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ABSTRACT: The potential for reliably predicting relative
binding enthalpies, ΔΔE, from a direct method utilizing
molecular dynamics is examined for a system of three
phosphotyrosyl peptides binding to a protein receptor, the
Src SH2 domain. The binding enthalpies were calculated from
the potential energy differences between the bound and the
unbound end-states of each peptide from equilibrium
simulations in explicit water. The statistical uncertainties in
the ensemble-mean energy values from multiple, independent
simulations were obtained using a bootstrap method.
Simulations were initiated with different starting coordinates
as well as different velocities. Statistical uncertainties in ΔΔE are 2 to 3 kcal/mol based on calculations from 40, 10 ns trajectories
for each system (three SH2−peptide complexes or unbound peptides). Uncertainties in relative component energies, comprising
solute−solute, solute−solvent and solvent−solvent interactions, are considerably larger. Energy values were estimated from an
unweighted ensemble averaging of multiple trajectories with the a priori assumption that all trajectories are equally likely.
Distributions in energy−rmsd space indicate that the trajectories sample the same basin and the difference in mean energy values
between trajectories is due to sampling of alternative local regions of this superbasin. The direct estimate of relative binding
enthalpies is concluded to be a reasonable approach for well-ordered systems with ΔΔE values greater than ∼3 kcal/mol,
although the approach would benefit from future work to determine properly distributed starting points that would enable
efficient sampling of conformational space using multiple trajectories.

■ INTRODUCTION

The rapid growth in computational capabilities enables the use
of computer simulations to help guide our understanding of
biomolecules and their interactions at a level previously
unrealized. Estimation of thermodynamic quantities by
simulation is particularly important to gain insight into the
microscopic details and connect physical interactions with
thermodynamic measurements. Here, we consider the direct
calculation from molecular dynamics (MD) simulation of the
binding enthalpy for a protein−peptide complex. A description
of how changes in ligand structure perturb molecular
interactions, and hence enthalpy, can provide insight into
enthalpy−entropy compensation, or help to explain subtle
effects on binding energy when these are difficult to resolve
based on crystallographic or NMR structures.1,2 Furthermore, a
strategy to improve the affinity of drug candidates is based on
optimizing binding enthalpy and entropy,3,4 for example, by
correlating trends in enthalpy with structural properties5 such
as surface area, chemical composition, etc. This strategy has
been challenged on the premise that free energy is more
accurately determined experimentally and predicted computa-
tionally than enthalpy and entropy,6 as well as the observation
that binding enthalpy is not always predictive of binding free
energy.7,8 Nonetheless, for some systems, knowledge of the

binding enthalpy and/or entropy has uncovered information on
molecular association that is not present when examining
binding free energy alone; distinguishing patterns in enthalpy/
entropy can help to understand the molecular properties that
affect molecular association. An interesting case is the issue of
anticompensation of entropy and enthalpy in ligand binding,9,10

to complement the more commonly discussed phenomenon of
entropy/enthalpy compensation. In another example, clear
trends in binding enthalpy distinguish one group of ligands in a
series from another, a trend that is not apparent from free
energy alone.11 Thus, a critical assessment of binding enthalpies
can provide insights into the physical factors that govern
molecular association, with computational methods involving
physics-based models contributing an atomic description of the
underlying interactions.
The progress of simulation-based methods to estimate

binding free energy is well recognized,12−19 while the
prediction of entropy and enthalpy components remains
more challenging.20,21 The statistical mechanical theory and
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computational methods for the free energy, as well as the
decomposition into enthalpic and entropic components of
protein−ligand interactions are well described in an insightful
review by Levy and Gallicchio.22 Enthalpy values corresponding
to experimental binding measurements can be computed by
alternative methods: finite temperature differences to estimate
entropy from the temperature derivative of the free energy, and
then, the sum of the free energy and entropy times
temperature; the derivative methods associated with free-
energy perturbation and thermodynamic integration; or a direct
estimate from the molecular mechanics energy of end-states.
Estimates of the enthalpy and entropy components from
derivatives of the free energy function generally are less
accurate and have larger errors than estimates of the free energy
function itself.
Of the possible approaches to estimate enthalpy, the direct

