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Abstract

Statistical analysis on arbitrary surface meshes such as the cortical surface is an important

approach to understanding brain diseases such as Alzheimer’s disease (AD). Surface analysis may

be able to identify specific cortical patterns that relate to certain disease characteristics or exhibit

differences between groups. Our goal in this paper is to make group analysis of signals on surfaces

more sensitive. To do this, we derive multi-scale shape descriptors that characterize the signal

around each mesh vertex, i.e., its local context, at varying levels of resolution. In order to define

such a shape descriptor, we make use of recent results from harmonic analysis that extend

traditional continuous wavelet theory from the Euclidean to a non-Euclidean setting (i.e., a graph,

mesh or network). Using this descriptor, we conduct experiments on two different datasets, the

Alzheimer’s Disease NeuroImaging Initiative (ADNI) data and images acquired at the Wisconsin

Alzheimer’s Disease Research Center (W-ADRC), focusing on individuals labeled as having

Alzheimer’s disease (AD), mild cognitive impairment (MCI) and healthy controls. In particular,

we contrast traditional univariate methods with our multi-resolution approach which show

increased sensitivity and improved statistical power to detect a group-level effects. We also

provide an open source implementation.
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Introduction

The cerebral cortex is a layer of highly convoluted surface of gray matter with spatially

varying thickness, and the distance between inner and outer cortical surface is known as the

cortical thickness, see Fig. 1. Within the last decade, numerous studies have shown how

cortical thickness is an important biomarker for brain development and disorders — the

existing literature ties this measure to brain growth (Lemaitre et al., 2012; O’Donnell et al.,

2005; Shaw et al., 2006a; Sowell et al., 2004), autism (Chung et al., 2005), attention-deficit

(Shaw et al., 2006b), genetic influences (Panizzon et al., 2009), amusia (Hyde et al., 2007),

osteoporosis (Hodsman et al., 2000), and even gender Sowell et al., 2007. Changes in the

cortical thickness (Newman et al., 1998; Prevrhal et al., 1999) are particularly important in

the context of Alzheimer’s Disease (AD) (de Leon et al., 1989; Erkinjuntti et al., 1987;

Pachauri et al., 2011; Thompson et al., 2004), which will be the primary focus of analysis in

this paper. In this context, studies have observed significant cortical thinning in temporal,

orbitofrontal and parietal regions (Lerch et al., 2005; Thompson et al., 2004) in patients with

AD. Lehmann et al. (2011) used both voxel-based morphometry (VBM) and cortical

thickness (CT) measures extracted by Freesurfer to find significant patterns of variation

between clinical populations including AD and the related posterior cortex atrophy (PCA)

group. They found cortical thinning in the occipital and posterior parietal lobe in the PCA

population, and in medial temporal regions in the AD population. Similar results were found

in Thompson et al. (2011) and Wirth et al. (2013) which related it to other biomarkers also.

In many other AD studies, researchers have used cortical thickness as a biomarker to detect

and classify AD cohorts from control subjects (Cho et al., 2012; Dickerson and Wolk, 2012;

Lerch et al., 2008; Querbes et al., 2009; Wolz et al., 2011).

The body of work above relating cortical thickness to cognitive decline is vast and tackles

various neuroscientific questions; but these studies share a commonality in that once the

thickness measurement on the cortical mesh has been calculated via a pre-processing

method, the main interest is to employ statistical hypothesis testing to find regions that

exhibit statistically significant differences between the two groups — typically a clinic

group and a control group — while accounting for various confounds. But this workflow

must take into account a few potential pitfalls. The first order requirement, clearly, is to

recruit a sufficient number of subjects to ensure that the study has sufficient power. Now, if

the expected variations are small, the cohort size must be large enough to ensure that we can

reliably identify group-wise differences. However, in many cases this is not feasible due to

cost and/ or the specific scope of the clinical question of interest (demographic

requirements, genetic profile etc). Therefore, it is imperative that the analysis procedure we

choose is sensitive and maximizes the likelihood of detecting signal variations between the

groups. Otherwise, in the small sample size regime, it is entirely possible that we will fail to

discover an otherwise real disease-specific effect. Notice that analysis of two very distinct
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groups that lie at the opposite sides of the disease spectrum will obviously yield a strong

statistical signal. But recent work, with good reason, has almost entirely focused on

detecting biomarkers pertaining to the early stages of decline (Johnson et al., 2011), or on

finer gradations of the clinical spectrum from control to AD. Because of the more moderate

effect size in this regime, even in larger studies, identifying group differences may be

challenging. Our interest then is in deriving representation schemes for the data, which helps

the downstream statistical test pick up subtle group differences with higher confidence than

would be possible otherwise.

Multiple comparisons

Consider the standard pipeline for analyzing cortical thickness variations in a neuroimaging

study. Here, the data are defined on an intricate mesh domain (i.e., brain surface), and as a

result the number of vertices needed to represent the surface (and consequently, the number

of hypothesis tests) grows up to 100,000 or more. After vertex correspondences between

subjects have been found, the hypothesis test is performed at each cortical surface mesh

vertex. Finally, one must perform a Bonferroni or other multiple comparison correction,

such as FDR or the method detailed in (Van De Ville et al., 2004). We can then conclude

that the cortical regions which correspond to the surviving vertices are indeed meaningful

disease-relevant regions.

Observe that in such a vertex-wise statistical task on a surface domain, improved sensitivity

can be achieved by increasing the signal to noise ratio. One option may be to utilize a

filtering operation (such as Gaussian smoothing). But this relies on achieving a delicate

tradeoff between smoothing the signal just enough to suppress noise but taking care not to

blur out the signal of interest. Instead, our key idea is to derive a descriptor for each mesh

vertex that characterizes its local context, at multiple scales (or resolutions) concurrently.

Such multi-resolution ideas, historically studied within image processing as scale space

theory (Lindeberg, 1993) or via the Wavelet transform (Daubechies, 1990; Mallat, 1989),

have been used sparingly within the context of statistical analysis on arbitrary meshes. The

framework presented here gives an end to end solution that makes these ideas

implementable for cortical surface data, with improved sensitivity.

Recall that the Wavelet transformation, the obvious choice for multi-resolution analysis of

the form alluded to above, uses a centered oscillating function as the basis instead of the sine

basis. Therefore, it overcomes the key limitation of Fourier series in failing to capture sharp

changes in a function (i.e., Gibbs phenomena due to infinite support) via the localization

property. Unfortunately, the conventional formulation is defined only in the Euclidean space

(e.g., a regular lattice). This is not suitable for convoluted and arbitrary surface models

where the mesh has a highly irregular geometry. In order to still make use of the main

theoretical constructs, but in the non-Euclidean setting, one must first decide a priori a

“standard” coordinate system. Popular parameterization techniques use a unit sphere and

utilize the spherical harmonics (SPHARM) (Chung et al., 2007). SPHARM defines Fourier

bases using spherical Laplacian to parameterize a function mapped to a sphere. This must

involve a module which will ‘balloon’ out the cortical surface on to a sphere while

preserving, to the extent possible, local distances, areas or angles. This is usually a lossy or
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distortion prone process. Based on similar ideas, the spherical wavelet defines the wavelet

on a template sphere with discretized regular lattice (Antoine et al., 2002; Freeden and

Windheuser, 1996). Some studies have shown how spherical wavelets can be used to

analyze complex cortical surface development (Yu et al., 2007). But spherical wavelets, like

spherical harmonics, by design, cannot compensate for the metric distortion already

introduced in the sphere mapping module. Of course, there are some heuristic adjustments

which offer varying levels of empirical performance in practice. But theoretically, it will be

satisfying to remove the restriction of a standardized coordinate system completely, and

derive a multi-resolution representation in the native domain itself. Experimentally, we will

show that this strategy yields substantial improvements.

