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Summary

The emergent discipline of metabolomics has attracted considerable research effort in hepatology.
Here we review the metabolomic data for nonalcoholic fatty liver disease (NAFLD), nonalcoholic
steatohepatitis (NASH), cirrhosis, hepatocellular carcinoma (HCC), cholangiocarcinoma (CCA),
alcoholic liver disease (ALD), hepatitis B and C, cholecystitis, cholestasis, liver transplantation
and acute hepatotoxicity in animal models. A metabolomic window has permitted a view into the
changing biochemistry occurring in the transitional phases between a healthy liver and
hepatocellular carcinoma or cholangiocarcinoma. Whether provoked by obesity and diabetes,
alcohol use or oncogenic viruses, the liver develops a core metabolomic phenotype (CMP) that
involves dysregulation of bile acid and phospholipid homeostasis. The CMP commences at the
transition between the healthy liver (Phase 0) and NAFLD/NASH, ALD or viral hepatitis (Phase
1). This CMP is maintained in the presence or absence of cirrhosis (Phase 2) and whether or not
either HCC or CCA (Phase 3) develop. Inflammatory signalling in the liver triggers the
appearance of the CMP. Many other metabolomic markers distinguish between Phases 0, 1, 2 and
3. A metabolic remodelling in HCC has been described but metabolomic data from all four Phases
demonstrate that the Warburg shift from mitochondrial respiration to cytosolic glycolysis
foreshadows HCC and may occur as early as Phase 1. The metabolic remodelling also involves an
upregulation of fatty acid f-oxidation, also beginning in Phase 1. The storage of triglycerides in
fatty liver provides high energy-yielding substrates for Phases 2 and 3 of liver pathology. The
metabolomic window into hepatobiliary disease sheds new light on the systems pathology of the
liver.

Metabolomics and the liver in brief

Over the past decade or more, many authors have defined the terms metabolomics and
metabonomics. It is unproductive and unnecessary to add further to these definitions here.
All the reader needs to know from the point of view of hepatobiliary disease, is that
metabolomics is a window that offers a view distinct from the lenses of genomics,
transcriptomics and proteomics. There can be no other organ where such a plethora of both
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lipids and water-soluble metabolites are metabolically interchanged. No other organ exceeds
the rates of metabolism and energy production and consumption as found in the liver. Not
only is the liver the source of myriad endogenous metabolites and precursors used by other
organs, but also houses a vast array of detoxication enzymes that are crucial for rendering
less toxic, more water-soluble and readily excretable the 1-3 million xenobiotics that we are
exposed to in our lifetimes [1]. The hepatic metabolome is therefore a highly complex and
dynamic flux of small metabolites (say, <1.5 kDa, to include the larger phospholipid species,
such as cardiolipins). Metabolomics in its practice combines high-throughput analytical
chemistry, typically, methodologies based upon mass spectrometry or nuclear magnetic
resonance spectroscopy, with multivariate data analysis. These technologies permit
comparison of “global” metabolite profiles in an “unbiased” fashion for two or more groups
of samples. Of course, no metabolomic investigation has ever delivered a global metabolite
profile for a sample set, as this would require employment of multiple analytical platforms
and several sample preparation protocols that performed from millimolar down to sub-
picomolar concentrations. Moreover, different analytical platforms combined with specific
sample preparation procedures each provide a different metabolomic window in the
metabolic life of the liver. Accordingly, metabolomic findings reported are always biased by
the laboratory analytical procedures employed, often highly so.

This notwithstanding, many metabolomic investigators in recent years have entered the field
of hepatobiliary disease and a considerable volume of publications has appeared. This
review is therefore timely and we will attempt to make sense of a large and heterogeneous
set of published studies concerning the varied hepatobiliary elements of pathophysiology
where metabolomics has had something to say. This metabolomic window on hepatobiliary
disease has furnished an overabundance of potential disease biomarkers. More importantly,
in our view, the metabolomic lens has begun to provide new insights into liver disease
mechanisms, new understandings that may unmask potential therapeutic targets and, one
day, new treatment modalities.

The metabolomic window into nonalcoholic diseases of the liver

Overview

In this review and as depicted in Fig. 1, we will describe the extent to which metabolomics
has informed on the progression from the healthy liver to hepatocellular carcinoma (HCC)
through the various phases of nonalcoholic fatty liver disease (NAFLD), nonalcoholic
steatohepatitis (NASH) and liver cirrhosis. We will also examine what metabolomics has
taught about the various influencing factors and putative risk factors for these diseases, such
as obesity, diabetes, alcohol, hepatitis B and C virus (HBV, HCV) infection. In addition, we
will also review what metabolomics has contributed to the understanding of the change in
hepatic function after liver transplantation.

