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Abstract

The decline in neuronal function during aging may result from increases in extracellular glutamate

(Glu), Glu-induced neurotoxicity, and altered mitochondrial metabolism. To study metabolic
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responses to persistently high levels of Glu at synapses during aging, we used transgenic (Tg)

mice that over-express the enzyme Glu dehydrogenase (GDH) in brain neurons and release excess

Glu in synapses. Mitochondrial GDH is important in amino acid and carbohydrate metabolism and

in anaplerotic reactions. We monitored changes in nineteen neurochemicals in the hippocampus

and striatum of adult, middle aged, and aged Tg and wild type (wt) mice, in vivo, using proton

(1H) magnetic resonance spectroscopy. Significant differences between adult Tg and wt were

higher Glu, N-acetyl aspartate (NAA), and NAA + NAA−Glu (NAAG) levels, and lower lactate in

the Tg hippocampus and striatum than those of wt. During aging, consistent changes in Tg and wt

hippocampus and striatum included increases in myo-inositol and NAAG. The levels of glutamine

(Gln), a key neurochemical in the Gln-Glu cycle between neurons and astroglia, increased during

aging in both the striatum and hippocampus of Tg mice, but only in the striatum of the wt mice.

Age-related increases of Glu were observed only in the striatum of the Tg mice.
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Introduction

The function of glutamate (Glu) as the major excitatory neurotransmitter in the mammalian

central nervous system (CNS) is well known, as are also the long-lasting effects that Glu

receptor activation may have on neuronal structure and function [1, 2]. Repeated activation

of Glu receptors can lead to long-lasting modification of synaptic activity [1, 3, 4], altered

metabolic states in neurons [2, 5–7], and the initiation of processes that may lead to neuronal

injury and death [8–13].

During aging, there is a gradual rise in extracellular Glu in the brain [14–16] and an increase

in the sensitivity of certain neurons to the cytotoxic effects of Glu [17]. A significant

decrease in the dendrite levels of the microtubule-associated protein 2 (MAP2), a marker of

dendrite structure, have been observed in the aging brain [18–20]. Based on the strong

relationship between Glu hyperactivity and decreases in MAP2 labeling in dendrites of

sensitive neurons [21–25], the MAP2 decreases may be considered an index of the effects of

a hyper-glutamatergic state in the aging brain. Neurodegeneration induced by high levels of

extrasynaptic Glu is associated with changes in synaptic and dendritic morphology and in

the levels of many synapse-associated proteins, MAP2 being simply one such dendrite and

synapse-related protein [26, 27]. Most studies of neurochemical changes associated with

aging have been focused on changes in the levels of the neurotransmitters acetylcholine, 5-

hydroxytryptamine, dopamine, and nor-epinephrine [28–30] or on the age-related changes in

glucose metabolism [31, 32]. However, only few studies have been focused on Glu

metabolism by neurons and glia in brain during aging [33].

One approach for studying the neuronal responses to persistently high levels of

glutamatergic activity at synapses is the use of transgenic (Tg) or null mutant animals with

altered Glu metabolism and release or re-uptake. Null mutant mice for the high affinity glial

Glu transporter genes have high levels of extracellular Glu and suffer extensive brain
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damage and embryonic lethality [34–36]. Null mutants for the gene Tsc1 that controls the

expression and function of Glu transporters in the CNS, also maintain high baseline, non-

stimulated extracellular Glu levels and suffer from extensive neuronal damage, intractable

seizures, and have markedly shorter lifespan [37]. Thus, animals with decreased expression

of Glu transporter genes in the CNS are not suitable for studying aging-related changes in

brain metabolism resulting from excess Glu activity.

Alternatively, Tg mice over-expressing the gene for Glu dehydrogenase 1 (Glud1), a

mitochondrial matrix enzyme, only in CNS neurons have elevated levels of Glu in brain,

presumably the result of increases in intracellular Glu as baseline extracellular Glu is only

modestly and non-significantly increased [40]. These mice transiently release excess Glu at

synapses and exhibit age-related neuronal degeneration [38, 39]. However, the synaptic and

neuronal cell losses are confined to select groups of neurons, for example, the pyramidal

cells of the CA1 but not those of the CA3 region of the hippocampus, or the striatal but not

the cerebellar neurons [38, 39]. Because these Glud1 Tg mice have a lifespan that is close to

normal for C57BL/6 mice (Hui et al. unpublished observations), they may be a useful model

for studying changes in metabolic processes, as well as molecular signaling, cell structure,

synaptic activity, and electrical properties of neurons during aging.

As described by Plaitakis et al. [41], the enzyme Glu dehydrogenase (GDH) is a crucial

enzyme in “linking amino acid and carbohydrate metabolism” and contributing to “Krebs

cycle anaplerotic mechanisms”. Thus, over-expression of GDH in brain throughout the

lifespan of an organism may have profound effects on not only glutamate metabolism, but

on cellular metabolism of amino acids and carbohydrates, as well as on mitochondrial and

cellular bioenergetics. Magnetic resonance spectroscopy (MRS) is a non-invasive procedure

that can be used to measure metabolites in the living brain [42, 43]. In the present study, we

used proton 1H MRS to obtain in vivo measurements of nineteen neurochemicals in two

selected brain regions, the hippocampus and striatum. These measurements were obtained in

wild type (wt) and Glud1 Tg mice during the aging process. Our goal was to determine

whether the Glud1 Tg mice undergo a differential pattern of age-related changes in specific

metabolites in brain that might be ascribed to GDH hyperactivity, over-stimulation of Glu

receptors, or an adaptation to both excess GDH and Glu neurotransmitter activity.