By leveraging some recent results from the harmonic analysis literature (Hammond et al.,

2011), this paper proposes a framework to decompose a scalar function defined at each

vertex of a surface model into multiple scales using non-Euclidean Wavelets. It is easy to

think of this process as viewing each mesh vertex zoomed at various levels, and

characterizing the set or union of all such views within a vertex descriptor. Once such a

representation is derived, we can simply analyze the multi-scale signal using multi-variate

statistical tests. This paper makes the case that the performance of many cortical thickness

analysis studies can be significantly improved, with little additional work (of the form

described above).

The main contributions of this paper2 are the following:

a. We derive a highly sensitive multi-resolutional shape descriptor for performing

group analysis in a population of subjects on signals defined on surfaces/shapes;

b. We demonstrate the utility of the framework on two distinct Alzheimer’s disease

(AD) datasets and show rather significant performance improvements over the

standard baseline. These experiments give strong evidence that a large number of

cortical thickness analysis studies can immediately benefit from these ideas with

negligible additional cost;

c. To facilitate adoption, we provide a toolbox implementing the framework. Our

code is designed to operate directly on Freesurfer generated files and will be

available on NITRC concurrently with the paper’s publication.

Preliminaries: continuous wavelet transform in the Euclidean space

To keep this paper self contained, this section briefly reviews Wavelets in the form common

in introductory image processing classes. Readers familiar with this content can skip ahead.

The wavelet transform is conceptually similar to the Fourier transform in that it decomposes

a given signal into a linear combination of oscillating basis functions, thereby facilitating

frequency analysis. Even though the Fourier and wavelet transforms are similar, the critical

difference comes from the shape of the basis functions. While the sine and cosine functions

have infinite duration, that is, they are infinite repetitions of the same wave function per

2A preliminary version of this work was presented at the NIPS 2012 conference (Kim et al., 2012).
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period, the wavelet bases provide a compact support that is localized at a specific position.

The locality of the bases forms an important property of wavelet — while the Fourier

transform is localized in frequency only, wavelets can be localized in both time and

frequency (Mallat, 1989), and this behavior basically frees the transformation from ringing

artifacts.

The conventional construction of the wavelet transform is defined by the choice of a mother

wavelet ψ, and a related “scaling function” ϕ. The wavelet basis set is generated by

parameterizing ψ by scales s ∈ S and translations a ∈ A:

(1)

Controlling s changes the dilation of the wavelet and changing a varies the translation of the

wavelet. The wavelet transform of a signal f(x) is defined by the inner product of f and the

bases function ψ as

(2)

where ψ* is the complex conjugate of ψ, and results in wavelet coefficient Wf(s,a). If this

transformation satisfies the admissibility condition,

(3)

where Cψ is the admissibility condition constant and β̂(jω) = ∫ψ(x)e−jωx dx is the Fourier

transform of the mother wavelet with imaginary component. Such a wavelet transform is

invertible, and the inverse wavelet transformation reconstructs the original signal f from

Wf(s,a) without any loss of information as,

(4)

Here, (4) is known as resolution of the identity and the key expression for multi-resolutional

analysis using the wavelet transform.

Remarks

Wavelet transform in the Euclidean space has been extensively used in image processing

(Mallat, 1989, 1999). Formalizing wavelets in a non-Euclidean space such as a graph,

however, is not straightforward due to the non-regularity of the domain. The next few

sections provide additional detail on these difficulties and then describe our main strategy.
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Non-Euclidean wavelets and a multi-resolution mesh descriptor

Extending wavelets to the non-Euclidean setting, particularly to graphs, requires deriving a

representation of a function/signal defined on localized vertices, in a sense which will

become clear shortly. The first bottleneck is to come up with notions of scale and

translation on the graph. Briefly, the key idea motivated directly by recent results in

harmonic analysis (Coifman and Maggioni, 2006; Hammond et al., 2011) is as follows.

Instead of defining a wavelet function in the original space, one can define a mother wavelet

in the frequency domain as band-pass filters where scale turns out to be easier to define.

Transforming it back yields the wavelet in the original domain which can be localized by

applying a delta function δ(n) on vertex n. To do this, an analog of Fourier transform is

required between the space of the graph and the frequency space. Relying on spectral graph

theory (Chung, 1997), we obtain the necessary bases to define graph Fourier transform, and

then the spectral graph wavelet transform (SGWT) (Hammond et al., 2011) is derived using

the graph Fourier transform. Finally, using SGWT, we construct a wavelet multi-scale

descriptor, which is a multi-resolutional shape descriptor characterizing the shape/signal

context at each vertex at multiple resolutions.

The following section includes common notations in graph theory (which are defined in

Appendix A for completeness).

Graph Fourier transform

The spectrum of the graph Laplacian L forms a domain that provides information about the

key properties and geometry of the original graph. Defining a transformation using the

eigenfunctions χl as bases, the eigenvalues λl form a domain which is analogous to the

frequency domain for the Euclidean space, ℝn. Since eigenvectors of a self-adjoint operator,

including the Laplacian, form an orthonormal basis, the bases from spectral graph theory are

sufficient to form the bases for the graph Fourier transform. Using these completely

orthonormal bases, the forward and inverse graph Fourier transformations of a function f(n)

are defined as,

(5)

(6)

where f̂ is the function in the frequency domain and N is the number of vertices. Note that

these formulations are analogous to the formulations of Fourier transform, except that it uses

different bases.

Wavelet transformation on graphs

Wavelets are known to serve as band-pass filters in the frequency domain. Choosing a

certain type of band-pass filter function g determines the shape of the mother wavelet ψ, and
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from multiple scales s of the filter in the frequency domain, one can obtain the wavelet

function with control over dilation in the original graph domain. This is critical to the

construction, and can be achieved simply by defining an operator Tg = g(L) that acts on the

function defined on each vertex of a graph. Using the graph Fourier transform,

(7)

Furthermore, applying an impulse function δ(n) will localize the wavelet to be centered at a

certain point n. Using these parameters, filtering operation on a impulse function by g in the

frequency domain defines a wavelet function at scale s defined on vertex m in the graph

domain as,

(8)

This representation of ψ can be understood from the inverse Fourier transformation, where

the defined band-pass filter is realized in the original graph domain by the inverse

transformation. Similar to the definition of traditional wavelet transform, the transformation

is defined by the inner product of a signal f and wavelet basis function ψ as,

(9)

which results in wavelet coefficients and is known as the recently proposed spectral graph

wavelet transform (SGWT) (Hammond et al., 2011). Note that this expression (9)

corresponds to the continuous wavelet transformation as shown in Eq. (2) with an integral of

a set of coefficients and given bases. If the kernel g satisfies the admissibility condition,

(10)

and g(0) = 0, then such a transform is invertible,

(11)

which represents the original signal by superposition of wavelet coefficients and wavelet

bases over the full set of scales. Eq. (11) is equivalent to the following expression (where we

use χl),
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(12)

Eq. (11) also corresponds to the inverse wavelet transform in the continuous setting given in

Eq. (4), which completes the connection of wavelets in continuous space and SGWT.

A few examples of wavelets on graphs are shown in Fig. 2, where a triangular mesh surface

is considered as the original graph domain — each node of a triangle is the vertex and each

segment is considered as an edge. On the mesh surface, localized Mexican hat wavelets at

different scales (dilation) are shown. If the domain were to satisfy the axioms of Euclidean

geometry (i.e., a regular lattice), the wavelet functions would also form a symmetric shape.

But due to the irregularity in shape of the domain, we can see that the shape of each wavelet

is determined by the intrinsic geometry of the graph domain. Intuitively, we can consider the

wavelet function as a unit energy localized at a vertex, and its propagation to its nearby

vertices as a form of wave at different scales.

