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Abstract

We report a functional magnetic resonance imaging (fMRI) study of 102 healthy participants who
completed a demanding Go/NoGo task. The primary purpose of this study was to delineate the
neural systems underlying responses to errors in a large sample. We identified a number of regions
engaged during error processing including the anterior cingulate, left lateral prefrontal areas and
bilateral inferior frontal gyrus, and the subthalamic nucleus. The power afforded by the large
cohort enabled identification of regions not consistently measured during Go/NoGo tasks thus
helping to incrementally refine our understanding of the neural correlates of error processing.
With the present fMRI results, in combination with our previous exploration of response inhibition
(Steele et al. [1]), we outline a comprehensive set of regions associated with both response
inhibition and error processing.
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1. Introduction

A fuller understanding of the neural mechanisms that underlie error-monitoring and
response inhibition would benefit several areas of cognitive neuroscience. Such information
could facilitate greater understanding of these processes in both the theoretical and applied
domains, particularly in understanding response inhibition and error-monitoring in
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psychopathological samples. We previously published an analysis of response inhibition [1]
in the same subject sample and present here companion analyses and thorough accounting of
cognitive functions associated with response inhibition and error-monitoring with a large
sample using functional magnetic resonance imaging (fMRI).

Response inhibition and error-monitoring (i.e., error processing) have been explored using
several types of inhibition tasks (e.g., Go/NoGo, Stroop, Stop-signal, Flanker, Wisconsin
Card Sorting Task, and Task-Switching: see [2] for review). We used a standard, previously
published [3] Go/NoGo paradigm to measure response inhibition and error processing where
participants are serially presented with targets (Go Stimuli), which require a response, and
distractors(N 0Go stimuli), which require inhibition of a response. In this task, as in other
Go/NoGo tasks, the presentation of target stimuli is more frequent than distractors, creating
a bias towards responding to target stimuli. Successful performance on this task requires the
ability to monitor conflicts, process response errors, withhold or inhibit a pre-potent
response, and learn from response errors. The task is well designed to distinguish the
neuronal systems associated with response inhibition and error processing.

Neuroscience research has identified a number of brain areas related to successful response
inhibition [1, 4]. This network includes the lateral and ventrolateral prefrontal cortex (e.g.,
[1, 5-8]), inferior frontal gyrus [1, 9-13], inferior parietal lobe (e.g., [1, 5, 10-12, 14, 15]),
pre-supplementary motor areas [16] anterior cingulate cortex (ACC; e.g., [1, 3, 7, 10]),
occipital regions such as the cuneus [1, 7, 17, 18] and subcortical regions including the
thalamus and basal ganglia [1, 10, 14, 15, 19-21].

Neuroscience research has also identified brain areas responsible for error processing and, a
few of these regions overlap with those observed in successful response inhibition [22-27].
One of the most comprehensive neurobiological models of error processing to date [28]
postulates that the mesolimbic dopamine system sends input from the basal ganglia to the
ACC (primarily rostral), which then evaluates response error patterns to be utilized in
subsequent learning behavior. In addition to the ACC [3, 29-31] the amygdala [32] and
dorsolateral prefrontal cortex [32, 33] have also been implicated in error processing. It is
believed that the ACC relays error information from the frontal cortex and basal ganglia to
motor areas. These motor areas modify behavioral plans by providing feedback to the frontal
cortex and basal ganglia [34]. The dorsal portion of the ACC (dACC) has been most
commonly associated with response conflict and perhaps error monitoring as well, while the
rostral portion of the anterior cingulate (rACC) has been associated with the affective
appraisal of error [3, 5, 17, 31, 35-37].

The primary focus of the current exploration is to thoroughly measure the networks involved
in Go/NoGo tasks with a large sample. Although there is a growing body of evidence
supporting the involvement of the regions discussed above from imaging and lesion studies
[38-41] findings across studies are somewhat inconsistent. We have discussed this
elsewhere [1] and only highlight these issues here. Variability in results of brain imaging
studies could be due to a number of factors. One issue, small sample size, is known to
hamper the ability to detect small effects (Type Il error) in functional neuroimaging studies
[42, 43]. This issue is also well addressed well in meta-analyses [2, 4, 11, 43]. Nevertheless,
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early studies of cognitive control and inhibitory processing were largely comprised of
relatively small sample sizes (i.e., n < 20) but more recent studies have employed more
modest sample sizes or combined samples across studies [16, 32, 33, 44, 45]. Large sample
sizes are necessary in functional neuroimaging studies to address inconsistencies in the
literature and to develop a robust standard by which comparisons can be made to
psychopathological groups.