Nonalcoholic fatty liver disease (NAFLD)

Nonalcoholic fatty liver disease (NAFLD) is a highly prevalent condition that affects 15% to
45% persons in developed nations [2] and in both children and adults from all ethnic groups
[3]. A diagnosis of NAFLD implies an increased risk of such diseases as cardiovascular
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disease, diabetes, colonic adenomas, hypothyroidism and polycystic ovary syndrome [3].
NAFLD is generally considered to be the hepatic manifestation of metabolic syndrome [4].
The reference standard for diagnosing hepatic steatosis remains liver biopsy [3].
Investigators have employed metabolomic protocols in an attempt to define biomarkers that
might replace this invasive procedure for a disease of such high prevalence. Table 1 shows a
summary of 11 studies with metabolomic components that inform regarding the formation
of hepatic steatosis. Animal models and studies in living human subjects and human tissues
have been employed. One common finding is that of increased lipid species in the liver and
serum/plasma, including cholesterol esters [5, 6], triacylglycerols [4-7], diacylglycerols [4],
sphingomyelins [4], various bile salts [8-10], together with lactate [9, 11, 12] and glutamate
[11, 13]. In addition, cysteine-glutathione disulfide and both oxidized and reduced
glutathione were all reported to be depressed in the liver and serum/plasma [8, 9]. Finally,
where diets that instigate fatty liver had been used, depressed concentrations of glucose were
reported both in rat liver [14] and mouse serum [11], but in one study, elevated plasma
glucose was reported [12]. Taken together with elevated mouse serum/plasma lactate [11,
12], pyruvate and alanine [12], and human plasma lactate [9], these results would suggest
that NAFLD engages in cytosolic glycolysis. NAFLD is frequently associated with insulin
resistance and insulin has been reported in mice to activate pyruvate kinase M2 [15], the
enzyme switch to glycolysis involved in the Warburg effect and thus the production of
lactate and alanine from glucose via pyruvate. Furthermore, the reduction in glutathione
derivatives in human liver [8] and plasma [9] in NAFLD are clear signs of active oxidative
stress in the liver.

The lipidomic component of the observations summarized in Table 1 is of interest. Firstly, it
has been reported that phosphocholine, choline, betaine and trimethylamine N-oxide
(TMAO) were up-regulated metabolites in both liver and plasma of rodents fed diets that
provoked fatty liver [11, 12]. This is a clear indication of an increased turnover of
phosphatidylcholine and phosphatidylethanolamine species in the liver, thus releasing free
fatty acids through the action of phospholipases Al and A2. These fatty acids, if not
catabolized by p-oxidation, will be stored in the liver as triacylglycerols. This is what was
observed in the metabolomic studies of animals with fatty liver [4-6]. Therefore, fatty liver
is not just a deposition of fat in the liver but rather a rearrangement and repartitioning of
lipid stores as has been proposed [5]. Using a mouse 24h starvation protocol, it was
observed that the triacylglycerols TG(44:2) and TG(48:3) massively increased in the liver by
2427% and 1198%, respectively. These are the most abundant triacylglycerols in adipose
tissue and these findings suggest that adipose may be a source of triacylglycerols deposited
in the liver in NAFLD [5]. Secondly, elevated hepatic concentrations of various
lysophosphatidylcholine (LPC), lysophosphatidylethanolamine (LPE) and
phosphatidylcholine (PC) species have been reported for human steatotic vs. non-steatotic
livers [8]. These molecules are obvious candidates for the elevated choline and choline
metabolites discussed above. Finally, three studies in humans reported elevated bile salts in
the liver [8] that spilled over to elevated bile acids in serum/plasma [9, 10]. Bile acids act as
signaling molecules in the liver that regulate lipid and glucose homeostasis [3, 16]. Certain
bile acids, in particular, chenodeoxycholic acid (CDCA) and deoxycholic acid (DCA) are
endogenous ligands that activate the farnesoid X receptor (FXR) [17]. The nuclear receptor

J Hepatol. Author manuscript; available in PMC 2014 October 01.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Beyoglu and Idle

Page 4

FXR modulates conversion of cholesterol to bile acids by the regulation of the expression of
CYP7AL1 [3]. Moreover, FXR reduces lipogenesis by downregulating expression of
SREBP-1, activates the nuclear receptor PPARa causing an increase in 3-oxidation of free
fatty acids (FFA), both of which processes reduce hepatic FFA levels [3, 16]. There is a
single report of elevated hepatic levels of the bile salts glycochenodeoxycholate 3-sulfate
(GCDCA-3S) and taurochenodeoxycholate (TCDCA) in human fatty liver [8]. TCDCA is a
relatively weak activator of FXR [17] and GCDCA-3S appears not to have been studied in
this regard. It is curious that NAFLD existed in the presence of increased serum/plasma
concentrations of glycocholate, taurocholate, glycochenodeoxycholate [9] and deoxycholate
[10], which may not reflect hepatic concentrations of the FXR activators CDCA and DCA.
This theme will be returned to in the next section.