Wavelet multiscale descriptor

Similar to Fourier analysis, wavelet analysis transforms a function defined in a non-

Euclidean space into an alternative basis in order to facilitate certain types of analysis. In the

case of spectral graph wavelet analysis, this basis is derived from the eigen-spectrum of the

graph Laplacian. The central observation underpinning this work is that such a transform

would greatly facilitate statistical parametric mapping analyses of neuroimaging data. To

this end, taking the spectral wavelet transform yields the wavelet multiscale descriptor

(WMD). Here, we define the WMD as a set of wavelet coefficients at each vertex n for each

scale in S = {s0,s1,…,s|S| − 1}, where s0 denotes the scaling function.

(13)

The WMD on each vertex n can be interpreted as the original univariate (i.e., cortical

thickness,) signal being decomposed into various resolutions depending on the geometry of

the original space. WMD is suitable for analyzing any signal defined in a non-Euclidean

space (e.g., brain mesh or other 3-D shape mesh). In the following sections, we demonstrate

how WMD enhances sensitivity and statistical power of group analysis using general

statistical parametric mapping processes. Since WMD is a multi-scale representation, we use

Hotelling’s T2 test, the multivariate version of t-test, to derive the resultant p-values.

A motivating example

Before proceeding to our experimental setup, we first demonstrate a simple analysis using

WMD on a synthetically created star shaped graph. We define a function on the vertices in

each graph such that this function differs by group.

Then, hypothesis tests are carried out at the vertex level. After a multiple comparison

correction process such as false discovery rate (FDR), the resulting p-values are shown on a

template star graph. Using such a procedure, we see that hypothesis testing using WMD
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seems to be more sensitive to the intrinsic group difference compared to group analysis over

the original function.

As shown in Fig. 3(a), the star graph  consists of 5 vertices and 5 edges. We have two

groups of star graphs, G0 and G1, with 20 graphs in each. The index i = {1,···,40} refers to

specific graphs in this set. A function f(n) is defined on the vertices of each graph: randomly

drawn from two different distributions, f (  ∈ G0)~N(1, 0.1) and f( ∈G1)~N(2, 0.1).

Applying standard hypothesis test easily reveals the group differences in all vertices. When

there are very small variations as well as a large signal (i.e., difference in group means), we

obtain extremely low p-values — numerically indistinguishable from 0 — after multiple

comparison correction, as expected.

Next, we introduce i.i.d. noise in the signal at each vertex n, and each observation hi(n) is

modeled as the sum of the true function fi(n) and noise εi,n ~ N(0,1),

(14)

In this case, the test fails to detect the true signal variations especially for this sample size.

Fig. 3(d) shows an example of this failure, detecting only 2 vertices out of 5 as significant.

But applying multi-scale analysis using Hotelling’s T2 test on WMD shown in Fig. 3(f) finds

all 5 vertices as showing significant group difference with much lower p-values. As a

baseline for this experiment, we considered the heat-kernel smoothing model proposed in

(Chung et al., 2005). Here, we can run the smoothing procedure at different bandwidths,

collect the set of smoothed signals at these bandwidths and derive a descriptor. We call this

method, multi-scale heat-kernel smoothing (MHS), which has design similarities to WMD

but has distinct properties (WMD construction is based on a ‘band-pass’ type filtering

behavior, while heat-kernel smoothing is inherently low-pass filtering). MHS in Fig. 3(e)

used the same scale parameters as in WMD, and the performance of WMD shows a

significant improvement in p-values attributable to the foregoing reasons. In Figs. 3(d)–(e),

both the color and the vertex size represent the significance level — colored larger vertex

sizes mean lower p-value, and those p-values are given in Table 1.

Experimental setup

In this section, we describe datasets and implementation details for the experiment. We

make use of two different datasets, the publicly available Alzheimer’s Disease

Neuroimaging Initiative (ADNI) dataset and data acquired at Wisconsin Alzheimer’s

Disease Research Center (ADRC). In both cohorts, the structural T1-weighted MRI data

from the patients were processed by Freesurfer (Fischl, 2012), the standard tool to obtain

cortical surface data and overlay functional MRI data on to the acquired brain surface. Once

the MRI data is processed, it provides the brain surface model as a 3-D triangular mesh and

the cortical thickness values are defined on each vertex.

ADNI data

From the ADNI dataset,3 we selected 356 subjects from two different group populations,

160 AD and the 196 healthy controls. Demographic details of the subjects are given in Table
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2. These two groups lie at the opposite ends of the AD spectrum and the number of subjects

is sufficient for group analysis. Therefore, we expect the standard method (apply hypothesis

tests to the cortical thickness signal directly) to perform well and yield significant group

differences. It will nonetheless provide a baseline to assess whether the multi-resolution

representation yields any improvements at all.

Wisconsin ADRC data

The Wisconsin ADRC dataset consists of a total of 269 subjects at this point (and

increasing), categorized by AD, controls, and mild cognitive impairment (MCI). We used

available data from 134 participants including 42 AD, 42 MCI and 50 older controls (see

Table 3). These individuals were diagnostically characterized in the WADRC’s

multidisciplinary consensus conferences using applicable clinical criteria (McKhann et al.,

1984; Petersen et al., 2001). All MCI cases were of the single or multi-domain amnestic

subtype whose etiology was attributed to AD. The University of Wisconsin Institutional

Review Board approved all study procedures and each participant provided signed informed

consent before participation.

To acquire the data, the MRI scans were obtained in the axial plane on a GE x750 3.0-T

scanner with an 8-channel phased array head coil (General Electric, Waukesha, WI). 3-D

T1-weighted inversion recovery-prepared spoil gradient echo scans were collected using the

following parameters: inversion time (TI)/echo time (TE)/repetition time (TR) = 450ms/

3.2ms/8.2ms, flip angle = 12°, slice thickness = 1 mm (no gap), field of view (FOV) = 256

mm, matrix size =256mm × 256mm times 156mm, and in-plane resolution = 1mm × 1mm.

Implementation settings

Our framework is implemented using the spectral graph wavelet transform (SGWT) toolbox

from Hammond et al. (2011) as a submodule. First, the graph representation  of a surface

mesh is derived from its Delaunay triangulation, which gives a vertex set  as well as a set

of faces, each of which is comprised of a 3-tuple of vertices. From these we can extract a

binary edge relation . The cortical thickness values are then computed on each vertex by

Freesurfer (Fischl, 2012), which is a function f(n) (or a signal) defined at each vertex n .

In order to reduce noise in a way which will preserve the type of signal captured by WMD,

we apply heat-kernel smoothing (Chung et al., 2005; Zhang and Hancock, 2008) at t = 0.5 to

3Data used in the preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu). The ADNI was launched in 2003 by the National Institute on Aging (NIA), the National Institute of Biomedical
Imaging and Bioengineering (NIBIB), the Food and Drug Administration (FDA), private pharmaceutical companies and non-profit
organizations, as a $60 million, 5-year public–private partnership. The primary goal of ADNI has been to test whether serial magnetic
resonance imaging (MRI), positron emission tomography (PET), other biological markers, and clinical and neuropsychological
assessments can be combined to measure the progression of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD).
Determination of sensitive and specific markers of very early AD progression is intended to aid researchers and clinicians to develop
new treatments and monitor their effectiveness, as well as lessen the time and cost of clinical trials. The Principal Investigator of this
initiative is Michael W. Weiner, MD, VA Medical Center and University of California San Francisco. ADNI is the result of efforts of
many co-investigators from a broad range of academic institutions and private corporations, and subjects have been recruited from
over 50 sites across the U.S. and Canada. The initial goal of ADNI was to recruit 800 subjects but ADNI has been followed by ADNI-
GO and ADNI-2. To date these three protocols have recruited over 1500 adults, ages 55 to 90, to participate in the research, consisting
of cognitively normal older individuals, people with early or late MCI, and people with early AD. The follow-up duration of each
group is specified in the protocols for ADNI-1, ADNI-2 and ADNI-GO. Subjects originally recruited for ADNI-1 and ADNI-GO had
the option to be followed in ADNI-2. For up-to-date information, see http://www.adni-info.org.
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the raw cortical thickness values prior to computing WMD. Recall that this type of

smoothing requires a forward wavelet transform, followed by a scaling of coefficients

according to the heat kernel function, and finally an inverse transform to reconstruct the

smoothed thickness function. We approximate the inverse SGWT using a conjugate gradient

method, stopping when an error tolerance of 10−6 is achieved. The degree was set to 10 for

the Chebyshev approximation of the wavelet transformation in SGWT.