method based on end-states is the most straightforward and
offers immediate interpretation of the physical behavior.
Nonetheless, the direct method determines the enthalpy of
binding from the difference between the energies of the
protein−ligand complex and the free molecules obtained from
separate simulations. This difference is orders of magnitude
smaller than the absolute energy values, and thus, the reliability
of the direct method depends on the level of sampling that can
be achieved within practical computational times.15,23 As such,
studies to date using the direct method to estimate protein−
ligand-binding enthalpies are few in number to our knowledge,
and the alternative method based on finite temperature
differences has thus far proven more useful for investigating
protein−ligand interactions.24,25 A well-designed, seminal study
of small-molecule solvation finds that better convergence and
more reliable estimates for entropy and enthalpy are achieved
with the finite difference method relative to the direct method
or derivative quantities.26 Nevertheless, it should be kept in
mind that the accuracy of the finite difference approach is
limited by the theoretical assumptions related to the temper-
ature dependence and heat capacity; the finite-difference
analysis relates the free energy estimated at different temper-
atures to the entropy and enthalpy without accounting for
changes in the heat capacity, whereas the direct method
calculation has the advantage of being carried out at the
specified temperature. In addition, the finite difference
approach requires that the force field be accurate over the

temperature range chosen for the finite difference analysis,23,27

which is not generally the case.
Here, we examine the use of the direct method to compute

the enthalpy of binding of protein−ligand complexes from
individual end-state simulations. A specific estimate of enthalpy
is of interest because of the direct comparison with calorimetry
data and as the primary factor used to understand structural
stability. The direct method has been considered impractical
because of the difficulty with convergence of the solvent
interactions;22,26 however, the increase in computational power
suggests that this barrier is rapidly being overcome. Here, the
potential for reliably estimating relative enthalpy for protein−
ligand binding with the current computer power typically
available to academic research groups is considered. The
relative enthalpies for three tetrapeptides binding to Src SH2
domain are estimated. Src SH2 is a well-structured 106-residue
protein without substantial conformational heterogeneity
apparent from NMR heteronuclear relaxation data.1

■ METHODS

Molecular Dynamics Simulations. The approach to
estimate relative binding enthalpies is tested on a model
system of three phosphotyrosyl-containing tetrapeptide ligands
binding to the 106-residue Src SH2 domain. This association
was previously characterized by ITC.28,29 The first peptide
consists of the canonical Src SH2 recognition sequence
(pYEEI). The other two peptides are the conformationally
constrained (cpYEEI) or flexible (fpYEEI) mimetics in which
the phosphorylated tyrosine residue (pY) is chemically
modified (Figure 1A). Equilibrium molecular dynamics
simulations were calculated for six systems: three SH2−peptide
complexes (SH2−pYEEI, SH2−cpYEEI, SH2−fpYEEI) and
three unbound peptides (pYEEI, cpYEEI, fpYEEI).
A set of 40 simulations was generated for each of the six

systems. Five sets of starting coordinates for each system were
obtained from the crystallographic coordinates of the Src
SH2cpYEEI complex (PDB code 1IS029), containing two
copies of the complex in the asymmetric unit, and Src SH2 with
a bound 11-residue peptide including the canonical pYEEI
sequence (PDB code 1SPS30), containing three copies of the
complex in the asymmetric unit. An overlay of the crystallo-
graphic structures is shown in Figure 1B. Among these five sets
of crystallographic coordinates, the pairwise rms differences
between Src SH2 Cα coordinates range from 0.49 to 0.83 Å,

Figure 1. Molecules simulated in this study. (A) The three peptides, denoted as canonical (pYEEI), constrained (cpYEEI), and flexible (fpYEEI).
(B) Overlay of the Src SH2−peptide complex X-ray structures used to build initial models: 2 chains from the SH2−cpYEEI complex (1IS0, cyan)
and 3 chains from the SH2−pYEEI complex (1SPS, magenta). Bound peptides are rendered with thick lines, protein side-chains in thin lines and the
protein main-chains in ribbons.
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and between all-heavy atoms from 0.97 to 1.54 Å. For the three
complexes, the crystallographic ligand was alchemically mutated
to the desired pseudopeptide to yield five sets of starting
coordinates. Velocities were randomized using random seeds
for each of the five starting coordinate sets to establish the 40
unique starting conditions.
SH2 complexes and peptides were prepared for simulations

using CHARMM version c35,31 and production runs were
performed with NAMD32 using the CHARMM27 all-atom
force field33 with CMAP dihedral angle correction.34