Nonalcoholic steatohepatitis (NASH)

NASH is a more advanced stage of NAFLD with a major inflammatory component [2].
NAFLD may progress to NASH, but >80% of cases remain as isolated fatty liver (IFL) with
no or minimal progression to cirrhosis and no increased risk of death relative to the general
population [3]. It has been estimated that ~11% NASH develop cirrhosis over 15 years and
~7% progress to hepatocellular carcinoma (HCC) over 6.5 years, either via cirrhosis or
sometimes directly [3] (see Fig. 1). The origins of the hepatic inflammation in NASH
continues to involve a major research effort and one theory posits that the hepatitis
originates in visceral adipose, which is intrinsically pro-inflammatory [2]. A study in mice
fed a high-fat diet supports this theory [18].

There have been relatively few metabolomic studies addressing the pathobiology of NASH
and its progression from simple NAFLD and all these have examined serum/plasma only.
Five studies are summarized in Table 2. As with NAFLD, triacylglycerols and several fatty
acids were elevated in plasma [7] and like NAFLD, several other fatty acids and LPCs were
attenuated in plasma [9]. When a small series of NASH was compared with NAFLD,
significant changes in serum concentrations of only three phospholipids were reported [10].
A study using NMR, which, unlike mass-spectrometry-based platforms, does not have the
power of detecting a large range of molecules [19], contributed raised serum concentrations
of glucose, glutamate and taurine [11]. The greatest metabolomic insights into NASH
pathogenesis come from a recent study that combined high-end analytics and targeted gene
expression by qPCR [20]. These workers generated NASH in mice fed a methionine- and
choline-deficient (MCD) diet. UPLC-ESI-TOFMS metabolomics revealed a statistically
significant depression of LPC(16:0), LPC(18:0) and LPC(18:1) in serum with a significant
rise in tauro-B-muricholate, taurocholate and 12-HETE for MCD fed mice compared with
mice on a hormal diet. As a positive control, genetically obese ob/ob mice with severe
steatosis were administered galactosamine (GalN), which provoked severe inflammation and
hepatocyte injury with marked upregulation of hepatic mMRNAs coding for TNFa and
TGFp1. Serum of GalN-injected ob/ob steatotic mice compared with saline-injected ob/ob
steatotic mice displayed the same changes in LPCs and bile acids as the MCD fed mice.
Thus, the decline in serum LPC and the rise in serum bile acids is a signature of the
inflammatory component of NASH, rather than the steatotic component. To investigate
further the mechanisms involved in these perturbations of LPC and bile acid homeostasis in
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the NASH model, hepatic mRNA levels were determined by gPCR for genes involved in the
metabolism and transport of LPC, bile acids and 12-HETE. Lysophosphatidylcholine
acyltransferases (LPCAT) that convert LPC to PC [21] were all upregulated with two- to
four-fold elevations in hepatic Lpcatl, Lpcat2 and Lpcat3 mRNAs in the NASH model.
Additionally, the transporters SLC10A1 and SLCO1AL1 that uptake bile salts into
hepatocytes and the transporters ABCC1 and ABCC4 that export bile acids from the liver
were highly downregulated and upregulated, respectively [20]. Taken together, these
observations explain how the inflammatory phenotype of NASH in a mouse model results in
the changes in serum metabolites described in Table 2 and this is shown in Fig. 2.
Importantly, similar perturbations have been observed in NASH patients [9], suggesting that
similar mechanisms may operate in humans. Finally, it should be stated that biomarkers for
NASH are limited and therapeutic options are poorly developed, which serves to emphasize
the need for further metabolomic research in this area.

Fibrosis and cirrhosis

Liver fibrosis is a scarring process involving the deposition of excess connective tissue in
response to injury. Cirrhosis may be considered as the end-stage of this reaction, comprising
formation of fibrous septa and hepatocyte nodules. Oxidative stress provokes the
inflammatory reactions and apoptosis involved in the generation of cirrhosis [22]. It is now
clear that NAFLD/NASH may develop into cirrhosis, although the histological features of
precursor NASH in the cirrhotic liver may be challenging to diagnose [23]. Cirrhosis may
arise due to a large number of causes, principal among which are not only NAFLD/NASH
but also alcoholic fatty liver disease and viral hepatitis B or C (see Fig. 1). There are no cut-
off values for laboratory analyses that give a diagnosis of cirrhosis [24] and so the
generation of novel metabolomic biomarkers to detect early cirrhosis has become a
justifiable aim. Table 3 summarizes such studies.