In our experiments, we used the default spline wavelet design provided by SGWT toolbox as

the kernel function g, which is a piecewise function,

(15)

where s(x) = −5 + 11x − 6x2 + x3, α = β = 1, x1 = 1 and x2 = 2. Scales of g are defined as

equally spaced bands in log scale in the spectrum of graph Laplacian. Here, the choice of the

number of scales is important and must be made empirically (details below). We also note

that since it is not feasible to eigendecompose a graph Laplacian when there are more than

105 vertices within a brain surface, we cannot easily access the full spectrum. What we can

do instead is to find the largest eigenvalue, and then divide the spectrum into a number of

bins, giving the different scales. Hence, the method has just one tunable parameter, which is

the number of bins (i.e., the number of scales). This has to be a small integer, meaning that

there are a very small number of values that this parameter can take, if one sets this

parameter using a validation test empirically. Because noise generally lies at high end of the

spectrum, we only used the scales of lower end of the spectrum to define the WMD. Those

scales of interests are chosen by incrementally adding band of the scales from the coarser

scale until results are satisfactory, and the remaining scales are discarded.

Since we have multiple brain surfaces, the range of the entire spectrum is defined by the

largest eigenvalue of the graph Laplacians of all subjects. Defining wavelets in the common

spectrum ensures that we define the same wavelet transform over the group of subjects. The

range of the eigenvalue spectrum was [0,25.7] for the ADNI dataset and [0,30.13] for the

ADRC dataset. To divide up the spectrum, we ran experiments by setting the total number of

scales to 5, 6 and 7. We observed empirically that 5 and 7 scales respectively for ADNI and

ADRC dataset were more effective. Next, one must choose how many scales will be used to

define the actual descriptor for statistical analysis. We found that using the first four scales

for both datasets yields reliably noting that other choices for these parameters yield

comparable results.

Experimental framework and statistical analysis

The goal of our experiments was to assess the improvement in the ability to detect group

differences using WMD versus using cortical thickness on its own. The results of these

experiments will be described in the next section. As a proof of principle, we first performed

group analysis on synthetically constructed brain surface data to show that WMD enhances
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the sensitivity of statistical analysis. Next, we present experiments on the ADNI and ADRC

datasets.

We follow the general analysis pipeline in SPM by plotting the corresponding p-values on

the template brain surface after FDR correction. We additionally apply heat-kernel

smoothing on the cortical thickness to compare the group analysis result. To compute the p-

values, we use a t-test on univariate variables (i.e., raw and smoothed cortical thickness) and

Hotelling’s T2 test and Multivariate General Linear Model (MGLM) with Hotelling–Lawley

trace on the multivariate variables of interest (i.e., WMD). Using MGLM, we control for the

effects driven by factors that are not directly related to the disease (i.e., age or gender) to

obtain a more accurate result.

Since our fundamental argument is that multivariate WMD is more sensitive than

performing statistical tests on univariate cortical thickness, one should expect to see a

stronger signal than results derived via smoothed or raw cortical thickness. Similarly, since

the ADNI has a far larger sample size than the ADRC, we hope to see stronger signal in the

ADNI results, but similar cortical regions should show up in the ADRC analysis as well.

Experimental results

In this section, we give a detailed description of the experiments performed on synthetic data

as well as the two Alzheimer’s disease datasets described in the previous section.

Simulation of surface-based group analysis and ROC response

We first demonstrate group analysis using WMD on a synthetically generated cortical

thickness (and atrophy) on a template brain surface. The template brain surface consists of

2790 vertices and 5576 faces, and 20 diseased and 20 control subjects are artificially created

using the template brain. First, a synthetic baseline global cortical thickness signal of mean 2

mm and variance 0.1 is introduced. This is shown as the blue region in Fig. 4. Note that this

region is viewed as not affected by disease and so no group differences should be

identifiable in these regions. Next, we define two diseased regions (green and red) in Fig. 4.

These regions undergo varying levels of atrophy (relative to the ‘default’ cortical thickness

signal in blue). The green region corresponds to a mean atrophy of 0.2 mm (variance 0.02

mm) and the red region corresponds to a mean atrophy of 0.4 mm (variance 0.04 mm)

affected on the default (blue) cortical thickness signal. The red and green regions

cumulatively correspond to a total of 889 vertices (32% of the brain region). Finally, we add

noise from N(0,1) to the cortical thickness signal obtained from the above procedure.

From the above data, we obtain smoothed CT and WMD for comparison. Smoothing is

performed via heat-kernel smoothing with bandwidth of 0.5. The spectrum of graph

Laplacian is [0,18.5], and this range is divided into 6 bins including the scaling function in

order to define WMD. The spline kernel function g from SGWT toolbox is used to obtain

the WMD.
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For statistical group analysis, a t-test was used for univariate raw data and smoothed data,

and we used Hotelling’s T2 test for multivariate analysis for WMD. The resultant p-values

are shown on the template surface in − log10 scale for comparison, see Fig. 5.

It is well known that filtering raw data improves sensitivity, however, over-filtering of data

may end up detecting many false positives. Multiple comparison correction is generally

applied to control the type I error in most studies. In this simulation, however, we know the

ground truth from the synthetic atrophy model — a label for each vertex indicates whether it

atrophies or not; so, we can conduct an ROC analysis to observe the sensitivity and

specificity relationship. Here, the aim is to show that we are not only increasing the

sensitivity, but we also do not make specificity worse using WMD. From this group

analysis, we obtain p-values at each vertex, which tells us whether to reject the null

hypothesis: the two distributions from the data at each vertex are the same. When the null

hypothesis is rejected, we find those vertices with significant differences, and we can use (1

− p) as a measure to determine the label for each vertex. The resultant ROC curve is given in

Fig. 6, and we measure the area under the curve (AUC). We see that the raw data gives an

AUC measure of 0.623, when heat-kernel smoothing is used the AUC is increased to 0.892.

But using WMD yields the best AUC of 0.971 suggesting that increased sensitivity does not

come at the cost of poor specificity.

Remark

Based on the simulation results, we may ask why a classical group analysis on the raw

cortical thickness signal is not detecting stronger signal differences, especially since the

atrophy has a relatively large affectation. There are two reasons for this behavior relating to

the level of atrophy introduced in these simulations (which are not very large) and the small

sample sizes. Recall that the synthetic atrophy was set to ~ 50 % and ~ 25 % of the mean

difference in atrophy levels in disease specific regions measured in a real dataset (which was

about 0.82mm). Also, the sample sizes are relatively small (20 healthy controls and 20

diseased). We will see shortly that when the atrophy differences and the sample sizes are

larger, classical analysis on cortical thickness can indeed detect regions exhibiting group-

level differences.