Parameters for the nonstandard cpY and fpY residues were
described previously.1 Solutes were solvated with 6840 TIP3P
water molecules for SH2−ligand complexes, or 2310 water
molecules for the free peptides in octahedral boxes, so that the
box edges were at least 14 Å from the solute. Nonbonded lists
were generated with a 14 Å cutoff using the BYCUBES
method,31 and nonbonded interactions were calculated with a
12 Å cutoff and truncation functions applied starting at 10 Å.
van der Waals interactions were treated with an atom-based
switching function and short-range electrostatics with an atom-
based shifting function. Long-range electrostatic interactions
were estimated using the particle mesh Ewald method. The
energy of the initial systems was minimized for 500 steps with
the steepest descent algorithm and then with the adopted basis
Newton−Raphson algorithm for 1000 steps or until the energy
change between steps was less than 1 kcal/mol, first with the
solute atoms fixed, then with harmonic constraints on solute
main chain atoms, then finally without constraints.
Molecular dynamics trajectories were calculated with the

leapfrog integrator using a 1 fs time step. Constant pressure and
temperature (CPT) Nose−́Hoover−Andersen−Klein dynamics
used a reference pressure of 1 atm and temperature of 298 K.
Simulations were equilibrated for 2500 ps. Production runs of
10 ns were recorded for each of the 40 simulations per system,
yielding a total MD run time of 400 ns for each of the six
systems. Coordinates were saved every 1 ps. Potential energy
values for estimating binding enthalpy were calculated from
postprocessing of the trajectories.
Relative Binding Enthalpy Calculation. Relative en-

thalpies (ΔΔH) for binding various ligands to a single protein
were calculated by the direct method of estimating the internal
energy of end-states according to Scheme 1. For a protein (P),

two ligands (L1 and L2), and protein−ligand complexes (PL1
and PL2), ΔΔH is estimated from internal energy given there is
negligible change in molecular volume between the bound and
unbound states at constant pressure. From the thermodynamic
cycle in Scheme 1,

ΔΔ = ΔΔ = Δ − Δ

= − − −

= − − − = Δ * − Δ *

H E E E

E E E E

E E E E E E

( ) ( )

( ) ( )

PL2 PL1

PL2 PL1 L2 L1

PL2 L2 PL1 L1 2 1 (1)

with the energy difference, ΔE*, for each ligand being

Δ = ⟨ ⟩ − ⟨ ⟩*E E En n nPL L (2)

where ⟨···⟩ is the expectation, or time-averaged value obtained
from simulations (details given below), and “*” emphasizes the
quantity is not the true binding energy given that the energy of
the unbound state of the protein (⟨EP⟩) does not appear in eq
1. An unbound protein simulation is omitted in the analysis
because ⟨EP⟩ cancels in the relative binding enthalpies.
The internal energy of the system is from the molecular

mechanics force field of simulations calculated for each
protein−ligand complex and the unbound ligand. The total
system energy, ET, can be partitioned into components
corresponding to the geometry and intramolecular nonbonded
interactions of the solute, EUU, where the solute is either PLn or
Ln, the intermolecular interactions between the solute and
solvent, EUV, and interactions between water molecules, EVV:

= + +E E E ET UU UV VV (3)

Mean Energy Values and Uncertainties. A set of
trajectories for each state was obtained by calculating multiple,
independent MD trajectories. Multiple simulations are
considered to provide a broader sampling of conformational
space than a single simulation extended for an equivalent total
simulation time.35−38 The simulations in this study were
calculated independently and not subjected to replica
exchange39 or other collective weighting scheme,40 and thus
the resulting trajectories serve as a set of repeated measure-
ments of the energy with mean values distributed across the
potential energy surface.
The local mean energy, ̅Ek , is estimated from the molecular

mechanics force field of the simulations from a single trajectory
as the time-average value for trajectory k over the time period
corresponding to N snapshots,

∑̅ =
=

E
N

E
1

k
n

N

k n
1

,
(4)

where Ek,n is the energy value of the nth snapshot of the kth
trajectory.
The expected energy value for the set of trajectories, ⟨E⟩, is

determined from the set of local means, E̅k, of the individual
trajectories. For K trajectories, the ensemble mean is
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For the total ensemble here, K equals 40 trajectories and N
corresponds to the number of snapshots from a 10 ns
trajectory. Certain of the results that follow examine
convergence by using cumulative averages for which the value
N is varied. Analysis of the simulation ensemble by the simple
average defined with eq 5 assumes individual trajectories, k, to
be equally likely, an assumption discussed in Results.
The uncertainty in the energy values estimated from K

independent trajectories was obtained by the bootstrap
method41 rather than estimating the error from variances of
individual trajectories. For a small sample number, the
uncertainty obtained by the bootstrap method is expected to
better estimate the width of the underlying Gaussian
distribution of mean values than does the standard error.
Additionally, applying the bootstrap method to K independent
trajectories satisfies the condition of independence among