Three studies have been conducted in rats administered hepatotoxins to provoke fibrosis and
cirrhosis. Histopathology confirmed that rats exposed to thioacetamide in their drinking
water developed hepatic fibrosis after one month and cirrhosis after three months. Liver
extracts examined by NMR had higher levels of lactate [22], suggesting a degree of
anaerobic metabolism within the fibrotic liver. Two studies treated rats with carbon
tetrachloride (CCly), which induced fibrosis [25, 26] and the authors evaluated treatment
with the Chinese medicine Xia Yu Xue Decoction [25] or scoparone, a drug isolated from a
medicinal plant [26]. Many metabolomic signals were reported after CCl, administration,
including decreases in the urinary excretion of certain amino acids and gut flora metabolites
(which were mostly reversed by Xia Yu Xue Decoction) [25] and an increased urinary
excretion of glycocholate [26]. Neither serum nor liver tissue was examined in these studies.
Thus, hepatic fibrosis provoked in a normal, rather than fatty, rat liver, is associated with
somewhat minor changes in the urinary metabolome.

Eight metabolomic investigations of hepatic cirrhosis have all been performed on human
materials, six on serum [27-32], one on liver biopsies [33], and one on faeces [34]. No clear
picture emerges from these studies. An increased serum concentration of non-essential
amino acids [27] and certain D-amino acids [28], a decreased serum concentration of
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essential amino acids [27, 28, 31], suggests that the cirrhotic liver has an impaired ability to
metabolize both protein and D-amino acids. Other notable observations include the decrease
in several LPCs in serum of cirrhotics versus healthy volunteers, whether the cirrhosis was
due to alcohol or hepatitis B [29]. This pattern is similar to that observed for NASH (Table
2), although the cirrhatic patients studied had a background of alcohol abuse or hepatitis B.
Moreover, glycochenodeoxycholic acid and glycocholic acid concentrations were also
elevated in serum [29]. Clearly, the mechanism proposed by Gonzalez and colleagues [20]
shown in Fig. 2 may apply not only to NASH but other inflammatory liver diseases.

Selective impairment of hepatic 3-oxidation was apparent from a reduced serum carnitine
and increased serum palmitoleoylcarnitine (16:1) and oleoylcarnitine (18:1) concentrations
[32]. Impaired ammonium detoxication in cirrhosis is implied from a reported shift from
hepatic levels of glutamine and glucose to glutamate [33]. Finally, a very interesting report
catalogued changes in the faecal metabolome between 24 healthy volunteers and 17
cirrhotics [34]. In faeces from cirrhotic patients, there was an increased concentration of the
major LPCs (16:0, 18:0, 18:1, 18:2) and a decreased faecal excretion of chenodeoxycholic
acid and 7-ketolithocholic acid, the latter reported as a gut flora metabolite of the former by
Bacteroides intestinalis [35]. The data on the faecal excretion of LPCs and bile acids further
supports and enhances the mechanism outlined in Fig. 2.

Hepatocellular carcinoma (HCC)

More than half a million people are diagnosed each year with hepatocellular carcinoma
(HCC). The disease has a poor prognosis, generally because of its late presentation and its
incidence is growing in developed countries. There has been considerable research effort to
try to define biomarkers that would aid earlier detection and thus improve patient outcomes.
Many researchers, particularly in China, have employed metabolomic protocols towards this
end. Table 4 contains details of 24 metabolomic investigations of human HCC [27, 32, 36—
57], three of chemically-induced rat HCC [42, 46, 58] and two of hepatocellular adenomas
in the flatfish Limanda limanda [59, 60]. Many investigators of human HCC employed
healthy volunteers as a control group, especially for the collection of serum/plasma or urine
[27, 32, 36, 37, 39-41, 43-45, 47-50, 53, 57], others used cirrhotics as a comparator group
[36, 37, 39, 45-48, 50-52, 54], while others included acute hepatitis [36, 37], chronic
hepatitis [36, 37, 46, 48, 50], benign liver tumours [43] and acute myeloid leukemia [45] as
comparator groups. These metabolomic comparisons have permitted insights into the
biochemical transitions to HCC from various precursor states, at least as viewed through
serum/plasma or urine. A relatively few studies have addressed the hepatic metabolome
directly by interrogating tumour tissue and paired uninvolved liver, for human HCC [38, 55,
56], chemically-induced rat HCC [42] and fish hepatocellular adenoma [59, 60]. Two recent
reports also combined transcriptomic and metabolomic analyses of human HCC [55, 56]. As
will be demonstrated below, comparison of the outputs of metabolomic investigations of
NAFLD/NASH, cirrhosis and HCC will permit a new understanding of the chain of
biochemical events that lead from a healthy liver to HCC.
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Disease progression from fatty liver to hepatocellular carcinoma

