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Summary

The emergent discipline of metabolomics has attracted considerable research effort in hepatology.

Here we review the metabolomic data for nonalcoholic fatty liver disease (NAFLD), nonalcoholic

steatohepatitis (NASH), cirrhosis, hepatocellular carcinoma (HCC), cholangiocarcinoma (CCA),

alcoholic liver disease (ALD), hepatitis B and C, cholecystitis, cholestasis, liver transplantation

and acute hepatotoxicity in animal models. A metabolomic window has permitted a view into the

changing biochemistry occurring in the transitional phases between a healthy liver and

hepatocellular carcinoma or cholangiocarcinoma. Whether provoked by obesity and diabetes,

alcohol use or oncogenic viruses, the liver develops a core metabolomic phenotype (CMP) that

involves dysregulation of bile acid and phospholipid homeostasis. The CMP commences at the

transition between the healthy liver (Phase 0) and NAFLD/NASH, ALD or viral hepatitis (Phase

1). This CMP is maintained in the presence or absence of cirrhosis (Phase 2) and whether or not

either HCC or CCA (Phase 3) develop. Inflammatory signalling in the liver triggers the

appearance of the CMP. Many other metabolomic markers distinguish between Phases 0, 1, 2 and

3. A metabolic remodelling in HCC has been described but metabolomic data from all four Phases

demonstrate that the Warburg shift from mitochondrial respiration to cytosolic glycolysis

foreshadows HCC and may occur as early as Phase 1. The metabolic remodelling also involves an

upregulation of fatty acid β-oxidation, also beginning in Phase 1. The storage of triglycerides in

fatty liver provides high energy-yielding substrates for Phases 2 and 3 of liver pathology. The

metabolomic window into hepatobiliary disease sheds new light on the systems pathology of the

liver.

Metabolomics and the liver in brief

Over the past decade or more, many authors have defined the terms metabolomics and

metabonomics. It is unproductive and unnecessary to add further to these definitions here.

All the reader needs to know from the point of view of hepatobiliary disease, is that

metabolomics is a window that offers a view distinct from the lenses of genomics,

transcriptomics and proteomics. There can be no other organ where such a plethora of both
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lipids and water-soluble metabolites are metabolically interchanged. No other organ exceeds

the rates of metabolism and energy production and consumption as found in the liver. Not

only is the liver the source of myriad endogenous metabolites and precursors used by other

organs, but also houses a vast array of detoxication enzymes that are crucial for rendering

less toxic, more water-soluble and readily excretable the 1–3 million xenobiotics that we are

exposed to in our lifetimes [1]. The hepatic metabolome is therefore a highly complex and

dynamic flux of small metabolites (say, <1.5 kDa, to include the larger phospholipid species,

such as cardiolipins). Metabolomics in its practice combines high-throughput analytical

chemistry, typically, methodologies based upon mass spectrometry or nuclear magnetic

resonance spectroscopy, with multivariate data analysis. These technologies permit

comparison of “global” metabolite profiles in an “unbiased” fashion for two or more groups

of samples. Of course, no metabolomic investigation has ever delivered a global metabolite

profile for a sample set, as this would require employment of multiple analytical platforms

and several sample preparation protocols that performed from millimolar down to sub-

picomolar concentrations. Moreover, different analytical platforms combined with specific

sample preparation procedures each provide a different metabolomic window in the

metabolic life of the liver. Accordingly, metabolomic findings reported are always biased by

the laboratory analytical procedures employed, often highly so.

This notwithstanding, many metabolomic investigators in recent years have entered the field

of hepatobiliary disease and a considerable volume of publications has appeared. This

review is therefore timely and we will attempt to make sense of a large and heterogeneous

set of published studies concerning the varied hepatobiliary elements of pathophysiology

where metabolomics has had something to say. This metabolomic window on hepatobiliary

disease has furnished an overabundance of potential disease biomarkers. More importantly,

in our view, the metabolomic lens has begun to provide new insights into liver disease

mechanisms, new understandings that may unmask potential therapeutic targets and, one

day, new treatment modalities.

The metabolomic window into nonalcoholic diseases of the liver

Overview

In this review and as depicted in Fig. 1, we will describe the extent to which metabolomics

has informed on the progression from the healthy liver to hepatocellular carcinoma (HCC)

through the various phases of nonalcoholic fatty liver disease (NAFLD), nonalcoholic

steatohepatitis (NASH) and liver cirrhosis. We will also examine what metabolomics has

taught about the various influencing factors and putative risk factors for these diseases, such

as obesity, diabetes, alcohol, hepatitis B and C virus (HBV, HCV) infection. In addition, we

will also review what metabolomics has contributed to the understanding of the change in

hepatic function after liver transplantation.