Scheme 1. Thermodynamic Cycle for the Relative Binding
Enthalpy Calculation by the Direct End-State Method
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sample observations; thus, the uncertainty of the energy values
is reliably estimated using the bootstrap method. Given the set
A of K local means determined for the independent trajectories,
a set C of synthetic ensemble means, ̅Bb, was constructed,
where each ̅Bb is the mean of K values selected randomly from
the set A. The uncertainty of the ensemble mean value, δ⟨E⟩, is
the standard deviation of the bootstrap sample C,

= ̅ ̅ ̅

= | ∈

= ̅ ̅ ̅

A E E E

B x x x x A

C B B B

{ , , ..., }

{ , , ..., }

{ , , ..., }

N
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N

1 2
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1 2

c

c (6)

∑δ = ̅ − ̅ −⟨ ⟩ B C N( ) /( 1)E
b

N

b c
2

c

(7)

where Nc is the number of resampled ensembles in the
bootstrap sample, and C̅ is the average of the bootstrap sample.
In this study, NC equals 400. The 95% confidence interval (CI)
is calculated from the standard deviation of the bootstrap
means: 1.96δ⟨E⟩. We also calculated the 95% CI from standard
error of the local mean values for comparison (see Supporting
Information). As expected, the two procedures approach each
other as the number of simulations increases so that the
bootstrap error and the standard error are similar for our 40
trajectories.
To examine the efficiency for estimating the expected value

of the energy, we estimated uncertainty of mean energies for a
range of schedules by varying both the number of simulations
and the time period of each simulation for a given total
simulation time. Bootstrap analysis was applied to randomly
selected subsets of trajectories from the ensemble to assess the
convergence of the ensemble mean with increasing time per
simulation (N) and number of simulations (K). We find the
mean energy value for 2 ≤ K ≤ 40 individual trajectories from
50 to 10000 ps, or 50 ≤ N ≤ 10000 (eq 4). This set of K mean
values, E̅K

N, is used to generate a bootstrap sample of size 100,
and the standard error from sample i, δ⟨E⟩

i , calculated by eq 7.
The random selection of K trajectories is repeated 50 times and
the final standard error determined from the average variance

δ
δ

=
∑ = ⟨ ⟩( )

50N K
i E

i

,
1

50 2
K
N

(8)

The matrix of 39 × 9951 standard error values is visualized in
a two-dimensional plot.
Two-Dimensional Histograms of Total Energy and

rmsd. The potential energy of each system was obtained from
postprocessing the corresponding trajectories using the ENER
module in CHARMM. For every system, the conformation
having the lowest potential energy was chosen as the reference
structure for subsequent rms deviation calculations. The rmsd
of the backbone heavy atoms (N, Cα, C) with respect to the
lowest-energy conformation at every snapshot was calculated
using the CORREL module in CHARMM. Then, the ensemble
of energy and rmsd values were binned into a two-dimensional
histogram to illustrate the distribution of population sampled in
the energy−rmsd phase space.
All-Against-All (Pairwise) rmsd Calculations. For every

system, the backbone heavy atoms were aligned to the lowest-
energy conformation before pairwise rmsd calculations. Non-
weighted pairwise rmsd values were calculated among the 40

aligned trajectories using backbone heavy atoms every 10 ps.
Subsequently, calculated pairwise rmsd values were binned into
histograms and plotted.

■ RESULTS AND DISCUSSION
Estimates of Relative Binding Enthalpies. The relative

binding enthalpy for three Src SH2−ligand complexes was
estimated by the direct method (eq 1) using ensemble-
averaging and the a priori assumption that the trajectories
sample the same energy basin and have equal likelihood (eq 5).
Forty 10 ns trajectories, a total of 400 ns simulation time, were
generated from equilibrium molecular dynamics simulations for
each of the bound and unbound states of the three Src SH2
ligands illustrated in Figure 1. The two pseudopeptides, cpYEEI
and fpYEEI, differ from pYEEI by altering only the pY residue
to a constrained isopropyl form or its flexible analogue,
respectively. Mean energy values, ⟨ET⟩, and the 95% confidence
intervals determined from the bootstrap analysis for each
system are presented in Table 1, along with the calculated

energy differences relative to the Src SH2−pYEEI complex,
ΔΔE, and the corresponding experimental enthalpies, ΔΔH.
The 95% confidence interval (CI) from the bootstrap analysis
in the mean total energy is ±1.6 to ±2.6 kcal/mol for the
complexes, and ±0.5 to ±0.8 kcal/mol for the free peptide
simulations. Even though the mean energies for the simulation
systems are on the order of 105 kcal/mol, the magnitude of the
ΔΔE values is small (0.14 and 2.2 kcal/mol) and of the same
order as the experimental values (1.5 kcal/mol and −1.2 kcal/
mol). Nonetheless, the 95% CI in ΔΔE is approximately 2 to 3
kcal/mol, which is similar magnitude to the experimental
differences, so that rank order cannot be reliably predicted in
this case of Src SH2 binding analogue peptides.