The metabolomic observations encompassed in Tables 1-4 have been combined into a
visual format (Fig. 3) which permits a biochemical view of the changes occurring from fatty
liver through cirrhosis to HCC. Only observations reported in at least two independent
human studies have been entered into this Figure. The paramount conclusion is that elevated
bile acids and lowered LPCs are common across all three groups of pathology. The bile
acids affected include GCA, TCA, GDCA and GCDCA. A whole range of LPCs,
comprising saturated, monounsaturated and polyunsaturated long-chain and very long-chain
fatty acids are affected. The probable mechanisms by which these metabolic perturbations
have occurred were discussed above and are shown, in part, in Fig. 2. Increased biliary
excretion of phospholipids is an additional factor already discussed above. Of importance is
that these alterations in hepatic metabolism would appear to occur very early in the chain of
events leading from the normal liver to HCC (Fig. 1) and therefore must be maintained
throughout the progression to HCC.

As shown in Fig. 3, NAFLD/NASH (see Tables 1, 2) is characterized by upregulation of
lactate, glucose, glutamate and tyrosine, together with the downregulation of cortisone. This
would suggest that, in the fatty liver states, hepatic glucose is mobilized from glycogen
almost certainly due to insulin resistance [61]. The rise in lactate may be a sign of a degree
of metabolic remodelling to aerobic glycolysis in response to elevated glucose, although
there was little evidence of the other glycolytic metabolites, pyruvate and alanine [56], being
elevated in NAFLD/NASH. The rise in glutamate is a sign of reduced cytosolic glutamine
synthesis and thus an impairment of ammonium detoxication [62]. This is usually associated
with cirrhosis and liver failure, but may also be manifest in NASH [63]. The upregulation of
tyrosine in NAFLD/NASH is at odds with a single report in which plasma tyrosine was
lower in NAFLD than controls [64]. Elevated tyrosine is more likely to be correct as the
metabolomic report [9] employed a more specific analysis. Finally, the metabolomic
investigations of NAFLD and NASH [9] have reported that plasma cortisone is
downregulated. This is consistent with the upregulation of 113-hydroxysteroid
dehydrogenase type 1 (HSD11B1) in visceral obesity, metabolic syndrome and type 2
diabetes [65, 66] and its role in NAFLD [67]. HSD11B1 activates cortisone to cortisol in
liver and adipose tissue. Thus, the aforementioned metabolomic signals are consistent with
known biochemical characteristics of fatty liver. In particular, elevated serum bile acids and
reduced LPCs are in accord with known changes in gene expression in NASH (Fig. 2).

As shown in Table 3, a relatively small number of metabolomic studies have addressed the
conversion of either normal or fatty human liver states to cirrhosis. Only two metabolomic
markers specific to cirrhosis could therefore be defined, downregulation of the branched-
chain amino acids (BCAAs) valine and isoleucine. Lowered plasma BCAAS in cirrhosis was
first observed almost six decades ago [68] and is due to hepatic metabolism of BCAASs to
provide carbon skeletons for the TCA cycle [69]. Noteworthy is the carry forward from
NAFLD/NASH into cirrhosis of elevated bile acids and reduced LPCs (Fig. 3).

The greatest number of human metabolomic studies was conducted in HCC and, not
surprisingly, there occur a large number of metabolomic changes in HCC relative to
cirrhosis or to control subjects (Table 4). As shown in Fig. 3, there are many signs of a
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metabolic reprogramming in the livers of HCC patients, detected by metabolomics. For
example, the decrease in glucose, citrate and glycerol 3-phosphate coupled with an increase
in pyruvate are all signs of the Warburg effect [70], a switch from mitochondrial respiration
to cytosolic aerobic glycolysis [71, 72]. By a metabolomic comparison of paired HCC
biopsies and uninvolved liver tissues, we have calculated that the switch to the aerobic
glycolysis in HCC is no more than four-fold [56]. Although tumours are generally
considered to synthesize fatty acids de novo from citrate via acetyl-CoA [72], the
accumulated metabolomic data in HCC (Fig.3) tend to point to increased fatty acid -
oxidation, with elevated acetate and 2-oxoglutarate (immediate precursor of carnitine) and
reduced free fatty acids, carnitine and carnitine esters. Furthermore, some transcriptomic
types of HCC, in particular G1 and G3, displayed markedly reduced 1-palmitoylglycerol, 1-
stearoylglycerol and palmitate compared with surrounding uninvolved liver tissue [56].
Thus, metabolic reprogramming in HCC appears to comprise a modest Warburg shift to
glycolysis and a major upregulation of fatty acid catabolism in some tumour types.