We report here an fMRI investigation of 102 participants who completed a Go/NoGo task
requiring the response inhibition of a pre-potent response [3]. We have previously published
regions associated with response inhibition [1] in this sample, but here, we test additional
contrasts to measure neural correlates of both response inhibition and error processing. With
our large sample, our explorations in this paper combined with the previous publication
should prove to be sufficiently powered to find the definitive set or neural correlates of
response inhibition and error processing on this task.

2. Methods

2.1. Participants

Participants consisted of 102 healthy adults (49 men) ranging in age from 23 to 52 years (M
= 33.92, D = 9.64) drawn from the Olin Neuropsychiatry Research Center at the Institute of
Living Hartford Hospital and the surrounding community of Hartford, CT via
advertisements, presentations at local universities, and word-of-mouth. Seven participants
(7%) were left-handed. The sample reflected the ethnic nature of the community: 68% of the
sample self-identified as White, 10% as Black/African American, 9% as Hispanic, 8% as
Asian, and 6% as Mixed/Other racial heritage. Using the Structured Clinical Interview for
the DSM-1V, all participants were free of any history of psychiatric illness (Axis I and I1;
[46]) and reported no history of psychosis in first-degree relatives. All participants reported
normal hearing and normal or corrected to normal visual acuity by contact lenses or MR
compatible glasses. Protocols were approved by the Institutional Review Board of Hartford s
Hospital and participants provided written informed consent

2.2. Experimental Design

Two scanning runs each comprising 245 visual stimuli were presented to participants using a
computer-controlled visual and auditory presentation package. Stimuli were displayed on a
rear-projection screen mounted at the rear entrance to the magnet bore and subtended a
visual angle of ~3 x 3.5°. Each stimulus appeared for 250 ms in white text within a
continuously displayed rectangular fixation box. Participants viewed the screen by means of
a mirror system attached to the head coil.

Participants were instructed to respond as quickly and accurately as possible with their right
index finger to each presentation of the Go stimulus (the letter X; 412 total trials with the
occurrence probability of 0.84). They were instructed to withhold a response to the NoGo
stimulus (the letter K; 78 total trials with the occurrence probability of 0.16). Task difficulty
could be attributed to the rapid exposure to rare violations of this response set using stimulus
letters close in visual similarity. The relatively high probability of targets was necessary to
build a pre-potent response set and elicit a sufficient number of errors to justify their
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independent examination. Before each run, all participants were encouraged to respond as
quickly and accurately as possible. Prior to scanning, participants completed a brief practice
session of ~10 trials.

The stimulus onset asynchrony (SOA) between stimuli varied pseudo-randomly between
1000, 2000 and 3000 ms with an average SOA of 1.5 s. No more than three Go stimuli were
presented within each consecutive 6 s period. The NoGo stimuli were interspersed among
the Go stimuli in a pseudorandom manner subject to three constraints: the minimum SOA
between a Go and NoGo stimulus was 1000 ms; the SOA between successive NoGo stimuli
was between 8 s and 15 s; and stimuli (both Go and NoGo) had an equal likelihood of
occurring at 0, 500 or 1000 ms after the beginning of a 1.5 s acquisition period (TR). By
jittering stimulus presentation relative to the acquisition time, the hemodynamic response to
the stimuli of interest was sampled effectively at 500 ms intervals.

Behavioral responses were recorded using a commercially available MRI-compatible fiber
optic response device (Lightwave Medical, Vancouver, BC). “Hits” were defined as Go (X
stimuli) events that were followed by a button press within 2000 ms of stimulus onset.
“Misses” were defined as Go events where the participant did not respond within 1000 ms of
stimulus onset. “correct rejections” were determined by the absence of a motor response
within 1000 ms of the NoGo stimulus. “false alarms” were defined as a motor response
following a NoGo stimulus.