Nonalcoholic fatty liver disease (NAFLD)

Nonalcoholic fatty liver disease (NAFLD) is a highly prevalent condition that affects 15% to

45% persons in developed nations [2] and in both children and adults from all ethnic groups

[3]. A diagnosis of NAFLD implies an increased risk of such diseases as cardiovascular
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disease, diabetes, colonic adenomas, hypothyroidism and polycystic ovary syndrome [3].

NAFLD is generally considered to be the hepatic manifestation of metabolic syndrome [4].

The reference standard for diagnosing hepatic steatosis remains liver biopsy [3].

Investigators have employed metabolomic protocols in an attempt to define biomarkers that

might replace this invasive procedure for a disease of such high prevalence. Table 1 shows a

summary of 11 studies with metabolomic components that inform regarding the formation

of hepatic steatosis. Animal models and studies in living human subjects and human tissues

have been employed. One common finding is that of increased lipid species in the liver and

serum/plasma, including cholesterol esters [5, 6], triacylglycerols [4–7], diacylglycerols [4],

sphingomyelins [4], various bile salts [8–10], together with lactate [9, 11, 12] and glutamate

[11, 13]. In addition, cysteine-glutathione disulfide and both oxidized and reduced

glutathione were all reported to be depressed in the liver and serum/plasma [8, 9]. Finally,

where diets that instigate fatty liver had been used, depressed concentrations of glucose were

reported both in rat liver [14] and mouse serum [11], but in one study, elevated plasma

glucose was reported [12]. Taken together with elevated mouse serum/plasma lactate [11,

12], pyruvate and alanine [12], and human plasma lactate [9], these results would suggest

that NAFLD engages in cytosolic glycolysis. NAFLD is frequently associated with insulin

resistance and insulin has been reported in mice to activate pyruvate kinase M2 [15], the

enzyme switch to glycolysis involved in the Warburg effect and thus the production of

lactate and alanine from glucose via pyruvate. Furthermore, the reduction in glutathione

derivatives in human liver [8] and plasma [9] in NAFLD are clear signs of active oxidative

stress in the liver.

The lipidomic component of the observations summarized in Table 1 is of interest. Firstly, it

has been reported that phosphocholine, choline, betaine and trimethylamine N-oxide

(TMAO) were up-regulated metabolites in both liver and plasma of rodents fed diets that

provoked fatty liver [11, 12]. This is a clear indication of an increased turnover of

phosphatidylcholine and phosphatidylethanolamine species in the liver, thus releasing free

fatty acids through the action of phospholipases A1 and A2. These fatty acids, if not

catabolized by β-oxidation, will be stored in the liver as triacylglycerols. This is what was

observed in the metabolomic studies of animals with fatty liver [4–6]. Therefore, fatty liver

is not just a deposition of fat in the liver but rather a rearrangement and repartitioning of

lipid stores as has been proposed [5]. Using a mouse 24h starvation protocol, it was

observed that the triacylglycerols TG(44:2) and TG(48:3) massively increased in the liver by

2427% and 1198%, respectively. These are the most abundant triacylglycerols in adipose

tissue and these findings suggest that adipose may be a source of triacylglycerols deposited

in the liver in NAFLD [5]. Secondly, elevated hepatic concentrations of various

lysophosphatidylcholine (LPC), lysophosphatidylethanolamine (LPE) and

phosphatidylcholine (PC) species have been reported for human steatotic vs. non-steatotic

livers [8]. These molecules are obvious candidates for the elevated choline and choline

metabolites discussed above. Finally, three studies in humans reported elevated bile salts in

the liver [8] that spilled over to elevated bile acids in serum/plasma [9, 10]. Bile acids act as

signaling molecules in the liver that regulate lipid and glucose homeostasis [3, 16]. Certain

bile acids, in particular, chenodeoxycholic acid (CDCA) and deoxycholic acid (DCA) are

endogenous ligands that activate the farnesoid X receptor (FXR) [17]. The nuclear receptor
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FXR modulates conversion of cholesterol to bile acids by the regulation of the expression of

CYP7A1 [3]. Moreover, FXR reduces lipogenesis by downregulating expression of

SREBP-1, activates the nuclear receptor PPARα causing an increase in β-oxidation of free

fatty acids (FFA), both of which processes reduce hepatic FFA levels [3, 16]. There is a

single report of elevated hepatic levels of the bile salts glycochenodeoxycholate 3-sulfate

(GCDCA-3S) and taurochenodeoxycholate (TCDCA) in human fatty liver [8]. TCDCA is a

relatively weak activator of FXR [17] and GCDCA-3S appears not to have been studied in

this regard. It is curious that NAFLD existed in the presence of increased serum/plasma

concentrations of glycocholate, taurocholate, glycochenodeoxycholate [9] and deoxycholate

[10], which may not reflect hepatic concentrations of the FXR activators CDCA and DCA.