The metabolomic window into other hepatobiliary diseases

Alcoholic liver disease

The consumption of alcoholic beverages leads to exposure of the liver to ethanol. While
many consider the pharmacological effects of ethanol consumption enjoyable, ethanol is
nevertheless a solvent that can exhibit potent toxicological effects, in particular, on the liver.
Alcohol exposure to laboratory animals can provoke a range of pathologies that parallels
nonalcoholic liver disease. For example, 20 to 40 kg micropigs voluntarily consume an
ethanol-supplemented diet (40% daily energy needs), developing peak blood ethanol levels
>200 mg/dl and, within 6 months, hepatic steatosis, inflammation and fibrosis. Alcoholic
micropigs displayed increased hepatic TG levels relative to controls with elevated fatty acid
ratios of 16:1n7/16:0 and 18:1n9/18:0, due to increased stearoyl-CoA desaturase activity.
The authors concluded that increased de novo lipogenesis and reduced LPC synthesis and
export were responsible for the accumulation of TG during alcoholic steatohepatitis (ASH)
[73]. Athymic nude mice gavaged with ethanol solutions from 5% gradually to 40%,
developed mild hepatic hemorrhage, with elevated serum PC, decreased saturated and
monounsaturated LPC, and elevated polyunsaturated LPC levels [74]. Similarly, rats fed 5%
ethanol developed fatty infiltration after 2 months with mild inflammation and oxidative
stress after 3 months. NMR metabolomics suggested that hepatic fatty acids and TG
increased and plasma fatty acids and PC decreased [75]. These contradictions may reflect a
species difference but more likely underscore the relative weakness of NMR as a lipidomic
tool.

Another approach to study alcohol-induced liver disease (ALD) has been to employ the
Ppara-null mouse, since the nuclear receptor PPAR« is a master regulator of hepatic lipid
metabolism whose biochemical effects can be detected through metabolomics, both in
humans [76] and in the mouse [77]. Ppara-null and control mice were fed a 4% ethanol-
containing liquid diet and an isocaloric control diet, respectively. After one month, steatosis
with elevated hepatic TGs was observed for the Ppara-null mice only. Metabolomic analysis
revealed elevated indole-3-lactic acid associated with the development of ALD in ethanol-
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treated Ppara-null mice [78]. In an enlarged study, these authors reported that indole-3-
lactic acid and phenyllactic acid were potential biomarkers for early ALD [79]. CYP2E1 is
the principal ethanol-inducible hepatic enzyme responsible for ethanol metabolism and
hepatotoxicity [80]. A metabolomic study in Cyp2el-null and control mice reported that the
ethanol metabolite acetate can acetylate taurine in the liver, leading to ethanol-dose-
dependent production of N-acetyltaurine [81], a potential biomarker of ethanol
hepatotoxicity. This reaction was found only in wild-type animals with hepatic CYP2E1.

Viral hepatitis B and C

Evaluation of liver disease in patients with hepatitis B or C is essential to identify patients
who require antiviral therapy and to determine prognosis. Staging of liver fibrosis and the
occurrence of cirrhosis associated with HBV or HCV infection is traditionally done by
biopsy, but now there has been a move towards the use of noninvasive biomarkers [82].
None of the serum biomarkers that were originally developed for hepatitis C involves small
molecules. Metabolomic studies in hepatitis B and C patients are very timely. The first study
of its kind to evaluate deteriorating liver function in chronic hepatitis B using metabolomics
was conducted in China, where HBV infection occurs in 80-90% of HCC cases [39]. Using
LCMS, they established a decline in serum LPC(16:0), LPC(18:0), LPC(18:1) and
LPC(18:2), together with an elevation of GCDCA (or its isomer GDCA) [83]. Another
Chinese study reported similar results when examining the progression of chronic hepatitis
B to cirrhosis [84]. This, of course, is the same fingerprint as seen in NALFD/NASH,
cirrhosis and HCC (Figs. 2, 3). It was also reported that serum GCA, GCDCA and TCA
were elevated in hepatitis B-induced cirrhosis [39]. There do not appear to be metabolomic
studies comparing HBV-positive and HBV-negative subjects. It should also be pointed out
that HBV may cause HCC in the absence of cirrhosis. Currently, there are no biomarkers for
predicting HCC development in HBV-positive patients without cirrhosis and this should be
a priority for metabolomic research.