2.3. Imaging Parameters

Imaging data were collected on a Siemens Allegra 3T system located at the Olin
Neuropsychiatry Research Center, Hartford, CT. Each participant’s head was firmly secured
using a custom head holder, and head motion was restricted using a custom cushion inside
the head coil. Localizer images were acquired to determine functional image volumes. The
echo planar image (EPI) gradient-echo pulse sequence (TR/TE = 1500/28 ms; flip angle =
65°; FOV = 24 x 24 cm; 64 x 64 matrix; 3.4 x 3.4 mm in plane resolution; 5 mm effective
slice thickness; 30 total slices) effectively covered the entire brain (150 mm) in 1.5 s. Each
of the two runs lasted just over 7 minutes, or 281 scans. A 9 s rest period was included prior
to the start of the task in each run to allow for T, effects to stabilize. The six initial images
from the stabilization period were discarded before post-processing.

2.4. Image Processing

Functional images were reconstructed offline at 16-bit resolution and manually reoriented to
approximately the anterior commissure/posterior commissure (AC/PC) plane. Functional
image runs were motion corrected using an algorithm based on the principle of M-estimation
which reduces the influence of large local intensity changes (INRIAlign; [47, 48]) as
implemented in the SPM2 software [49].

A mean functional image volume was constructed for each run from the realigned image
volumes. The mean EPI image was normalized to the EPI template. The spatial
transformation into standard MNI space was determined using a tailored algorithm with both
linear and nonlinear components [50]. The normalization parameters determined for the
mean functional volume were then applied to the corresponding functional image volumes
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for each participant. The normalized functional images were smoothed with a 9 mm full
width at half-maximum (FWHM) Gaussian filter. Event-related responses were modeled
using a synthetic hemodynamic response function composed of two gamma functions. The
first gamma function modeled the hemodynamic response using a peak latency of 6 s. A
term proportional to the derivative of this gamma function was included to allow for small
variations in peak latency. The second gamma function and associated derivative was used
to model the small “overshoot” of the hemodynamic response on recovery. High-pass
(cutoff period 116 s) and low-pass (cutoff period 0.23 s) filters were applied to remove any
low- and high-frequency confounds, respectively. A latency variation amplitude-correction
method was used to provide a more accurate estimate of hemodynamic response for each
condition that controlled for differences between slices in timing and variation across
regions in the latency of the hemodynamic response [51].

In addition to the traditional hemodynamic response contrast (beta values for condition A >
beta values for condition B), three hemodynamic variants were determined by calculating
and comparing the beta values for each contrast: (1) one condition has a large positive
response relative to another condition s smaller response of the same direction; (2) one
condition has a positive response while the other condition has a negative response, and (3)
one condition has a small negative response relative to the other condition s large response
of the same direction. In each instance, whole-brain analysis was carried out using t-test to
identify significant differences. These three response types likely reflect different
information processes in the brain and highlight the fact that not all interpretations of
traditional contrasts are equal (for discussion, see [1]). Most studies employing fMRI have
not focused on the relative directionality of the hemodynamic response but rather only on
identifying significant differences, regardless of the variant.

2.5. Data Analytic Strategy

To highlight neural correlates of response inhibition and error processing, first-level general
linear models (GLMs) included regressors to model motion (six parameters), hits, misses,
correct rejections, and false alarms and their temporal derivatives. For completeness, two
additional contrasts were created: 1) Hits were compared to false alarms; 2) correct
rejections were compared to false alarms. Contrasts of correct rejections compared to Hits
were presented previously [1]. The threshold for all contrasts was p < .05, corrected for
multiple comparisons using the family-wise error (FWE) correction as implemented in SPM.
Additionally, we examined age and sex related effects in these data. No significant
correlations with age or sex related differences were observed. As discussed in the
companion analysis [1], no regions of interest survived correction in analyses of fast vs slow
responders and false alarm error-rates. Finally, d was calculated and correlations were
performed with for each contrast (i.e., Hits vs. correct rejections, Hits vs. false alarms, and
false alarms vs. correct rejections). None of these correlations proved significant. The fMRI
modeling procedure employed here took into consideration the latency related to amplitude
differences in hemodynamic response (for full details, see [51]) to ensure the most accurate
measurement controlling for latency jitter (as might be found between fast and slow
responses to Hits, high and low false alarm error-rates, and differences in d measures).
Response time (RT) to Hits and false alarms were included in the first-level SPM models as
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parametric modulation. In this parametric model, no derivatives were included. As discussed
below, RT to false alarms, but not Hits, was related to BOLD response. Finally, we explored
measures of post-error slowing but, as expected based on our specific method, we did not
find evidence of post-error slowing in this sample. Participants were instructed to emphasize
speed instead of accuracy which increased errors and decreased the likelihood of post-error
slowing ([52]. Also, post-error slowing is best induced when stimuli are presented with an
SOA of less than 1000 ms ([52]. In the present experiment, our SOA was 1500 ms thus
reducing the likelihood of post-error slowing.