This theme will be returned to in the next section.

Nonalcoholic steatohepatitis (NASH)

NASH is a more advanced stage of NAFLD with a major inflammatory component [2].

NAFLD may progress to NASH, but >80% of cases remain as isolated fatty liver (IFL) with

no or minimal progression to cirrhosis and no increased risk of death relative to the general

population [3]. It has been estimated that ~11% NASH develop cirrhosis over 15 years and

~7% progress to hepatocellular carcinoma (HCC) over 6.5 years, either via cirrhosis or

sometimes directly [3] (see Fig. 1). The origins of the hepatic inflammation in NASH

continues to involve a major research effort and one theory posits that the hepatitis

originates in visceral adipose, which is intrinsically pro-inflammatory [2]. A study in mice

fed a high-fat diet supports this theory [18].

There have been relatively few metabolomic studies addressing the pathobiology of NASH

and its progression from simple NAFLD and all these have examined serum/plasma only.

Five studies are summarized in Table 2. As with NAFLD, triacylglycerols and several fatty

acids were elevated in plasma [7] and like NAFLD, several other fatty acids and LPCs were

attenuated in plasma [9]. When a small series of NASH was compared with NAFLD,

significant changes in serum concentrations of only three phospholipids were reported [10].

A study using NMR, which, unlike mass-spectrometry-based platforms, does not have the

power of detecting a large range of molecules [19], contributed raised serum concentrations

of glucose, glutamate and taurine [11]. The greatest metabolomic insights into NASH

pathogenesis come from a recent study that combined high-end analytics and targeted gene

expression by qPCR [20]. These workers generated NASH in mice fed a methionine- and

choline-deficient (MCD) diet. UPLC-ESI-TOFMS metabolomics revealed a statistically

significant depression of LPC(16:0), LPC(18:0) and LPC(18:1) in serum with a significant

rise in tauro-β-muricholate, taurocholate and 12-HETE for MCD fed mice compared with

mice on a normal diet. As a positive control, genetically obese ob/ob mice with severe

steatosis were administered galactosamine (GalN), which provoked severe inflammation and

hepatocyte injury with marked upregulation of hepatic mRNAs coding for TNFα and

TGFβ1. Serum of GalN-injected ob/ob steatotic mice compared with saline-injected ob/ob

steatotic mice displayed the same changes in LPCs and bile acids as the MCD fed mice.

Thus, the decline in serum LPC and the rise in serum bile acids is a signature of the

inflammatory component of NASH, rather than the steatotic component. To investigate

further the mechanisms involved in these perturbations of LPC and bile acid homeostasis in
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the NASH model, hepatic mRNA levels were determined by qPCR for genes involved in the

metabolism and transport of LPC, bile acids and 12-HETE. Lysophosphatidylcholine

acyltransferases (LPCAT) that convert LPC to PC [21] were all upregulated with two- to

four-fold elevations in hepatic Lpcat1, Lpcat2 and Lpcat3 mRNAs in the NASH model.

Additionally, the transporters SLC10A1 and SLCO1A1 that uptake bile salts into

hepatocytes and the transporters ABCC1 and ABCC4 that export bile acids from the liver

were highly downregulated and upregulated, respectively [20]. Taken together, these

observations explain how the inflammatory phenotype of NASH in a mouse model results in

the changes in serum metabolites described in Table 2 and this is shown in Fig. 2.

Importantly, similar perturbations have been observed in NASH patients [9], suggesting that

similar mechanisms may operate in humans. Finally, it should be stated that biomarkers for

NASH are limited and therapeutic options are poorly developed, which serves to emphasize

the need for further metabolomic research in this area.

Fibrosis and cirrhosis

Liver fibrosis is a scarring process involving the deposition of excess connective tissue in

response to injury. Cirrhosis may be considered as the end-stage of this reaction, comprising

formation of fibrous septa and hepatocyte nodules. Oxidative stress provokes the

inflammatory reactions and apoptosis involved in the generation of cirrhosis [22]. It is now

clear that NAFLD/NASH may develop into cirrhosis, although the histological features of

precursor NASH in the cirrhotic liver may be challenging to diagnose [23]. Cirrhosis may

arise due to a large number of causes, principal among which are not only NAFLD/NASH

but also alcoholic fatty liver disease and viral hepatitis B or C (see Fig. 1). There are no cut-

off values for laboratory analyses that give a diagnosis of cirrhosis [24] and so the

generation of novel metabolomic biomarkers to detect early cirrhosis has become a

justifiable aim. Table 3 summarizes such studies.

