaller, less cellular

Mesenteric Lymph nodes Germinal centers
smaller, less cellular

fewer plasma cells

Cellular Defects Cell Type Phenotype in Germfree mice

Intestinal epithelial lymphocytes CD8+ T cells fewer, reduced cytotoxicity

Lamina propria lymphocytes CD4+ T cells

proportional decrease in number

decreased Th17 cells (Small intestine)

increased Th17 cells (Colon)

Mesenteric lymph nodes CD4+CD25+ T cells
reduced expression of Foxp3

reduced suppressive capacity

Molecular immune deficiencies Molecule Phenotype in Germfree mice

Paneth Cells
Angiogenin-4 reduced expression

RegIIIγ reduced expression

B cells Secretory IgA reduced production

Intestine ATP reduced

Intestinal epithelial cells

MHC class II reduced expression

TLR 9 reduced expression

IL-25 elevated
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Table 2

Bacteria shown to be protective in inflammatory bowel disease

Bacterial Strain/s Model system IBD type/ model Mechanism of suppression

VSL#3 Human/ mouse Pouchitis, Ulcerative colitis/ TNBS IL-10, TGF-β bearing T cells

Bifidobacteria lactis Rat TNBS ↓ colonic TNF-α and iNOS

Bifidobacteria infantis Mouse S. typhimurium induced enteritidis Tregs, inhibits NF-κB

E. coli Nissle 1917 Human/ mouse Ulcerative colitis/ DSS colitis ↓ inflammation via TLR-2 & TLR-4

Lactobacillus rhamnosus GG Mouse/ Rat TNBS/HLA-B27 induction of CD4+CD25+ cells

Lactobacillus salivarius Mouse TNBS ↓ colonic inflammation

Lactobacillus reuteri Mouse IL-10−/− mice NGF and ↓ IL-8, TNF in cell lines

Lactobacillus plantarum 299v Mouse IL10 −/− mice, but not TNBS ↓ IFN-γ and IL-12p40

Lactobacillus fermentum Rat TNBS ↓ colonic TNF-α and iNOS

Lactobacillus casei Rat TNBS ↓ colonic COX-2

Bacteriodes thetaiotaomicron Rat S.enterica induced enteritidis ↓ IL-8 and TNF-α in Caco-2 cells

Bacteriodes fragilis Mouse T cell transfer model, TNBS CD4+ T cell derived IL-10

YO-MIX Y109 FRO 1000 Mouse TNBS ND

Faecalibacterium prausnitzii Mouse TNBS ↓ NF-κB and IL-8
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