Table 1. Ensemble Mean Values and 95% Confidence
Interval (CI) for the Total Potential Energy, ET, and the
Relative Binding Energies, ΔΔE, from Calculations, Along
with the Relative Binding Enthalpies, ΔΔH, from
Experiment

total system energya (kcal/mol)

⟨ET⟩ 95% CI

SH2−pYEEI −73777.8 ±2.1
SH2−cpYEEI −73741.3 ±1.6
SH2−fpYEEI −73753.9 ±2.6
pYEEI −24137.1 ±0.5
cpYEEI −24100.8 ±0.6
fpYEEI −24115.5 ±0.8

relative binding enthalpyb (kcal/mol)

calcd. ΔΔE 95% CI

pYEEI 0.0 ±2.2
cpYEEI 0.1 ±2.2
fpYEEI 2.2 ±3.2

exptl. ΔΔHc δexp

pYEEI 0.0 0.07
cpYEEI 1.5 0.06
fpYEEI −1.2 0.06

aEnsemble mean energy from 40 10 ns trajectories according to eq 5
with uncertainty from bootstrapping according to eq 7. bΔΔE =
(⟨E⟩SH2−X − ⟨E⟩X) − (⟨E⟩SH2−pYEEI − ⟨E⟩pYEEI)

cExperimental ΔΔH
values determined from ITC ΔH data1,29 and propagated errors
determined from experimental standard deviations.29
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To better understand the potential for estimating differences
in the enthalpies of binding small peptides to a globular protein,
in the following subsections we examine the convergence
behavior of the mean energy values of the set of trajectories,
including the relative binding energies for the SH2−ligand
complexes calculated from the MD trajectories. An energy
distribution of conformations sampled from multiple trajecto-
ries is used to characterize the alternative regions in
conformational space visited by the trajectories.
Convergence and Certainty of Energy Values and

Relative Binding Energy. The direct method for estimating
the relative enthalpy of binding, ΔΔE = ΔE2* − ΔE1*, depends
on the total potential energy of the system for the SH2−
peptide complexes and free peptide ligands (Table 1). Thus,
the ability to resolve the relatively small energy differences of
ΔΔE from the large ET values relies on determining the average
values of the energies with high confidence. A necessary
condition for this reliability is that the value be well converged,
although it is recognized that such convergence does not
guarantee sampling is complete in a true global sense and can
be an indicator of only a localized sampling.42 The ensemble-
averaged value as a function of the production time per
simulation used for averaging is one indicator for the
convergence of the estimated value. This cumulative ensemble
average for ΔΔE, as well as for ET of the complexes and
peptides and ΔE*, is shown in Figure 2. The limiting slopes
(Table 2) for ET are approximately −0.2 to −0.6 kcal/mol·ns
for the complexes and 0.02 to 0.08 kcal/mol·ns for unbound
peptides. These cumulative averages of the energy from the
ensemble mean over 40 trajectories are considerably more
stable than the cumulative average of a single trajectory; single-
trajectory cumulative averages fluctuate over much larger
magnitudes and have limiting slopes that range from 2.1 to
−2.3 kcal/mol (see Supporting Information). The absolute
difference in the ensemble-mean energy, ΔE*, Figure 2C
continues to drift at the end of the 10 ns simulation time period
as a result of the difference in the limiting slopes for the
complex and peptide ensemble averages. The drift in ΔE*
partially cancels when comparing two complexes so that the
relative energies, ΔΔE, plotted in Figure 2D with pYEEI as the
reference ligand 1, appear better converged with flatter curves
at shorter times. Nevertheless, smaller limiting slopes in ET over
a longer simulation time period would yield greater confidence
in the calculated values for ΔΔE and estimating differences of
one to two kcal/mol. The limiting slopes in Figure 2A suggest
that 400 ns molecular dynamics simulations are not sufficient to
exhaustively sample the complex superbasin of the potential
energy surface of these reasonably “simple” protein complexes.
The dependence of the statistical certainty of the energy