Three studies have been conducted in rats administered hepatotoxins to provoke fibrosis and

cirrhosis. Histopathology confirmed that rats exposed to thioacetamide in their drinking

water developed hepatic fibrosis after one month and cirrhosis after three months. Liver

extracts examined by NMR had higher levels of lactate [22], suggesting a degree of

anaerobic metabolism within the fibrotic liver. Two studies treated rats with carbon

tetrachloride (CCl4), which induced fibrosis [25, 26] and the authors evaluated treatment

with the Chinese medicine Xia Yu Xue Decoction [25] or scoparone, a drug isolated from a

medicinal plant [26]. Many metabolomic signals were reported after CCl4 administration,

including decreases in the urinary excretion of certain amino acids and gut flora metabolites

(which were mostly reversed by Xia Yu Xue Decoction) [25] and an increased urinary

excretion of glycocholate [26]. Neither serum nor liver tissue was examined in these studies.

Thus, hepatic fibrosis provoked in a normal, rather than fatty, rat liver, is associated with

somewhat minor changes in the urinary metabolome.

Eight metabolomic investigations of hepatic cirrhosis have all been performed on human

materials, six on serum [27–32], one on liver biopsies [33], and one on faeces [34]. No clear

picture emerges from these studies. An increased serum concentration of non-essential

amino acids [27] and certain D-amino acids [28], a decreased serum concentration of
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essential amino acids [27, 28, 31], suggests that the cirrhotic liver has an impaired ability to

metabolize both protein and D-amino acids. Other notable observations include the decrease

in several LPCs in serum of cirrhotics versus healthy volunteers, whether the cirrhosis was

due to alcohol or hepatitis B [29]. This pattern is similar to that observed for NASH (Table

2), although the cirrhotic patients studied had a background of alcohol abuse or hepatitis B.

Moreover, glycochenodeoxycholic acid and glycocholic acid concentrations were also

elevated in serum [29]. Clearly, the mechanism proposed by Gonzalez and colleagues [20]

shown in Fig. 2 may apply not only to NASH but other inflammatory liver diseases.

Selective impairment of hepatic β-oxidation was apparent from a reduced serum carnitine

and increased serum palmitoleoylcarnitine (16:1) and oleoylcarnitine (18:1) concentrations

[32]. Impaired ammonium detoxication in cirrhosis is implied from a reported shift from

hepatic levels of glutamine and glucose to glutamate [33]. Finally, a very interesting report

catalogued changes in the faecal metabolome between 24 healthy volunteers and 17

cirrhotics [34]. In faeces from cirrhotic patients, there was an increased concentration of the

major LPCs (16:0, 18:0, 18:1, 18:2) and a decreased faecal excretion of chenodeoxycholic

acid and 7-ketolithocholic acid, the latter reported as a gut flora metabolite of the former by

Bacteroides intestinalis [35]. The data on the faecal excretion of LPCs and bile acids further

supports and enhances the mechanism outlined in Fig. 2.

Hepatocellular carcinoma (HCC)

More than half a million people are diagnosed each year with hepatocellular carcinoma

(HCC). The disease has a poor prognosis, generally because of its late presentation and its

incidence is growing in developed countries. There has been considerable research effort to

try to define biomarkers that would aid earlier detection and thus improve patient outcomes.

Many researchers, particularly in China, have employed metabolomic protocols towards this

end. Table 4 contains details of 24 metabolomic investigations of human HCC [27, 32, 36–

57], three of chemically-induced rat HCC [42, 46, 58] and two of hepatocellular adenomas

in the flatfish Limanda limanda [59, 60]. Many investigators of human HCC employed

healthy volunteers as a control group, especially for the collection of serum/plasma or urine

[27, 32, 36, 37, 39–41, 43–45, 47–50, 53, 57], others used cirrhotics as a comparator group

[36, 37, 39, 45–48, 50–52, 54], while others included acute hepatitis [36, 37], chronic

hepatitis [36, 37, 46, 48, 50], benign liver tumours [43] and acute myeloid leukemia [45] as

comparator groups. These metabolomic comparisons have permitted insights into the

biochemical transitions to HCC from various precursor states, at least as viewed through

serum/plasma or urine. A relatively few studies have addressed the hepatic metabolome

directly by interrogating tumour tissue and paired uninvolved liver, for human HCC [38, 55,