ADNI dataset

We performed four different analyses using different types of descriptors and statistical

methods. We used heat-kernel smoothing (Chung et al., 2005) to smooth the data, and

compare the group analysis result with the result using WMD. We applied t-test on the raw

thickness and smoothed thickness, when the given data are univariate, and Hotelling’s T2

and MGLM on WMD, which consists of multiple variables at each vertex. Using MGLM,

we remove the effect of age and gender, which are known to affect the cortical thickness

measurements regardless of the disorder. Fig. 7 shows the resulting p-values in increasing

order from all four analysis on the left hemisphere of the brain and the FDR threshold at q =

1e−5. We performed group analysis using 60%, 80%, and 100% of the total sample size (i.e.,

emulating the setting that the study size was smaller), and observe that the curve from the

sorted p-value is shifted with increase in the sample sizes. As a result, the number of vertices

that survive the FDR threshold increases with larger dataset, and a much larger number of
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vertices survive using WMD than those analysis using raw and smoothed cortical thickness.

We further plot these p-values on a template brain surface to see which regions of brain are

affected, and whether these are meaningful for AD.

Group analysis

The top row of Fig. 8 shows the standard hypothesis testing result on the raw cortical

thickness data, and we are able to find only small regions using this analysis. Using

smoothed cortical thickness, although it correctly finds the underlying signal (shown in the

second row of Fig. 8), the result using WMD (shown in the third and fourth rows of Fig. 8)

detects even larger regions of the brain with much improved statistical result (notice the red

regions). From these comparisons, it seems that WMD makes the underlying true signal

more sensitive and thereby improves results of the statistical analysis. Among 13,1076

vertices on both left and right hemispheres, we find only 1228 vertices (0.9%) using the raw

cortical thickness data. After applying kernel smoothing method, the number of identified

vertices as showing group differences goes up to 22,464 (17.1%).

Using Hotelling’s T2 test on WMD gives 31,078 (23.7%) vertices and after removing age

and gender effect, MGLM detected 34,472 (26.3%) vertices. All four analyses using raw

cortical thickness, smoothed cortical thickness, and WMD (Hotelling’s T2 test and MGLM)

revealed strong signal on the anterior entorhinal cortex in the mesial temporal lobe,

however, we can observe that WMD is much more sensitive relative to the univariate

analysis not only in this particular location, but also in the posterior cingulate, precuneus,

lateral parietal lobe and dorsolateral frontal lobe. The identified regions are already well-

known to be implicated in AD (Lehmann et al., 2011; Lerch et al., 2005; Thompson et al.,

2004).

ADRC dataset

On the ADRC data, we compared AD vs. controls, AD vs. MCI, and MCI vs. controls. In

the AD vs. controls analysis, we expect to detect similar brain regions found in the result

using the ADNI. In the AD vs. MCI and MCI vs. controls analyses, we simply show which

brain regions are showing morphological changes between groups.

AD vs. controls

Group analysis—We first analyze a group differences on AD and control subjects.

Compared to the ADNI dataset, here we have smaller number of subjects. Applying general

hypothesis testing directly fails to detect any group differences using the raw cortical

thickness due to the small sample size. Fig. 9 shows the resulting p-values in increasing

order from student’s t-test using cortical thickness and smoothed cortical thickness (heat-

kernel smoothing at t = 0.5), and Hotelling’s T2 test and MGLM using WMD. FDR

threshold at q = 0.1 is plotted in red dotted line, and the number of vertices that are below

the threshold level is considered as the signal showing significant group differences. We see

that while it is difficult to find a meaningful signal using raw cortical thickness estimates on

the ADRC dataset, WMD easily detects the underlying difference. On 131,076 vertices on

both the right and left hemispheres of the brain surface (65,538 tests on each hemisphere),

we apply t-test on the cortical thickness data and heat-kernel smoothed data, Hotelling’s T2
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test on WMD, and MGLM on WMD. After FDR at q = 0.05, we detect each 622, 5913,

12,455, 13,769 vertices from the t-test, Hotelling’s T2 test, and MGLM respectively, which

corresponds to 0.47%, 4.51%, 9.5%, and 10.5% of the total number of tests performed.

In Fig. 10, we compare the four different results using different features and statistical

techniques on the template brain surface. In the top two rows, the result using raw cortical

thickness and smoothed cortical thickness is presented. The smoothed cortical thickness

helps the test detect some signal variation, but the result is weak and almost does not reveal

any brain region. However, WMD increases sensitivity, detecting many more regions with

lower p-values (using Hotelling’s T2 test); the result is shown in the third row of Fig. 10.

Since variation of cortical thickness may be caused by age or gender, we further utilize

MGLM to remove the age and gender effects. As seen in the bottom row of Fig. 10, the

signal becomes more concentrated at specific regions.

Using cortical thickness and smoothing, we observe differences in a very small region in the

right inferolateral lobe only. However, using WMD, we find very strong group differences

in the bilateral inferolateral parietal as well as temporal pole and parahippocampal cortex.

Other than those regions, we also find isthmus cingulate, posterior cingulate, superior

frontal, precuneus, and entorhinal cortex on both the right and left hemispheres as showing

group differences. Since we found similar regions using ADNI dataset, it is reasonable to

conclude that our results on ADNI and ADRC are in agreement.

AD vs. MCI and MCI vs. controls

Group analysis—We also compare AD vs. MCI and MCI vs. controls group, and the

results are shown in Figs. 11 and 12. In these analysis, we show the uncorrected p-values

using Hotelling’s T2 test and MGLM (removing age and gender effect) on WMD. The first

row in Figs. 11 and 12 represents the result using cortical thickness, the second row is the

result using heat-kernel smoothing (t = 0.5), and the third and fourth rows show the result

using WMD by applying Hotelling’s T2 test and MGLM respectively. These comparisons

provide additional evidence that analysis with WMD is more sensitive, and more

quantitative results are shown in the Goodness of Fit Results on the ADRC dataset section.

In both AD vs. MCI and MCI vs. controls analyses, we expect to see similar brain regions

identified by the AD vs. controls analysis, with small differences. By comparing MCI with

AD and controls, we may assess the longitudinal progression of the disease in specific brain

regions. On AD vs. MCI, the results showed differences in precuneus, inferior frontal and

lateral occipital on both hemispheres. Relatively weaker differences in the temporal pole and

parahippocampal regions are seen. As identified from the AD vs. controls analysis, the

changes in cortical thickness occur in the precuneus, inferior frontal, temporal pole and

parahippocampal regions as a subject enters MCI. In the MCI vs. CN analysis, we observed

changes in the precuneus, isthmus cingulate, inferior parietal, inferior temporal, superior

temporal and temporal pole. Although not reported in previous works, the MCI and CN

comparison showed potential changes in the postcentral region as well.
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Power analysis

Next, we assess the improvement in group analysis in terms of statistical power and

calculate the number of subject required to identify the differences. We first select the

vertices that show p < 0.05 from the ADNI dataset, and these vertices are used to evaluate

the statistical power in the ADRC dataset. We use the mean and variance from the selected

vertices from each subject in ADRC dataset to perform power analysis. Following Hinrichs

et al. (2012), the sample size per group n at a certain confidence level α and power level 1 −

β is computed as

(16)

where Z1 − α is the upper α/2 percentile from the standard Normal distribution, σ2 is the

variance of the descriptor, 1 − β is the desired power and δ is the effect size. As a result, we

obtain the number of samples needed in order to get a significant result to observe the

induced variations (i.e., at power 80%) using cortical thickness and WMD.

The summarized result is shown in Table 4. The power analysis was carried out on the

cortical thickness and 4 scales of WMD used in other experiments, both concatenated and

individually. Since WMD results from a filtering operation from the wavelet transformation,

suppressing high frequency components has the effect of reducing noise and variation.

Consequently, WMD decreases the required sample size in most cases as shown in Table 4.