estimates on simulation time was determined using the
bootstrap method41 (see Methods). The decrease of the 95%
CI for ⟨ET⟩ is shown in Figure 3 for the Src SH2−pYEEI with a
2-dimensional plot as a function of the length of the individual
trajectories and as a function of the number of trajectories, for
which a subset of the 40 trajectories is used in the bootstrap
analysis. Black contour lines in the figure denote a constant
computer simulation time according to the combined number
and length of the individual trajectories. Analogous plots are
provided in Supporting Information for the other systems. The
uncertainty converges approximately as expected from sampling
a single statistical population; the 95% CI for 100 ns computer
time is ranges from 3 to 4 kcal/mol and for 400 ns computer
time is 2.2 kcal/mol. The efficiency for diminishing the

statistical uncertainty is nearly uniform along the contour lines
for computer times greater than 200 ns, so that increasing the

Figure 2. Convergence of the 40-trajectory ensemble averages (eq 5)
accumulated over increasing production time of the simulations for
various energies: (A) the total energy (ET) for the complexes, (B) total
energy for the ligands, (C) effective binding enthalpies (ΔE*), and
(D) relative binding enthalpies (ΔΔE). Red, SH2−pYEEI or pYEEI;
blue, SH2−cpYEEI or cpYEEI; green, SH2−fpYEEI or fpYEEI. Points
in C are shifted by subtracting the final value of ΔE* for pYEEI (10
ns/simulation).

Table 2. Least-Squares Fitted Slopes at the Long-Time Limit
of the Ensemble Mean Cumulative Averages, the 8 to 10 ns
Regions in Figure 2

slope (kcal/mol·ns)

⟨ET⟩ SH2−pYEEI −0.16
SH2−cpYEEI −0.56
SH2−fpYEEI −0.36

⟨ET⟩ pYEEI 0.08
cpYEEI 0.02
fpYEEI 0.06

⟨ΔET⟩ pYEEI −0.26
cpYEEI −0.56
fpYEEI 0.44

⟨ΔΔET⟩ pYEEI 0.000
cpYEEI −0.32
fpYEEI −0.16
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time period of the simulation or the number of simulations is
equally effective.
In addition to the convergence of ET, the convergence of the

estimate for the components of the total potential energy was
evaluated. The cumulative ensemble-averaged values for the
difference in binding enthalpy contributed by solute−solute
(EUU), solute−solvent (EUV), and solvent−solvent (EVV)
interactions are shown in Figure 4. (Note the large scale of A
relative to the panels B−D). Because the total energy is
constant but partitioned among these three components, the
convergence is slower depending on the relaxation time for
partitioning. The convergence behavior manifests in the time
dependence of the cumulative average of the ensemble
component energies is therefore poor and the estimates vary
tens of kcals/mol over the full 400 ns simulation time.
Overlap of Trajectories in Conformational Space. The

cumulative ⟨ET⟩ values of individual trajectories vary, as noted
above and shown in Supporting Information. This behavior
raises the question of whether the trajectories sample the same
energy basin in the conformational space of the bound
complex, as assumed a prior for ensemble averaging. To gain
insight into the actual overlap and nature of the conformational
regions populated by individual trajectories, we examine
distributions in an energy−rmsd system, a natural choice to
address this question. The energy is the total potential energy
and the rmsd value is the pairwise root-mean-square difference
in the N, Cα, C atoms of the SH2 backbone between the
trajectory snapshots and the structure with the lowest potential
energy in the 40-trajectory ensemble.
Presented in Figure 5 are the projected distributions in the

energy−rmsd space for the three Src SH2−peptide complexes.
Results for one complex are shown in a group of two rows:
SH2−pYEEI is the top group, SH2−cpYEEI is the middle
group, and SH2−fpYEEI is the bottom group. Each plot in the
top row displays the projection for simulations initiated from
five different sets of coordinates, while the plots in the bottom
row correspond to the same individual simulations but
separated by those initiated from one set of coordinate with
five different velocities. (Twenty-five of the forty trajectories are
shown to facilitate comparison of the initial conditions that vary
by either coordinates or velocities.) Thus, a distribution in the
top rows indicates the coverage of conformational space