56], chemically-induced rat HCC [42] and fish hepatocellular adenoma [59, 60]. Two recent

reports also combined transcriptomic and metabolomic analyses of human HCC [55, 56]. As

will be demonstrated below, comparison of the outputs of metabolomic investigations of

NAFLD/NASH, cirrhosis and HCC will permit a new understanding of the chain of

biochemical events that lead from a healthy liver to HCC.
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Disease progression from fatty liver to hepatocellular carcinoma

The metabolomic observations encompassed in Tables 1–4 have been combined into a

visual format (Fig. 3) which permits a biochemical view of the changes occurring from fatty

liver through cirrhosis to HCC. Only observations reported in at least two independent

human studies have been entered into this Figure. The paramount conclusion is that elevated

bile acids and lowered LPCs are common across all three groups of pathology. The bile

acids affected include GCA, TCA, GDCA and GCDCA. A whole range of LPCs,

comprising saturated, monounsaturated and polyunsaturated long-chain and very long-chain

fatty acids are affected. The probable mechanisms by which these metabolic perturbations

have occurred were discussed above and are shown, in part, in Fig. 2. Increased biliary

excretion of phospholipids is an additional factor already discussed above. Of importance is

that these alterations in hepatic metabolism would appear to occur very early in the chain of

events leading from the normal liver to HCC (Fig. 1) and therefore must be maintained

throughout the progression to HCC.

As shown in Fig. 3, NAFLD/NASH (see Tables 1, 2) is characterized by upregulation of

lactate, glucose, glutamate and tyrosine, together with the downregulation of cortisone. This

would suggest that, in the fatty liver states, hepatic glucose is mobilized from glycogen

almost certainly due to insulin resistance [61]. The rise in lactate may be a sign of a degree

of metabolic remodelling to aerobic glycolysis in response to elevated glucose, although

there was little evidence of the other glycolytic metabolites, pyruvate and alanine [56], being

elevated in NAFLD/NASH. The rise in glutamate is a sign of reduced cytosolic glutamine

synthesis and thus an impairment of ammonium detoxication [62]. This is usually associated

with cirrhosis and liver failure, but may also be manifest in NASH [63]. The upregulation of

tyrosine in NAFLD/NASH is at odds with a single report in which plasma tyrosine was

lower in NAFLD than controls [64]. Elevated tyrosine is more likely to be correct as the

metabolomic report [9] employed a more specific analysis. Finally, the metabolomic

investigations of NAFLD and NASH [9] have reported that plasma cortisone is

downregulated. This is consistent with the upregulation of 11β-hydroxysteroid

dehydrogenase type 1 (HSD11B1) in visceral obesity, metabolic syndrome and type 2

diabetes [65, 66] and its role in NAFLD [67]. HSD11B1 activates cortisone to cortisol in

liver and adipose tissue. Thus, the aforementioned metabolomic signals are consistent with

known biochemical characteristics of fatty liver. In particular, elevated serum bile acids and

reduced LPCs are in accord with known changes in gene expression in NASH (Fig. 2).

As shown in Table 3, a relatively small number of metabolomic studies have addressed the

conversion of either normal or fatty human liver states to cirrhosis. Only two metabolomic

markers specific to cirrhosis could therefore be defined, downregulation of the branched-

chain amino acids (BCAAs) valine and isoleucine. Lowered plasma BCAAs in cirrhosis was

first observed almost six decades ago [68] and is due to hepatic metabolism of BCAAs to

provide carbon skeletons for the TCA cycle [69]. Noteworthy is the carry forward from

NAFLD/NASH into cirrhosis of elevated bile acids and reduced LPCs (Fig. 3).

The greatest number of human metabolomic studies was conducted in HCC and, not

surprisingly, there occur a large number of metabolomic changes in HCC relative to

cirrhosis or to control subjects (Table 4). As shown in Fig. 3, there are many signs of a
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metabolic reprogramming in the livers of HCC patients, detected by metabolomics. For

example, the decrease in glucose, citrate and glycerol 3-phosphate coupled with an increase

in pyruvate are all signs of the Warburg effect [70], a switch from mitochondrial respiration

to cytosolic aerobic glycolysis [71, 72]. By a metabolomic comparison of paired HCC

biopsies and uninvolved liver tissues, we have calculated that the switch to the aerobic

glycolysis in HCC is no more than four-fold [56]. Although tumours are generally

considered to synthesize fatty acids de novo from citrate via acetyl-CoA [72], the

accumulated metabolomic data in HCC (Fig.3) tend to point to increased fatty acid β-

oxidation, with elevated acetate and 2-oxoglutarate (immediate precursor of carnitine) and

reduced free fatty acids, carnitine and carnitine esters. Furthermore, some transcriptomic

types of HCC, in particular G1 and G3, displayed markedly reduced 1-palmitoylglycerol, 1-

stearoylglycerol and palmitate compared with surrounding uninvolved liver tissue [56].