3.1. Behavioral data

Participants averaged 99% Hits out of total Hits and misses (95% CI upper bound = 99.6%),
and the mean percentage of false alarms out of total false alarms and correct rejections was
39% (95% CI upper bound = 41.0%). Average response time (RT) for Hits was 375 ms (SD
= 85 ms) and false alarms was 345 ms, (SD = 69 ms). Age was positively correlated with RT
on both Hit (r =.35, p <.001) and false alarm trials (r = .33, p <.001). There was no
evidence of post-error slowing with mean RT for hits immediately following a false alarm
(M = 348, SD=50) compared to hits following a correct rejection (M = 353, SD = 67), did
not differ significantly, t(101) = -1.06, p = .29.

3.2. Imaging data

Error processing—Neural activity in two regions was identified to be negatively related
to false alarm response time (inferior frontal gyrus, -51, 6, 18; putamen/lentiform nucleus,
-18, -3, 9). These were the only two regions where RT was related to neural activation.

Comparing false alarms with Hits revealed activity in 32 brain regions (Table 1 and Figure
1). Increased positive response was noted for false alarms in ACC (BA 24), superior and
medial frontal gyri (BA 6 & 10), and various subcortical regions associated with the basal
ganglia, all relative to a smaller positive response for Hits (RED; Figure 1B). A similar
pattern was observed for bilateral precentral gyri (BA 4 & 6), bilateral superior temporal
gyri (BA 22), bilateral inferior parietal lobule (BA 40), left middle and inferior occipital gryi
(BA 18), and cerebellar regions. Activity in the subthalamic nucleus/midbrain was observed.
Other regions yielded a positive response for false alarms with a negative response for Hits
(GREEN; Figure 1B). These included the bilateral cuneus (BA 17 & 18) and right precuneus
(BA 19). Some of these regions have not been commonly observed using the GLM approach
(Table 2).

Comparing false alarms with correct rejections revealed 32 areas of activation (Table 3 and
Figure 2). Consistent with previous work [3, 37] there was a significant hemodynamic
response in both dorsal and rostral ACC (BA 24) extending caudally towards the posterior
cingulate cortex and superiorly to include SMA (BA 6), supporting the contribution of ACC
to error processing. Activity was also increased in bilateral superior frontal gyri (BA 8 &
10), left medial frontal gryus (BA 9 & 10), bilateral precentral gyri (BA 4 & 6), bilateral
superior temporal gyri (BA 22 & 38), right insula (BA 13), right transvers temporal gyrus
(BA 42), left supramarginal gyrus (BA 40), right inferior parietal lobe (BA 40), bilateral
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postcentral gyri (BA 40), right posterior cingulate (BA 30), and right cerebellum, largely
consistent with other reports [11, 14, 16, 32, 33, 53]. Areas of activation less frequently
found in studies using GLM-based techniques include the cuneus (BA 30) and precuneus
(BA 7 & 31). All regions in this contrast exhibited a positive hemodynamic response for
false alarms relative to a smaller positive response to correct rejections except for the cuneus
and precuneus, whose responses were positive relative to a negative response for Hits
(GREEN; Figure 2B).1

Response inhibition—When correct rejections were contrasted with false alarms (Table
4 and Figure 3), seven regions showed significant activation in this condition including
bilateral subgenual cingulate (BA 25), right precuneus (BA 7), bilateral middle occipital gyri
(BA 18), right inferior parietal lobe (BA 40), and right putamen. Activation in the first two
of these areas during successful inhibition has not been consistently observed in previous
work of this kind (Table 5; [2, 4]). All regions in this contrast exhibited a positive
hemodynamic response for correct rejections relative to a smaller positive response to false
alarms. Contrasts of correct rejections compared to Hits were presented previously [1].