Goodness of fit results on the ADRC dataset

In order to quantitatively assess the improvement in sensitivity, we compare the R2 using

raw cortical thickness and WMD from a linear model which is,

(17)

where Y is the response variable (i.e., cortical thickness or WMD), and X is the model (i.e.,

group). For the multivariate response variable WMD, we used Wilk’s Lambda to compute

the R2. The R2 indicates how well the data fit the given model, and the result shown in Fig.

13 tells us that our WMD fits the model or explains more variance in the model much better

than cortical thickness in the AD vs. controls analysis. This shows the improvement in

sensitivity using WMD even to subtle effects. Further analysis on AD vs. MCI and MCI vs.

controls is shown in Figs. 14 and 15. These results also indicate that WMD is more

sensitive, and can reveal group differences which may be too weak to detect with the

classical analysis.

Discussion

Surface based mapping analysis is a widely deployed procedure in neuroimaging where we

use mass univariate tests, (e.g., t-test or GLM type analysis) along with multiple

comparisons correction to detect and assess statistically significant differences between
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clinical, genotype, or other groups of interest. The aim then is to derive maps showing the

degree of significance of group level effects so as to localize regions of interest. This

approach works very well when there are a sufficient number of subjects in the study, and

when the analysis method is sensitive enough to identify such group differences. However,

these assumptions may not always hold, which necessitates the design of mechanisms that

are sensitive enough to identify variations even in the smaller sample size regime. In this

work, we have focused on improving the sensitivity of the extracted features, so as to

mitigate the dependence on sample size.

To this end, we derived wavelet based multi-scale descriptors (WMDs) of the cortical

thickness signals which are sensitive both to surface geometry/topology, as well as

variations at different spatial scales. As noted above, a graph (typically) defines a non-

Euclidean space, and the appropriate tools completely capture its geometry and topology.

Therefore, wavelet theory lends itself nicely to the problem of deriving useful scale-

dependent features. This construction is based on a set of elegant results in the harmonic

analysis literature dealing with the spectral graph wavelet transform (Hammond et al., 2011)

and diffusion wavelets (Coifman and Maggioni, 2006). This allows us to propose a

multivariate approach for group analysis of surface based signals in neuroimaging settings.

Instead of mapping the data onto a sphere, as in traditional spherical harmonic (SPHARM)

based methods, our multi-scale shape descriptor is directly defined on the cortical surface

graph itself, completely bypassing the ballooning process. Further, the WMD method is

sensitive to signals at different scales unlike SPHARM based methods. In our WMD

construction, each scale represents a different level of support over the harmonic basis. By

varying a window over the harmonic spectrum, the method of WMD efficiently

characterizes both local and global contexts around each vertex. As the window moves

toward to the lower frequency spectrum, the wavelet frame becomes more overcomplete. To

avoid this, subsampling is done in grid based Euclidean spaces. However, when dealing with

non-Euclidean spaces, without making any assumption on the nature of the graph, there is

not necessarily a clear concept of subsampling. We note, for instance, that the method

described in Narang and Ortega (2012) gives a method of subsampling, but only in bipartite

graphs, and other methods can do this by making other assumptions. For instance, the

method in Coifman and Maggioni (2006) assumes that the spectrum decays. Because there

is no subsapling scheme on graphs, spatial correlations are induced between nearby vertices

in the lower frequency range. The authors in Van De Ville et al. (2004) propose to deal with

the spatial correlation issue by leveraging the compact, localized support of wavelets. In

various situations, the above decimated strategy is preferable, however, the subsampling

needed in such a scheme makes interpreting the specific band-pass filtering behavior

difficult. Instead, the non-decimated scheme adopted here is more convenient for analysis

purposes because avoiding subsampling enables deriving a descriptor precisely at the given

set of vertices.

Through our experiments we demonstrated that such a multi-resolutional shape descriptor

defined in a graph space can be a powerful and flexible tool for identifying group difference

signals. Indeed, a method with greater sensitivity to group differences would require

recruitment of fewer subjects. We primarily evaluated the WMD framework on cortical
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surface signals, comparing group analysis results with WMDs against classical methods. We

first compared these models using ROC curves for group analysis on synthetic brain surface

data. Relative to raw uni-scale measurements, or with smoothing, we identified brain regions

with much stronger group differences with global FDR correction, and in some cases these

were detected when classical methods fail. In the ADNI dataset, we obtained pronounced

group differences in the anterior entorhinal cortex, posterior cingulate, precuneus, lateral

parietal lobe and dorsolateral frontal lobe. Similar regions were found using the distinct W-

ADRC dataset as well. It is encouraging that these independent results are in agreement; we

also note that these regions are consistent with the literature (Lehmann et al., 2011;

Thompson et al., 2011; Wirth et al., 2013). In addition to these results, we applied MGLM

analysis to control for factors such as age and gender and show how these factors change the

results. The FDR-curves suggest that up to twenty-eight times more vertices using WMD

than using raw cortical thickness can survive global correction. Using the W-ADRC dataset,

we further analyzed the effect from MCI. We showed that WMDs obtain lower p-values

than raw cortical thickness, and displayed whole-brain sensitivity map using the R2 metric of

effect size. Finally, the power analysis on AD and controls using cortical thickness and

WMD indicates that WMD is more sensitive, giving smaller sample size estimates. By

applying our framework on two different datasets: the ADNI dataset (a large and well

characterized dataset) and the W-ADRC dataset (central to a number of local studies), we

have demonstrated that the methodology is broadly applicable.

We believe, for several reasons, that the improved sensitivity is attributable to the filtering

effect achieved by separating high-frequency information from low-frequencies. First,

anatomical brain features and neurodegenerative morbidity effects tend to exhibit a certain

degree of spatial cohesion and locality (Braak and Braak, 1995; Hinrichs et al., 2009). In

addition, most noise processes, whether derived from scanner effects or post-processing,

tend to be distributed across all scales. Gaussian smoothing and filtering are therefore quite

common for this and other reasons. Note however, that a non-adaptive Gaussian blur kernel

is oblivious to anatomical divisions such as sulci and cortical boundaries, and may

inappropriately mix signals which are close spatially, but not anatomically. Heat-kernel

smoothing attempts to resolve this issue by first expanding the cortices to a spherical surface

(ballooning) and then smoothing, but in doing so it smoothes all scales with the same fixed-

bandwidth kernel. A key feature of the WMD approach is that each scale corresponds to a

particular band-pass filter in the spatial domain, which can be thought of as smoothing only

certain frequencies. In graph-based methods, smoothing can, and indeed must, be done

separately for each scale because there is a strong dependence on the unique topology of

each subject’s cortical surface mesh. In the interest of space, we do not report the effect of

using all seven scales, (as opposed to treating the upper three as “high-frequency” signal and

discarding them as noise), but briefly, doing so uniformly weakened results and lessened

significance. Moreover, the high frequency components simply did not correspond with any

identifiable brain regions, and visually resembled a random “speckle” pattern. This is an

important observation because in some image processing domains high-frequency

information can give well-defined edges, but this did not appear to be the case in this

application.
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One concern about using the binary edge weights in the adjacency matrices (the distance

between vertices is not reflected) is that results from non-uniform sampling (based on the

underlying topology of the surface and/or the signal) and from a uniform or grid-like

sampling will be different. In principle, this is true. However, for actual datasets, assuming

that the sampling resolution is fine/high enough to capture variations in the shape topology

of the brain surface and the signal distributed on it, the final results of the statistical analysis

are not much different. Empirically, the default sampling in Freesurfer (Fischl, 2012) seems

to be sufficient for our analysis using binary adjacency matrices. A discussion of this

phenomenon with a toy example is shown in Appendix B.