Thus, metabolic reprogramming in HCC appears to comprise a modest Warburg shift to

glycolysis and a major upregulation of fatty acid catabolism in some tumour types.

The metabolomic window into other hepatobiliary diseases

Alcoholic liver disease

The consumption of alcoholic beverages leads to exposure of the liver to ethanol. While

many consider the pharmacological effects of ethanol consumption enjoyable, ethanol is

nevertheless a solvent that can exhibit potent toxicological effects, in particular, on the liver.

Alcohol exposure to laboratory animals can provoke a range of pathologies that parallels

nonalcoholic liver disease. For example, 20 to 40 kg micropigs voluntarily consume an

ethanol-supplemented diet (40% daily energy needs), developing peak blood ethanol levels

>200 mg/dl and, within 6 months, hepatic steatosis, inflammation and fibrosis. Alcoholic

micropigs displayed increased hepatic TG levels relative to controls with elevated fatty acid

ratios of 16:1n7/16:0 and 18:1n9/18:0, due to increased stearoyl-CoA desaturase activity.

The authors concluded that increased de novo lipogenesis and reduced LPC synthesis and

export were responsible for the accumulation of TG during alcoholic steatohepatitis (ASH)

[73]. Athymic nude mice gavaged with ethanol solutions from 5% gradually to 40%,

developed mild hepatic hemorrhage, with elevated serum PC, decreased saturated and

monounsaturated LPC, and elevated polyunsaturated LPC levels [74]. Similarly, rats fed 5%

ethanol developed fatty infiltration after 2 months with mild inflammation and oxidative

stress after 3 months. NMR metabolomics suggested that hepatic fatty acids and TG

increased and plasma fatty acids and PC decreased [75]. These contradictions may reflect a

species difference but more likely underscore the relative weakness of NMR as a lipidomic

tool.

Another approach to study alcohol-induced liver disease (ALD) has been to employ the

Ppara-null mouse, since the nuclear receptor PPARα is a master regulator of hepatic lipid

metabolism whose biochemical effects can be detected through metabolomics, both in

humans [76] and in the mouse [77]. Ppara-null and control mice were fed a 4% ethanol-

containing liquid diet and an isocaloric control diet, respectively. After one month, steatosis

with elevated hepatic TGs was observed for the Ppara-null mice only. Metabolomic analysis

revealed elevated indole-3-lactic acid associated with the development of ALD in ethanol-
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treated Ppara-null mice [78]. In an enlarged study, these authors reported that indole-3-

lactic acid and phenyllactic acid were potential biomarkers for early ALD [79]. CYP2E1 is

the principal ethanol-inducible hepatic enzyme responsible for ethanol metabolism and

hepatotoxicity [80]. A metabolomic study in Cyp2e1-null and control mice reported that the

ethanol metabolite acetate can acetylate taurine in the liver, leading to ethanol-dose-

dependent production of N-acetyltaurine [81], a potential biomarker of ethanol

hepatotoxicity. This reaction was found only in wild-type animals with hepatic CYP2E1.

Viral hepatitis B and C

Evaluation of liver disease in patients with hepatitis B or C is essential to identify patients

who require antiviral therapy and to determine prognosis. Staging of liver fibrosis and the

occurrence of cirrhosis associated with HBV or HCV infection is traditionally done by

biopsy, but now there has been a move towards the use of noninvasive biomarkers [82].

None of the serum biomarkers that were originally developed for hepatitis C involves small

molecules. Metabolomic studies in hepatitis B and C patients are very timely. The first study

of its kind to evaluate deteriorating liver function in chronic hepatitis B using metabolomics

was conducted in China, where HBV infection occurs in 80–90% of HCC cases [39]. Using

LCMS, they established a decline in serum LPC(16:0), LPC(18:0), LPC(18:1) and

LPC(18:2), together with an elevation of GCDCA (or its isomer GDCA) [83]. Another

Chinese study reported similar results when examining the progression of chronic hepatitis

B to cirrhosis [84]. This, of course, is the same fingerprint as seen in NALFD/NASH,

cirrhosis and HCC (Figs. 2, 3). It was also reported that serum GCA, GCDCA and TCA

were elevated in hepatitis B-induced cirrhosis [39]. There do not appear to be metabolomic

studies comparing HBV-positive and HBV-negative subjects. It should also be pointed out

that HBV may cause HCC in the absence of cirrhosis. Currently, there are no biomarkers for

predicting HCC development in HBV-positive patients without cirrhosis and this should be

a priority for metabolomic research.