achieved by starting simulations with different initial
coordinates, while that in the bottom rows reflects the coverage
achieved by starting simulations with one initial coordinate set
and varying velocities, as is more typically done to generate
multiple trajectories. The fluctuations in energy values cover a
broad range of roughly 500 kcal/mol for values of rmsd that
mostly vary in the region from 1.0 to 1.5 Å. Some distributions
in panel A through J show one peak with a maximum that is
more or less centrally positioned, while others show two peaks
distinguished along the rmsd coordinate. One might anticipate
that multiple trajectories initiated with different initial
coordinates (top rows A−E) might show greater dispersion
in the energy−rmsd distribution than multiple trajectories
initiated with the same coordinates but varying velocities
(bottom panels F−J); however, that is not the case: the
dispersions in the distributions do not differ significantly.
Nearly all of the individual trajectories visit two or more

regions in energy−rmsd space (see Supporting Information),

Figure 3. Convergence of the statistical uncertainty in the estimate of
potential energy of SH2−pYEEI. The 95% CI (1.96 δ⟨E⟩) for ET

narrows with increasing number of simulations and time per
simulation. Uncertainties were determined by bootstrap for subsets
of the 40, 10 ns SH2−pYEEI simulations as detailed in Methods. Solid
black curves mark subsets with equal total simulation time (labeled in
ns) spread over the number of simulations and the time per
simulation.

Figure 4. Convergence of cumulative averages as in Figure 2 for the
decomposition of relative binding energies into solute and solvent
contributions for the three SH2 complexes. (A) Total potential energy
shown for comparison (note the difference in scale of the ordinate
between the total potential energy and the component terms.); (B)
solute−solute energy; (C) solvent−solvent energy; (D) solute−
solvent energy. All difference terms are calculated relative to values for
Src SH2−pYEEI.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct500200n | J. Chem. Theory Comput. 2014, 10, 2759−27682764



consistent with different trajectories sampling overlapped parts
of conformational space and that the barriers in the underlying
potential energy surface giving rise to differences between the
trajectories are low. In addition, the combined population from
the 40-trajectory ensemble (panel K) is one broad peak in
energy−rmsd space with a single maximum indicating the
overlap of individual trajectories. Together, the energy−rmsd
distributions are consistent with the individual trajectories
sampling one superbasin in conformational space, albeit

sampling different parts of that basin, and thus support this
assumption for ensemble averaging.
The different regions apparent in plots A−J are close in

energy for a given Src SH2−peptide complex. For each of the
three complexes, regions in energy−rmsd were determined
from the distinct peaks in panels A−J, and the mean energy
calculated from the conformations in the 400 ns ensemble
falling into a given region. The average energies and
populations for each energy−rmsd region are listed in Table

Figure 5. Two-dimensional projection for the distribution of ET as a function of Src SH2 rmsd for (top) SH2−pYEEI, (middle) SH2−cpYEEI, and
(bottom) SH2−fpYEEI. The rmsd is summed over N, Cα, C backbone coordinates of a snapshot against the lowest-energy structure of the 40-
trajectory ensemble. Top rows (A−E): each plot represents five trajectories started with different initial coordinates. Bottom rows (F−J): each plot
represents five trajectories started with the same initial coordinates from the PDB code and chain identifier for protein and peptide indicated in the
plot. Panel K: 40 trajectories.
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3. The mean energies differ by a few kcal/mol; the largest
difference is approximately 7 kcal/mol. Thus, the peak regions
in Figure 5 are nearly degenerate in energy.

■ CONCLUSION
The relative enthalpies for the binding of the 106-residue Src
SH2 domain to three flexible peptides were estimated using the
direct method of MD determined from the end-states. Notably,
the estimated ΔΔE values were of similar magnitude as the
differences in the experimental enthalpies, which are only 1−3
kcal/mol. Nonetheless, the rank order was not predicted
correctly for these three complexes. The statistical error in the
estimates for ΔΔE from 40 10 ns simulations for each bound
and unbound peptide system is 2 to 3 kcal/mol (Table 1).
Based on cumulative ensemble-averaged values (Figure 2), the
end-state energies are not fully converged; the cumulative
averages for ET of the complexes have a limiting rate of change
from 0.2 to 0.6 kcal/mol·ns, although there is some cancellation
in the ΔΔE values so that these appear better converged. These
results support the application of the direct method of MD
simulations to predict relative binding enthalpies for ΔΔH
values greater than 3 kcal/mol. Longer simulations are expected
to yield improvements over the predictions reported here,
which correspond to 400 ns total simulation time. Likely, the
most successful application of the direct method of MD
simulations for predicting ΔΔH values will be to complexes
that are conformationally well-ordered and absent of longer-
time scale conformational fluctuations that substantially alter
the protein energetics.
Multiple trajectories starting from closely related but