Although we have demonstrated that our framework is able to obtain strong and robust

results in group analysis, there are nevertheless a few shortcomings. Our method leaves it to

the user to define the scales, and we note that this is often the case in wavelet-based

methods. Ideally, one would like to eigen-decompose the entire graph Laplacian, and divide

the spectrum into portions of roughly equal mass. However, when there are ~ 105 nodes in

the graph, this becomes infeasible. A more practical approach is to find the largest

eigenvalue, and simply divide the spectrum into a fixed number of equal-width bins, which

is the approach we followed. It still remains to choose how many such bins to use, but we

found empirically that a small number, on the order of five to ten, works well. This choice is

driven by several considerations. Primary among these is computational burden. Consider

that WMDs contain information not only about the function defined on vertices, but also

about the distinct topology of each subject’s vertex mesh. Therefore, resampling to a grid

must be done subsequent to any calculation of WMDs, and it must be done independently

for each scale. For a large number of scales this cost becomes a bottleneck. Moreover, we do

not wish to incur the curse of dimensionality any more than is necessary. That is, while

multi-resolution descriptors can effectively separate out some signals that are scale-

dependent, if we allow the descriptors to unduly proliferate then we may dilute the

underlying signal by spreading it too thinly over a large number of scales. Thus, while some

signals genuinely exist only at a particular scale, if we choose too many scales in some

neighborhood of the true signal, then this signal may “leak” between them due to sampling

artifacts. Taking these issues into consideration, we avoid choosing too many scales. In our

evaluations, we found that seven scales give satisfactory results, though we did not perform

an exhaustive grid search because of the above mentioned constraints. In addition to the

choice of number of bins is the choice of which ones to discard as high-frequency noise, and

which to treat as low-frequency signal. Following a similar line of reasoning as above, we

simply chose the first four bins as signal and the last three as noise. This is corroborated by

the fact that the distribution of p-values of the WMDs corresponding to high frequency

portions of the spectrum followed a roughly uniform distribution, and visual inspection

showed no recognizable spatial cohesion. This is exactly as we expect, and is in fact the

intended effect — considering that the CT signal can be recovered as a deconvolution and

summation of the WMDs, and that the high frequency WMDs are designed to serve as a

model of “noise”, then it is not surprising that the overall CT signal is weaker.

There is an important increase of interest in wavelet based neuroimaging analysis

methodologies. A number of works have expanded the basic framework as well as adapted it
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to various statistical issues. Van De Ville et al. (2004) approach the problem of selecting

thresholds for both wavelet and spatial domains, which is important because without

addressing this issue, spatial statistical maps are uninterpretable. They tackle this issue by

balancing the two thresholds in the wavelet and the spatial domain, and apply statistical

testing in the spatial domain instead of the wavelet domain. The authors Leonardi and Van

De Ville (2013) explored the ramifications of using tight (or Parseval) wavelet frame which

more closely resembles an orthonormal basis while retaining basic wavelet properties. One

of the advantages of using a tight frame is that the inverse transform is easy to compute; this

plays an important role in pre-processing the raw data. In addition, it is efficient because it

preserves the energy in the transformed domain. Although the tight frame formulation

prevents spectral leakage between scales and proposes a much cleaner strategy than re-

normalizing the coefficients, the t and T2 statistics we used in the analysis automatically re-

scale the coefficients regarding the difference in ranges between scales. The authors in

(Leonardi and Van De Ville, (2013)) above also noted that the construction in Hammond et

al. (2011) does not give a tight frame, however it is nonetheless feasible for our particular

application (as shown in our experiments) because we are primarily interested in the forward

transform which is essential to obtaining the descriptors.

Lastly, we observe that there is an issue of whether to account for subject specific variations

in global cortical thickness. Adjustments for global effects in volumetric analyses are

premised on the finding that individuals who overall have bigger heads also tend to have

larger regional brain structures (e.g., hippocampus) than persons with smaller heads.

Normalization of regional volumes by means of whole brain volume (whether via regression

approaches or proportional scaling) is therefore necessary to control for this potential

confound. In contrast, available evidence convergently indicates that cortical thickness is

only minimally or not at all related to sex, height, or overall brain size. Therefore, adjusting

for brain size/global thickness while performing vertex-wise cortical thickness analyses risks

introducing error variance into the model (Dickerson et al., 2009; Palaniyappan, 2010; Salat

et al., 2004; Whitwell et al., 2013).

Despite these unresolved issues, our results suggest that the method may be highly suitable

to traditional group analysis in most cases, as is shown throughout the paper. The procedure

can be easily adapted to analyze data with arbitrary topologies (Chung et al., 2005; Kim et

al., 2012) and for studies dealing with other neurodegenerative disorders involving

morphological measurement on the brain surface or on brain networks. We hope that the

companion toolbox to this paper (available on NITRC and http://pages.wisc.edu/~wonhwa)

will facilitate such developments.
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Appendix A. Basic notations and spectral graph theory

The graph  = { , , ω} is a set of vertices , an edge set , and the corresponding edge

weights ω. For the graph  with N vertices, its adjacency matrix A is defined as a N × N

matrix whose elements aij are given as,

(A.1)

If  is undirected, the matrix is positive symmetric, however if  is directed, A is

asymmetric; the elements aij may represent the direction of connectivity. The degree matrix

D is defined as a N × N diagonal matrix whose ith diagonal is Σj ωij, the sum of edge

weights connected to the ith node. When the edge weights are binary and represent solely

the connectivity information with ωij ∈ {0,1}, A is a binary matrix and the degree matrix D
represents how many edges are connected to each vertex. From these two matrices that

characterize the geometric property of a graph, the graph Laplacian L is derived as:

(A.2)

and the normalized version is given as,

(A.3)

Illustrative examples of A,D and L of a star shaped undirected graph with 5 vertices and 5

edges are shown in Fig. A.16.

Note that L ⪰ 0 and so has a complete set of orthonormal eigenfunctions χl, and the

corresponding eigenvalues λl for l = 0,1,…, N − 1 are ordered as

(A.4)

Fig. A.16.
An example of A,D,L. a) A star shaped graph  with 5 vertices and 5 edges. b) adjacency

matrix A, c) degree matrix D, d) graph Laplacian L.
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Appendix B. Effect of non-uniform versus uniform mesh sampling

This section shows an additional experiment to address the effect of sampling schemes.

Briefly, if the edge weights in the adjacency matrices are binary, non-uniform/uniform

sampling of a domain (which is a brain surface in our case) may affect the group analysis

result depending on the sampling resolution. If the sampling is coarse, then a binary

adjacency matrix is likely to yield a poorer result because it assigns a unit edge weight to all

neighboring vertices regardless of their distances. But if the sampling resolution is high

enough such that neighboring vertices are sufficiently close and dense enough to

characterize the brain surface, then the effect of binary edge weights becomes far less

important.

This phenomenon is demonstrated in Fig. B.17. We simulate two groups of 20 images each

(40 images in all). The images in the first group have a signal which we hope to identify

later in group analysis. Signal measurements come from a Gaussian distribution 1 +

N(0,0.01) in a circular region of radius 10 at the center of a 2D domain ([0,100] for each

axis). Such a signal is not introduced in the second group of images. Finally, we add

Gaussian noise from N(0,0.5) to all images. Given this data, we evaluate various sampling

schemes and their effect on group analysis results using our WMD framework. We evaluate

two different sampling schemes: 2000 (coarse) and 10,000 (dense) vertices from the 2D

domain. For each sampling scheme, we draw samples uniformly and non-uniformly and

then measure the differences at each vertex to identify regions that are statistically different.

For the non-uniform sampling, we used a Gaussian distribution centered at various grid

points (multiples of 20, see Fig. B.17) in the [0,100] domain in the x,y axes with variance

(2,2). This means that we will sample more points which lie closer to such grid-points. With

the sampled vertices, we generate Delaunay triangular meshes to create the underlying

graph. These graphs (meshes) are shown in Figs. B.17a), b), e) and f). Once we defined

these graphs, we applied our framework to find group differences, which is a circle of radius

10 at (50,50). The resultant p-values after Bonferroni correction at 0.01 are shown in Figs.