HCV infection accounts for 70% of chronic hepatitis and 30% of liver transplants in

developed countries [85–87]. Regarding HCV, atomic emission spectroscopy on scalp hair

has been performed in 73 HCV-positive and 82 HCV-negative subjects, the hair

concentrations of Ca, Cu, Fe, Mg, Mn and Zn determined and the data analyzed by

multivariate data analysis [88]. This metallomics [89] study showed that Mg, Ca and Zn

were most closely associated with HCV infection. No biological discussion of the findings

was made. There has been a claim that NMR metabolomics on urine can distinguish HCV-

infected from uninfected persons [90], although little data were provided. A metabolomic

comparison of HCV-infected and mock-infected hepatocytes revealed small but significant

increases in alanine, tyrosine and adenosine with HCV infection [91]. Interestingly, similar

elevations have been recorded for NAFLD/NASH (tyrosine) and HCC (adenosine) (see Fig.

3). Preliminary findings in HCV-infected tree shrews (Tupaia belangeri chinensis)

suggested that HCV affects many pathways in the liver, with alterations in LPCs and bile

acids (as for other liver diseases, Fig.3), carnitine esters, fatty acids and LPEs [92]. It is

clear, therefore, that both HBV and HCV infection, together with NASH, trigger similar

molecular events represented by the mechanisms shown in Fig. 2. Moreover, both alcohol-

and HBV-induced cirrhosis displayed higher bile acids and lower LPCs than healthy
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controls in an almost identical manner [29]. It would appear that the depressed LPCs and

elevated bile acids in serum represent a phenotype of hepatitis and cirrhosis independent of

etiological origin, and that this phenotype is carried forward into any resultant HCC.

Cholangiocarcinoma

Cholangiocarcinoma (CCA) is an aggressive cancer originating from the biliary tract. It

would appear that obesity, diabetes, hepatitis B and C, alcohol use and cirrhosis are all

major risk factors for CCA, suggesting a common pathogenesis with HCC [93]. It has also

been proposed that genetically impaired biliary excretion of phospholipids underlies CCA

[94, 95]. Metabolomic investigations support this view, with lower phosphatidylcholine and

elevated glycine- and taurine-conjugated bile acids reported in the bile of CCA patients [96,

97].

Cholestasis and cholecystitis

Interruption of bile flow may have an extrahepatic and obstructive or an intrahepatic and

biochemical basis. An NMR metabolomic study has been performed in rats in an attempt to

use urinary biomarkers to distinguish the two mechanisms [98]. Metabolomics revealed that

cholestasis induced in Fxr-null mice by a cholic acid diet resulted in increased urinary

excretion of bile salt tetrols, predominantly 3α,6,7α,12α-tetrahydroxy-5β-cholestan-26-

oyltaurine, due to an adaptive upregulation of the steroid-hydroxylating cytochrome P450

CYP3A11 in these mice [99]. An adaptive response was also characterized in a rat

cholestasis model, with a shift from cytotoxic to cytoprotective bile acids in plasma and

urine [100].

Injection of Escherichia coli into the rabbit gallbladder produces a model for acalculous

cholecystitis (AAC). Compared to saline-injected controls, AAC animals displayed

increased serum LDL and VLDL, with decreased serum phospholipids, lactate, 3-

hydroxybutyrate, citrate, lysine, asparagine, histidine and glucose as demonstrated by NMR

metabolomics [101]. These observations need to be refined with the use of LCMS-based

metabolomics.

Liver transplantation

As shown in Fig. 1, several end-stage liver diseases require transplantation. A metabolomic

study of single patient with hepatitis B and HCC who underwent two consecutive liver

transplants showed that the first failed graft was associated with elevated blood lactate, uric

acid, citrate, glutamine and methionine, diagnostic of dysfunctional hepatic metabolic fluxes

[102]. A series of 15 HCC patients displayed increased valine, alanine, acetone, succinate,

glutamine, choline, lactate and glucose one day after transplantation. After 7 days, lipids and

choline increased while glucose and amino acids decreased [31]. The metabolomic window

appears to offer new insights into specific hepatic metabolic changes in the transplantation

perioperative period.
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Miscellaneous other hepatobiliary diseases

Metabolomic studies have been reported that are of relevance to Wilson's disease [103, 104],

primary biliary cirrhosis [105], primary sclerosing cholangitis [105], the hepatic stage of

malaria [106–108], as well as various aspects of hepatic encephalopathy [109–112].