HCYV infection accounts for 70% of chronic hepatitis and 30% of liver transplants in
developed countries [85-87]. Regarding HCV, atomic emission spectroscopy on scalp hair
has been performed in 73 HCV-positive and 82 HCV-negative subjects, the hair
concentrations of Ca, Cu, Fe, Mg, Mn and Zn determined and the data analyzed by
multivariate data analysis [88]. This metallomics [89] study showed that Mg, Ca and Zn
were most closely associated with HCV infection. No biological discussion of the findings
was made. There has been a claim that NMR metabolomics on urine can distinguish HCV-
infected from uninfected persons [90], although little data were provided. A metabolomic
comparison of HCV-infected and mock-infected hepatocytes revealed small but significant
increases in alanine, tyrosine and adenosine with HCV infection [91]. Interestingly, similar
elevations have been recorded for NAFLD/NASH (tyrosine) and HCC (adenosine) (see Fig.
3). Preliminary findings in HCV-infected tree shrews (Tupaia belangeri chinensis)
suggested that HCV affects many pathways in the liver, with alterations in LPCs and bile
acids (as for other liver diseases, Fig.3), carnitine esters, fatty acids and LPEs [92]. It is
clear, therefore, that both HBV and HCV infection, together with NASH, trigger similar
molecular events represented by the mechanisms shown in Fig. 2. Moreover, both alcohol-
and HBV-induced cirrhosis displayed higher bile acids and lower LPCs than healthy
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controls in an almost identical manner [29]. It would appear that the depressed LPCs and
elevated bile acids in serum represent a phenotype of hepatitis and cirrhosis independent of
etiological origin, and that this phenotype is carried forward into any resultant HCC.

Cholangiocarcinoma

Cholangiocarcinoma (CCA) is an aggressive cancer originating from the biliary tract. It
would appear that obesity, diabetes, hepatitis B and C, alcohol use and cirrhosis are all
major risk factors for CCA, suggesting a common pathogenesis with HCC [93]. It has also
been proposed that genetically impaired biliary excretion of phospholipids underlies CCA
[94, 95]. Metabolomic investigations support this view, with lower phosphatidylcholine and
elevated glycine- and taurine-conjugated bile acids reported in the bile of CCA patients [96,
97].

Cholestasis and cholecystitis

Interruption of bile flow may have an extrahepatic and obstructive or an intrahepatic and
biochemical basis. An NMR metabolomic study has been performed in rats in an attempt to
use urinary biomarkers to distinguish the two mechanisms [98]. Metabolomics revealed that
cholestasis induced in Fxr-null mice by a cholic acid diet resulted in increased urinary
excretion of bile salt tetrols, predominantly 3a,6,7a,12a-tetrahydroxy-58-cholestan-26-
oyltaurine, due to an adaptive upregulation of the steroid-hydroxylating cytochrome P450
CYP3A11 in these mice [99]. An adaptive response was also characterized in a rat
cholestasis model, with a shift from cytotoxic to cytoprotective bile acids in plasma and
urine [100].

Injection of Escherichia coli into the rabbit gallbladder produces a model for acalculous
cholecystitis (AAC). Compared to saline-injected controls, AAC animals displayed
increased serum LDL and VLDL, with decreased serum phospholipids, lactate, 3-
hydroxybutyrate, citrate, lysine, asparagine, histidine and glucose as demonstrated by NMR
metabolomics [101]. These observations need to be refined with the use of LCMS-based
metabolomics.

Liver transplantation

As shown in Fig. 1, several end-stage liver diseases require transplantation. A metabolomic
study of single patient with hepatitis B and HCC who underwent two consecutive liver
transplants showed that the first failed graft was associated with elevated blood lactate, uric
acid, citrate, glutamine and methionine, diagnostic of dysfunctional hepatic metabolic fluxes
[102]. A series of 15 HCC patients displayed increased valine, alanine, acetone, succinate,
glutamine, choline, lactate and glucose one day after transplantation. After 7 days, lipids and
choline increased while glucose and amino acids decreased [31]. The metabolomic window
appears to offer new insights into specific hepatic metabolic changes in the transplantation
perioperative period.
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Miscellaneous other hepatobiliary diseases

Metabolomic studies have been reported that are of relevance to Wilson's disease [103, 104],
primary biliary cirrhosis [105], primary sclerosing cholangitis [105], the hepatic stage of
malaria [106-108], as well as various aspects of hepatic encephalopathy [109-112].