B.17c), d), g) and h). For 2000 vertices, the group analysis result from the uniform sampling

yields moderate results (in terms of visual overlap of detected differences with true

differences), whereas the non-uniform sampling returns a relatively weaker result in terms of

visual overlap. However, as the resolution of sampling improves to 10,000 vertices, it is

sufficiently dense and both uniform and non-uniform sampling methods reliably identify the

true difference between the two groups.

Kim et al. Page 25

Neuroimage. Author manuscript; available in PMC 2015 June 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. B.17.
An example showing the effect of uniform vs. non-uniform sampling in different resolutions

in our framework. A signal is defined as a circular region with radius 10 centered at (50,50)

in a 2D space, and group analysis is performed using our framework on two different groups

if images where only one group contains the signal. The resultant p-values are shown in −

log scale. a) Delaunay triangulation from 2000 uniformly sampled vertices, b) Delaunay

triangulation from 2000 non-uniformly sampled vertices (Gaussian distribution at various

grid-points), c) result using mesh a), d) result using mesh b), e) Delaunay triangulation from

10,000 uniformly sampled vertices, f) Delaunay triangulation from 10,000 non-uniformly

sampled vertices (Gaussian distribution at various grid-points), g) result using mesh e), h)

result using mesh f).
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Fig. 1.
Illustration of cortical thickness. The inner cortical surface (red) is covered by the outer

cortical surface (yellow), and the cortical thickness is measured by the distance between the

outer and the inner cortical surfaces.
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Fig. 2.
An example of Mexican-hat wavelet on a sphere and a shark shaped mesh surfaces. The

range of λ from L of a sphere mesh was split into 5 different scales, and the mother wavelet

ψ was built upon those scales. The wavelet is localized at one vertex (i.e., vertex index 1).

As the scale varies, the dilation of the wavelet changes. a) A 3-D triangular mesh domain

(sphere) with 2562 vertices and 5120 faces, b) ψ1,1, c) ψ2,1, d) ψ3,1, e) A 3-D triangular

mesh domain (shark) with 2860 vertices and 5716 faces, f) localized ψ1,1 at the tip of a fin,

g) localized ψ2,1 at the tip of a fin, h) localized ψ3,1 at the tip of a fin.
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Fig. 3.
Group analysis on a population of star-shaped graphs and functions defined on the vertices.

a) The star graph (domain), b) Mean of noisy data from group 0, c) Mean of noisy data from

group 1, d) p-value from hypothesis tests on the raw noisy data, e) p-value from hypothesis

tests using MHS, f) p-value from hypothesis test using WMD. While group analysis using

general routine fails, using WMD detects all vertices correctly, and the result is comparable

with MHS. In d)–f), the p-values are visualized both in color and vertex sizes (larger vertex

size means a lower p-value) in log10 scale.
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Fig. 4.
Simulation setup of synthetic cortical thickness and atrophies on brain surfaces. Blue regions

correspond to the default (non-diseased) cortical thickness signal, μ1 = 2mm, .

Green and red correspond to disease regions which undergo atrophy affected on the default

cortical thickness signal. These atrophy levels are about ~ 25% and ~ 50% of the actual

atrophies measured in AD specific regions of a real dataset.
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Fig. 5.
Simulation of surface based group analysis. The resultant p-values in − log10 scale after

FDR at q = 0.01 are mapped on the template brain surface. a) Result using raw CT, b) result

using heat-kernel smoothing (t = 0.5), c) result using WMD (4 scales out of 6).
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Fig. 6.
ROC curve using p-values from statistical group analysis on Raw CT, Smoothing and WMD

with AUC of 0:623, 0:892 and 0:971 respectively.
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Fig. 7.
Plot of sorted p-values and FDR threshold from AD vs. Controls analysis according to

different sample sizes using ADNI dataset. a) Using 60% of the total subjects, b) using 80%

of the total subjects, c) using all subjects. As the sample size increases, the number of

surviving vertices increases. We can see that WMD is much more sensitive than smoothing.
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Fig. 8.
Group analysis result (AD vs. controls) on ADNI dataset. The resulting p-values (in − log10

scale) from hypothesis tests after FDR at q = 1e−5 are shown on a template brain surface.

First row: t-test on the raw cortical thickness, second row: t-test on smoothed data

(SPHARM), third row: Hotelling’s T2 test on WMD, fourth row: MGLM on WMD (age and

gender effect removed). We can see that smoothing the cortical thickness works better than

the raw data, but WMD improves the statistical result much more.
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Fig. 9.
Plot of sorted p-values and FDR threshold at q = 0.1 from AD vs. controls analysis on the

right hemisphere of the brain according to different sample sizes using ADRC dataset. a)

Using 60% of the total subjects, b) using 80% of the total subjects, c) using all subjects. As

the sample size increases, the number of surviving vertices increases. We can see that WMD

increases the sensitivity.
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Fig. 10.
Group analysis result (AD vs. controls) on ADRC dataset. The resulting p-value (in − log10

scale) from hypothesis tests after FDR at q = 0.05 is shown on a template brain surface. First

row: t-test on the raw cortical thickness data, Second row: t-test on the smoothed data, third

row: Hotelling’s T2 test on WMD, fourth row: MGLM on WMD (without age and gender

effect).

Kim et al. Page 36

Neuroimage. Author manuscript; available in PMC 2015 June 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 11.
Group differences (AD vs. MCI) on ADRC dataset. First row: p-values (uncorrected) from t-

test using CT, second row: p-values (uncorrected) from t-test on smoothed data, third row:

p-values (uncorrected) from Hotelling’s T2 test on WMD, fourth row: p-values (uncorrected)

from MGLM on WMD (age and gender effect removed.).
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Fig. 12.
Group differences (MCI vs. controls) on ADRC dataset. First row: p-values (uncorrected)

from t-test using CT, second row: p-values (uncorrected) from t-test on smoothed data, third

row: p-values (uncorrected) from Hotelling’s T2 test on WMD, fourth row: p-values

(uncorrected) from MGLM on WMD (age and gender effect removed).
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Fig. 13.
Sensitivity brain map using R2 (AD vs. CN) on ADRC dataset. Top row: R2 using raw

cortical thickness, Bottom row: R2 using WMD. We can see that the model fits WMD better

than cortical thickness, therefore WMD is more sensitive to the group difference than the

raw cortical thickness.
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Fig. 14.
Sensitivity brain map using R2 (AD vs. MCI) on ADRC dataset. Top row: R2 using raw

cortical thickness, bottom row: R2 using WMD. We can see that the model fits WMD better

than cortical thickness, therefore WMD is more sensitive to the group difference than the

raw cortical thickness.
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Fig. 15.
Sensitivity brain map using R2 (MCI vs. controls) on ADRC dataset. Top row: R2 using raw

cortical thickness, bottom row: R2 using WMD. We can see that the model fits WMD better

than cortical thickness, therefore WMD is more sensitive to the group difference than the

raw cortical thickness.
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Table 2

Demographic details and baseline cognitive status measure of the ADNI dataset.

ADNI data

Category AD (mean) AD (s.d.) Ctrl (mean) Ctrl (s.d.)

# of subjects 160 – 196 –

Age 75.53 7.41 76.09 5.13

Gender (M/F) 86/74 – 101/95 –

Years of education 13.81 4.61 15.87 3.23

CDR (SB) 4.32 1.59 0.03 0.13

MMSE at baseline 21.83 5.98 28.87 3.09

CDR: clinical dementia rating, SB: sum of boxes, MMSE: mini mental state examination.
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