4. Discussion

This study represents a complementary, large-scale (n = 100) event-related fMRI
examination of response inhibition and error processing during a challenging Go/NoGo task
to Steele et al [1]. By comparing correct rejections and false alarms, response inhibition to a
NoGo stimulus was uniquely measured. By comparing false alarms to Hits or correct
rejections, unigue cognitive processes associated with error-processing were measured. The
primary purpose of the current exploration was to identify regions associated with a Go/
NoGo task with a large sample (see [42, 43] for discussions of benefits of large sample size
in GLM analysis of fMRI).

Response inhibition was explored by comparing correct rejections to false alarms. A large
number of brain regions were identified, including bilateral subgenual cingulate, precuneus,
bilateral middle occipital gyrus, right inferior parietal lobe, and the right putamen.
Combining these results with our previous exploration [1], we have identified a
comprehensive set of regions associated with response inhibition commensurate yet
extending previous published work [9-11, 14, 21, 54-65]. Also, the bilateral subgenual
cingulate was identified here though it is not usually identified in meta-analyses [2, 4].

Error processing, explored by comparing false alarms with Hits or correct rejections, was
also associated with neural activity in a large number of brain regions. Regions associated
with false alarms compared to Hits include the ACC, SMA, subthalamic nucleus/midbrain,
inferior frontal gyrus, anterior frontal cortex, inferior and middle occipital gyri, and the
precuneus. Regions associated with false alarms compared to correct rejections include the
ACC, superior and medial frontal gyri, and various subcortical regions associated with the
basal ganglia, the precentral gyri, superior temporal gyri, insula, inferior parietal lobule,

Lin two additional analyses, correct rejections and false alarms were also contrasted with their implicit baselines. These analyses
yielded activation maps that were largely redundant with correct rejections vs. Hits (previously published [1]) and false alarms vs.
Hits. Therefore, the implicit baseline results are not reported.
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occipital lobe, left postcentral gyrus, transverse temporal gyrus, cerebellar regions, posterior
cingulate, cuneus, precuneus, and right postcentral gyrus. We confirmed the involvement of
many regions that had not been consistently found in previous studies using traditional
analytic techniques. Tables 2 and 5 summarize the degree of correspondence between the
present results and those of similar studies despite occasional differences in baseline. We
restrict this comparison to GLM-based fMRI studies of inhibition in healthy adults
performing the classical Go/NoGo task (Tables 2 & 5). By using traditional and new
hemodynamic variants, we have been able to identify relative activation levels between
conditions that allows for a more thorough understanding of the neural correlates of
response inhibition and error processing.

Our results also implicated several additional regions including the lateral prefrontal cortex,
orbitofrontal gyrus, and temporal gyri. Similar regions have been identified in previous error
processing and conflict monitoring research (see [1] for additional response inhibition
analyses). Both dorsal and rostral regions of the ACC were identified to be associated with
error processing [3] though dorsal activation is thought to contribute to response selection
and rostral activation is thought to represent the affective component of error processing [5,
17, 31, 36, 37]. Also, left lateral prefrontal involvement found here replicates previous
finding [3, 66, 67]. This finding is consistent with electrophysiological findings showing that
left lateral prefrontal cortex lesions result in abnormal behavioral responses and disrupted
error-related brain activity [40, 41]. Error trials were associated with hemodynamic response
in the inferior frontal gyrus, a region thought to be involved in maintaining response
representations and mapping rules [41]. Interestingly, inferior frontal gyrus was negatively
correlated with false alarm response time. This effect could be interpreted as a measure of
unsuccessful response inhibition and is similar to previous fMRI findings [68, 69]. There is
also ERP evidence of greater activation related to faster responding [70]. Overall, this effect
could be interpreted as either increase response conflict or error monitoring related to our
task instructions that emphasized speed over accuracy. Additional explorations are necessary
before firm interpretations are possible. Finally, we identified many of the same regions as
Garavan et al., [11, 17] who found that error processing engages not only medial frontal, but
a range of other areas, including the inferior parietal lobe, occipital/temporal junction,
middle temporal gyrus, and insula.