The metabolomic window into acute liver toxicity in animal models

High-throughput metabolomic screening of hepatotoxins in laboratory animals first used
NMR and pattern recognition algorithms [113-115] but, in early studies, also employed
Fourier-transform infrared spectroscopy [116]. Metabolomic profiles of numerous
hepatotoxins in laboratory animals have been described, and include hydrazine [117],
bromobenzene [118, 119], methapyrilene [120], methylenedianiline [121], D-galactosamine
[121-123], clofibrate [121], allyl formate [124], the anti-HBV compound Bay41-4109
[125], paracetamol [126-133], isoniazid [134, 135], carbon tetrachloride [131, 136-138], a-
naphthylisothiocyanate [137], perfluorododecanoic acid [139], valproate [140], Huang-yao-
zi [141], dimethylInitrosamine [142], polychlorinated biphenyls [143, 144], 2,3,7,8-
tetrachlorodibenzo-p-dioxin [143], methamphetamine [145], (+)-usnic acid [146],
pentamethychromanol [147] and methotrexate [131]. Detailed analysis of these drug-
induced liver injury (DILI) studies falls beyond the scope of this review. However, the
reader is directed to The Liver Toxicity Biomarker Study on DILI and closely related topics
that have been reviewed [148-153].

A proposed metabolomics-based model for major liver disease

Based upon a review of the available literature, we propose a three-stage progression from
hepatic insult of the healthy liver to carcinoma (Fig. 4). A core metabolomic phenotype
(CMP) arises early in this progression and comprises readily discernible changes in bile
acids and phospholipids (Tables 1-4, Fig. 3). The CMP is maintained whether or not
cirrhosis arises and/or HCC or CCA develop (Stages 2 and 3, respectively). This CMP is
common to all etiologies in Stage 1, including NAFLD/NASH, ALD and viral hepatitis.
Other metabolomic perturbations distinguish the different stages (Fig. 3). We also propose
that the metabolic remodelling described for HCC [56] begins at the transition from Phase 0
to Phase 1 as a consequence of the presence of inflammatory signalling in the liver, as
outlined in Fig. 2. Thus, this body of accumulated metabolomic data may begin to cast
further light on hepatobiliary diseases.
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Fig. 1. Major liver diseases and potential influencing factors
This schematic shows the development of NAFLD from a healthy liver various influencing

factors (green boxes). Steatosis is shown in yellow. NAFLD mostly becomes isolated fatty
liver, but some cases progress to NASH, showing both steatosis and inflammatory necrosis
(shown in red and black). NASH may progress to cirrhosis and then to HCC or to HCC
directly. HCC, cirrhosis and decompensated cirrhosis may all be treated by liver
transplantation. Chemical carcinogens, such as aflatoxin B4, together with alcohol and HBV
and HCV infection, are all potential influencing factors (green boxes).

Abbreviations used: NAFLD, nonalcoholic fatty liver disease; NASH, nonalcoholic
steatohepatitis; HCC, hepatocellular carcinoma; HBV, hepatitis B virus; HCV, hepatitis C

virus.
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Fig. 2. Mechanisms leading to lowered LPCs and elevated bile acids in serum in NASH
Reproduced with permission from Tanaka et al. Disruption of phospholipid and bile acid

homeostasis in mice with nonalcoholic steatohepatitis. Hepatology 2012;56:118-129.
Abbreviations used: LPC, lysophosphatidylcholine.
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HCC

Fig. 3. Venn diagram showing the up- and down-regulated metabolites in NAFLD/NASH,
cirrhosis and HCC
Elevated bile acids and lowered lysophosphatidylcholines are common across the

pathological evolution in humans and comprise a core metabolomic phenotype.
For abbreviations, see Fig. 1.
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Fig. 4. Diverse hepatic insults leading to a core metabolomic phenotype en route from the
healthy liver to HCC and CCA
Elevated serum bile acids and urinary bile salts together with decreased serum

lysophosphatidylcholines represent the core metabolomic phenotype (CMP). A metabolic
remodelling begins in the transition from the healthy liver (Phase 0) to NAFLD/NASH,
ALD or viral hepatitis (Phase 1). During Stage 1 there occurs a Warburg shift from
mitochondrial respiration to cytosolic glycolysis, together with an increase in fatty acid -
oxidation. This metabolic remodelling persists through cirrhosis (Phase 2) and into
carcinoma (Phase 3). Note that the sum of the carcinoma energy production D+E+F is
greater than the summed energy production A+B+C in the healthy liver.

Abbreviations used: CCA, cholangiocarcinoma; CMP, core metabolomic phenotype; ALD,

alcoholic liver disease. For other abbreviations, see Fig. 1.
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