alternative configurations, or different velocities exhibit different
E̅K
T values with poorer convergence than the ensemble-averaged

values. That individual trajectories have different energies
suggests that trajectories need to be weighted.35 How to weight
trajectories is an important but difficult consideration. The
analysis here has utilized a simplistic, unweighted ensemble
averaging with the a priori assumption that all trajectories are
equally likely. Clustering in energy−rmsd space indicates the
trajectories sample the same basin and the apparent difference
in mean energy value between trajectories is due to sampling
alternative local regions of this superbasin. Clearly, the
sampling is incomplete. For more reliable estimates of binding
enthalpies, additional theoretical development is needed; in
particular, the direct method would gain from reliable methods

to achieve canonically distributed starting conditions both in
terms of reaching statistical certainty efficiently and, impor-
tantly, complete sampling for accurate ensemble-averaged end-
state energy values.
An advantage of the direct method for estimating the relative

binding enthalpies is its basis on the total energy of the system
rather than a summation of various energy terms, for example
solvation energy plus protein internal energy. The fluctuations
in the total energy are small relative to the fluctuations of any
set of component energy terms; component terms freely
exchange energy and thus exhibit large fluctuations. Therefore,
the certainty in the total energy converges more rapidly while
component energies by nature are more difficult to converge.
Nonetheless, decomposition of thermodynamic values can
provide useful insight where accurate quantification is not
essential. An example we note here is the observation that the
fluctuations in the cumulative mean values for the components
ΔΔEUU, ΔΔEVV, and ΔΔEUV have the same convergence
behavior and are close to being perfectly correlated either
negatively (ΔΔEUV with either ΔΔEUU or ΔΔEVV) or positively
(ΔΔEUU with ΔΔEVV) (Figure 4). Correspondingly, an inverse
correlation of E̅k

UU and E̅k
UV is observed upon examination of the

mean values from individual trajectories (Supporting Informa-
tion). The E̅k

UV variance among the multiple trajectories is large
compared to E̅k

T and approximately equal to the sum of the
variances in E̅k

UU and E̅k
VV. This macroscopic behavior is

reminiscent of the microscopic property whereby the reaction
field solvation energy cancels the Coulombic interaction.

■ ASSOCIATED CONTENT

*S Supporting Information
Plots of the cumulative average of ET for the individual
trajectories of the six simulations systems (Figure S1); plots
analogous to Figure 4 showing 95% CI results for the
ensemble-averaged ET values for SH2−cpYEEI, SH2−fpYEEI
(Figure S2), and the three unbound peptide ligands (Figure
S3), as well as the ensemble-averaged EUU, EVV, EUV, values for
the three complexes (Figure S4) and unbound peptide ligands
(Figure S5); plots of pairwise, or all-against-all, rmsd
distributions to examine overlap of individual trajectories in
sampling conformational space (Figure S6); a plot showing the
deviation from the ensemble mean energy of the local mean
energy from individual trajectories, where the energy is the total
potential, E̅k

T, or the highly correlated component terms E̅k
UU,

E̅k
VV, and E̅k

UV (Figure S7); a plot showing 95% CI from
standard error calculation for ET values (Figure S8) and for
EUU, EUV, EVV values (Figure S9) for complex SH2-pYEEI.
Table S1 lists the limiting slopes in the cumulative potential
energy of forty trajectories for each of the three SH2-peptide
simulations. This material is available free of charge via the
Internet at http://pubs.acs.org.
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Table 3. Average Energy of Snapshots Falling in the
Different Peak Regions Populated in the Energy−rmsd
Space of the Src SH2 Complexes

complexes
rmsda range

(A)
E̅T

(kcal/mol)
σET

b

(kcal/mol) populationc

SH2−pYEEI 0.42 to 1.25 −73779.0 132.0 231 461
1.25 to 1.96 −73776.2 132.4 168 539

SH2−cpYEEI 0.46 to 1.08 −73742.0 131.9 93 600
1.08 to 1.58 −73741.2 132.4 281 492
1.58 to 2.32 −73740.2 132.4 24 908

SH2−fpYEEI 0.45 to 1.08 −73756.6 132.8 170 977
1.08 to 1.38 −73752.7 132.5 164 773
1.38 to 1.83 −73750.0 132.5 52 797
1.83 to 2.50 −73749.2 133.1 11 453

aThe rmsd range is estimated for the peak regions. bσ is the energy
standard deviation. cNumber of snapshots in the peak region.
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