We also noted significant error-related activity in subcortical regions such as the pons and
subthalamic nucleus/midbrain. Here we are one of the first to report subthalamic nucleus/
midbrain, part of the basal ganglia, to be activated by error processing. This is interesting
considering the basal ganglia is hypothesized to be crucial for error monitoring and for
learning from erroneous responses [34]. This hypothesis is supported by previous findings;
error-related subcortical engagement has been observed using ICA [32, 33]. Ullsperger and
von Cramon [40] found focal lesions to the basal ganglia (putamen and pallidum) and lateral
prefrontal regions impaired the ERN, an electrophysiological correlate of error processing.
This may be because such lesions impaired cortico-striato—thalamocortical loops running to
the ACC. However, to date there have been few functional imaging studies using the GLM
to test this hypothesis, and as such, the current study provides one of the first large-scale
imaging confirmations of the contribution of the basal ganglia and other subcortical regions
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to error processing. In conjunction with previous findings, the current findings add a great
deal of support to this hypothesis.

This study yielded several regions not typically observed in previous error processing
studies using a GLM approach or in meta-analyses. Particularly novel patterns of activation
were observed throughout the occipital cortex such as the inferior and middle occipital gyri
and cuneus as well as the fusiform gyrus, a temporal lobe region. This pattern could be
attributable to the increased statistical power gained from the greater numbers of errors
elicited by this task relative to typical Go/NoGo tasks.

Another goal of the current study was to explore differences in hemodynamic response
directionality as we have done previously [1]. Increased activation was noted for false
alarms relative to Hits in the ACC, superior and medial gyri, and several temporal and
parietal lobe areas (RED; Figure 1B). Similarly, increased activation was noted for false
alarms relative to correct rejections in the ACC, superior and medial frontal gyri, and
various subcortical regions associated with the basal ganglia, all relative to a smaller
positive response for correct rejections (RED; Figure 2B). Other regions yielded activation
associated with false alarms that were positive with respect to a negative response for Hits
(GREEN; Figure 1B). These regions included cuneus and precuneus. Similar regions yielded
activation associated with false alarms that were positive with respect to a negative response
for correct rejections (GREEN; Figure 2B). These included the posterior cingulate, cuneus,
precuneus, and right postcentral gyrus.

Though the regions plotted in GREEN in Figures 1B and 1B represent activation differences
between false alarms and Hits or correct rejections, respectively, these regions may not be
associated with error-monitoring directly. For instance, both the cuneus and precuneus have
been linked to consciousness, episodic memory retrieval, and the default mode network [71-
74] and the observed direction of measured effects with our hemodynamic variants could
potentially be explained by these theories. This could be interpreted as only the RED
regions, not the GREEN, found in Figures 1B and 2B truly make up a network associated
with error processing. By differentiating between the three types of hemodynamic responses
within a dataset, investigators can refine their models of response inhibition and error
processing. Knowing the directionality of the hemodynamic response can also improve
reliability assessments of brain areas that appear to be similarly engaged across multiple
study samples and tasks. Future explorations of response inhibition and error processing
with such hemodynamic variants are needed before stronger conclusions can be established.

There are some limits to the generalizability of this study. As discussed above, no evidence
of post-error slowing was measured in this experiment. As demonstrated by previous work
(e.g., [11, 21, 58, 60, 65]), the interpretation of these Go/NoGo results cannot necessarily be
expanded to include other forms of response inhibition, such as the inhibition of already
initiated motor-responses seen in stop-signal tasks. For example, we have identified,
increased activity in striatal regions for correct rejections, a finding supported by previous
reports of Go/NoGo tasks [11, 21, 60, 65]. In contrast to this finding, correct rejections
measured during a stop-signal task frequently implicate the subthalamic nucleus [19, 59],
another region of the basal ganglia. These varied findings could potentially reflect the
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different demands of the two inhibition tasks [75]. This is interesting considering the basal
ganglia is hypothesized to be crucial for error monitoring and for learning from erroneous
responses [34]. This hypothesis is supported by previous findings; error-related subcortical
engagement has been observed using ICA [32, 33]. Ullsperger and von Cramon [40] found
focal lesions to the basal ganglia (putamen and pallidum) and lateral prefrontal regions
impaired the ERN, an electrophysiological correlate of error processing. This may be
because such lesions impaired cortico striato thalamocortical loops running to the ACC.
However, to date there have been few functional imaging studies using the GLM to test this
hypothesis, and as such, the current study provides one of the first large-scale imaging
confirmations of the contribution of the basal ganglia and other subcortical regions to error
processing. A full understanding of response inhibition and error monitoring must consider
variations between tasks at least as much as the convergence commonly emphasized within
tasks. Similarly, extrapolation from the error processing measured here compared to other
situations when errors occur may not be appropriate. Error processing in this Go/NoGo task
may not necessarily be the same as error processing in other tasks that elicit errors (i.e., not
all errors are created equal; [76]). Meta-analyses (e.g., [2, 4]) are specifically designed to
identify the specific underlying cognitive process across heterogeneous tasks to answer such
a global question of response inhibition and error processing. Finally, participant age and
sex were not related to our findings. However, these variables have been known to have a
moderating influence on how the brain learns to inhibit responses in the Go/NoGo task (e.g.,
[77]). Future research should consider further testing these variables better isolate their
specific contribution to response inhibition and error processing.