The metabolomic window into acute liver toxicity in animal models

High-throughput metabolomic screening of hepatotoxins in laboratory animals first used

NMR and pattern recognition algorithms [113–115] but, in early studies, also employed

Fourier-transform infrared spectroscopy [116]. Metabolomic profiles of numerous

hepatotoxins in laboratory animals have been described, and include hydrazine [117],

bromobenzene [118, 119], methapyrilene [120], methylenedianiline [121], D-galactosamine

[121–123], clofibrate [121], allyl formate [124], the anti-HBV compound Bay41-4109

[125], paracetamol [126–133], isoniazid [134, 135], carbon tetrachloride [131, 136–138], α-

naphthylisothiocyanate [137], perfluorododecanoic acid [139], valproate [140], Huang-yao-

zi [141], dimethylnitrosamine [142], polychlorinated biphenyls [143, 144], 2,3,7,8-

tetrachlorodibenzo-p-dioxin [143], methamphetamine [145], (+)-usnic acid [146],

pentamethychromanol [147] and methotrexate [131]. Detailed analysis of these drug-

induced liver injury (DILI) studies falls beyond the scope of this review. However, the

reader is directed to The Liver Toxicity Biomarker Study on DILI and closely related topics

that have been reviewed [148–153].

A proposed metabolomics-based model for major liver disease

Based upon a review of the available literature, we propose a three-stage progression from

hepatic insult of the healthy liver to carcinoma (Fig. 4). A core metabolomic phenotype

(CMP) arises early in this progression and comprises readily discernible changes in bile

acids and phospholipids (Tables 1–4, Fig. 3). The CMP is maintained whether or not

cirrhosis arises and/or HCC or CCA develop (Stages 2 and 3, respectively). This CMP is

common to all etiologies in Stage 1, including NAFLD/NASH, ALD and viral hepatitis.

Other metabolomic perturbations distinguish the different stages (Fig. 3). We also propose

that the metabolic remodelling described for HCC [56] begins at the transition from Phase 0

to Phase 1 as a consequence of the presence of inflammatory signalling in the liver, as

outlined in Fig. 2. Thus, this body of accumulated metabolomic data may begin to cast

further light on hepatobiliary diseases.
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Fig. 1. Major liver diseases and potential influencing factors
This schematic shows the development of NAFLD from a healthy liver various influencing

factors (green boxes). Steatosis is shown in yellow. NAFLD mostly becomes isolated fatty

liver, but some cases progress to NASH, showing both steatosis and inflammatory necrosis

(shown in red and black). NASH may progress to cirrhosis and then to HCC or to HCC

directly. HCC, cirrhosis and decompensated cirrhosis may all be treated by liver

transplantation. Chemical carcinogens, such as aflatoxin B1, together with alcohol and HBV

and HCV infection, are all potential influencing factors (green boxes).

Abbreviations used: NAFLD, nonalcoholic fatty liver disease; NASH, nonalcoholic

steatohepatitis; HCC, hepatocellular carcinoma; HBV, hepatitis B virus; HCV, hepatitis C

virus.
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Fig. 2. Mechanisms leading to lowered LPCs and elevated bile acids in serum in NASH
Reproduced with permission from Tanaka et al. Disruption of phospholipid and bile acid

homeostasis in mice with nonalcoholic steatohepatitis. Hepatology 2012;56:118–129.

Abbreviations used: LPC, lysophosphatidylcholine.
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Fig. 3. Venn diagram showing the up- and down-regulated metabolites in NAFLD/NASH,
cirrhosis and HCC
Elevated bile acids and lowered lysophosphatidylcholines are common across the

pathological evolution in humans and comprise a core metabolomic phenotype.

For abbreviations, see Fig. 1.
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Fig. 4. Diverse hepatic insults leading to a core metabolomic phenotype en route from the
healthy liver to HCC and CCA
Elevated serum bile acids and urinary bile salts together with decreased serum

lysophosphatidylcholines represent the core metabolomic phenotype (CMP). A metabolic

remodelling begins in the transition from the healthy liver (Phase 0) to NAFLD/NASH,

ALD or viral hepatitis (Phase 1). During Stage 1 there occurs a Warburg shift from

mitochondrial respiration to cytosolic glycolysis, together with an increase in fatty acid β-

oxidation. This metabolic remodelling persists through cirrhosis (Phase 2) and into

carcinoma (Phase 3). Note that the sum of the carcinoma energy production D+E+F is

greater than the summed energy production A+B+C in the healthy liver.

Abbreviations used: CCA, cholangiocarcinoma; CMP, core metabolomic phenotype; ALD,

alcoholic liver disease. For other abbreviations, see Fig. 1.
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