Taken together, the current study identified numerous regions that have been inconsistently
shown to be engaged in error processing and response inhibition using similar methods.
Indeed, no other study has reported engagement of the breadth of regions observed here
despite using various baselines. This speaks to the importance of larger samples in imaging
studies that employ GLM techniques. We identified 32 regions each when false alarms
elicited greater activation than Hits and 32 regions when false alarms elicited greater
activation than correct rejections (Table 1 & 2, respectively). Also, we identified seven
regions that elicited greater activation to correct rejections than to false alarms (Table 4).
This is comparable to the number of regions of interest identified in our previous study
response inhibition in a Go/NoGo task [1] and a previous study using 100 participants who
completed an auditory oddball task [42]. Though the GLM analysis we performed is one of
the large samples of its kind in this area, it is possible that data-driven techniques like ICA
may reveal additional error-related changes that do not track cleanly with our GLM model.
These data-driven techniques are more robust against Type Il errors even with smaller
samples [32, 33, 78], and this should be a focus of future research of this kind. Also, event-
related potentials (ERP) have often been used to identify response inhibition processes (e.g.,
[12, 18, 20, 79]) and error processing (e.g., [34, 39, 76]). Combining ERPs and fMRI
findings with a unique ICA analysis [80] could help further elucidate the time course and
spatial location of neural activity associated with response inhibition and error processing.
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5. Conclusions

In summary, the results presented here represent one of the largest imaging investigations of
response inhibition and error processing in a healthy sample conducted to date. Participants
were presented with a fast-paced Go/NoGo task. We identified a substantial number of
regions specific to response inhibition and error-monitoring providing a thorough
description of the networks involved in Go/NoGo tasks. When combined with our previous
exploration of response inhibition [1], we have identified a comprehensive set of regions
associated with response inhibition and error processing. Finally, we highlighted the
advantage of analyzing additional hemodynamic responses to better isolate neural correlates
of response inhibition and error processing.
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Figure 1.
SPM axial slices of areas of significant activation (p < .05, corrected for multiple

comparisons) for false alarms relative to Hits for the sample of 102 participants. (A) A
traditional, omnibus analysis comparing false alarms and Hits. (B) RED: false alarms have
as a large positive response relative to the Hit condition s smaller response of the same
direction. GREEN: false alarms have a positive response while Hits has a negative response.
BLUE: false alarms have a small negative response relative to the Hit condition s large
response of the same direction. Numeric labels denote significant regions of activation
anatomically labeled in Table 1.
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Figure 2.
SPM axial slices of areas of significant activation (p < .05, corrected for multiple

comparisons) for false alarms relative to correct rejections for the sample of 102
participants. (A) A traditional, omnibus analysis comparing false alarms and correct
rejections. (B) RED: false alarms have as a large positive response relative to the correct
rejection s smaller response of the same direction. GREEN: false alarms have a positive
response while correct rejections havea negative response. BLUE: false alarms have a small
negative response relative to the correct rejection s large response of the same direction.
Numeric labels denote significant regions of activation anatomically labeled in Table 3.
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Figure 3.
SPM axial slices of areas of significant activation (p < .05, corrected for multiple

comparisons) for correct rejections relative to false alarms for the sample of 102
participants. Using the hemodynamic variants, all regions identified in the traditional
contrast exhibited a positive hemodynamic response of correct rejections relative to a
smaller positive response to false alarms. Numeric labels denote significant regions of
activation anatomically labeled in Table 4.
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