Methods

Experimental Animals

The procedure for generating the Glud1 Tg mice was detailed previously [38]. Age-matched

wt mice of the same genetic background (C57BL/6) were used as the controls. All animals

were housed in a 12 h light/dark cycle with food and water ad libitum. All animal

procedures were performed in accordance with guidelines established by the Institutional

Animal Care and Use Committee (IACUC) of the University of Kansas and the University

of Kansas Medical Center. The MRS data analyses of neurochemicals were obtained from

three mouse groups at the following three age ranges: adult i.e., 8–12.5 month old, 18 Glud1

Tg and 15 wt mice; middle-aged, 13–17.5 month old, 8 Tg and 15 wt mice; and old, 18–22.5

month old, 15 Glud1 Tg and 12 wt mice. Among the three age groups, only three mice from
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the 13–17.5 month-old group were scanned longitudinally, i.e., at the 13–17.5 and the 18–

22.5 month-old period.

Magnetic Resonance Spectroscopy Measurements of Neurochemicals in the Hippocampus
and Striatum

The 1H MRS data were acquired from the hippocampus and striatum of Glud1 Tg and wt

mice using a 9.4 T MR system (Agilent Technology, Santa Clara, CA). The 1H MRS scans

were performed on these mice at the three aforementioned age ranges: adult, middle aged,

and old mice from volumes of 4–6 μl using a spin echo, full-intensity acquired localized

spectroscopy sequence (echo time 3 ms; repetition time 4 s) [44]. The in vivo 1H MR spectra

were acquired from the voxels located in the left hippocampus and the striatum. The voxel

size of the hippocampal VOI was 2.2 × 1.2 × 2.4 mm3; and hippocampal tissues were

estimated to be over 80 % in a given VOI. The voxel size of the striatal VOI was 1.7 × 1.8 ×

2.0 mm3 and included mainly striatal tissues (over 95 % in a given VOI). During MRS

scans, the animals were anesthetized using a gas mixture of 1:1 air:oxygen with 1–1.5 %

isoflurane. Their core temperature maintained at 37 °C. Magnetic field homogeneity was

optimized using FASTMAP, a fast automatic shimming technique [45]. Concentrations of

19 neurochemicals were quantified using an MRS data analysis package, LCModel (linear

combination of model spectra of metabolite solutions in vitro) software [46].

Statistical Analyses

Neurochemical levels were compared cross-sectionally among three age groups (8–12.5 vs.

13–17.5 months and 8–12.5 vs. 18–22.5 months) and two genotypes (only for 8–12.5

months) using two-sample t tests. The p values from the independent t tests were adjusted

for multiple comparisons with the false discovery rate (FDR) correction using the fdrtool

package [47] in R software [48]. Mean differences with FDR-adjusted p values of <0.05

were considered significant.

Results

In Vivo Metabolic Differences Between Glud1 Tg and wt Mouse Hippocampus and Striatum

In order to assess the effects that overexpression of Glud1 in CNS neurons may have on the

biochemical state in the brains of living Glud1 Tg mice, we employed 1H MRS to measure

the levels of 20 metabolites in wt and Glud1 Tg mouse hippocampus and striatum (Fig. 1a,

b). These measurements included neurochemicals that may be related to Glu metabolism,

such as glutamine (Gln), aspartate (Asp), γ-aminobutyric acid (GABA), N-acetylaspartate

(NAA), and N-acetylaspartylglutamate (NAAG). In the present study, 1H MRS

measurements were focused on equal volumes of tissue (voxels) in the hippocampus and

striatum regions of wt and Glud1 Tg mice. These two regions were selected because they

exhibit decreases in MAP2-labeled dendrites and dendritic spines, as well as decreases in

synaptophysin-labeled nerve terminals in the Glud1 Tg compared with wt mice [38].

Furthermore, the morphological changes in the hippocampus become progressively and

significantly greater as the Glud1 Tg mice age [38]. 1H MRS measurements were performed

in three age ranges: adult (8–12.5 months), middle aged (13–17.5 months), and old (18–22.5
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months) mice. The brain is fully developed at 8 months and the transgene-related neuronal

damage in the hippocampus is clearly discernible at that age [38].

We previously reported on the differences in the concentrations of a few neurochemicals

between Tg and wt mouse brain in a relatively small population of 9 month old mice [38].

Here, we first describe the results of neuro-chemical measurements obtained using a larger

group of 8–12.5 month old Tg and wt mice. In this adult group, we detected five

neurochemicals whose levels were significantly elevated in the hippocampus of Tg as

compared with wt mice (Fig. 2a). These were Glu (p = 0.05), phosphocreatine (PCr) (p =

0.03), glucose (Glc) (p = 0.02), glutathione (GSH) (p = 0.03), and NAA (p = 0.02). The

levels of the combined NAA and NAAG (NAA + NAAG) (p = 0.02) were also significantly

elevated in the Tg as compared with wt hippocampus. This difference in NAA plus NAAG

might have been primarily due to the elevation of NAA since the NAAG levels did not

differ between wt and Tg (Fig. 2a). There was only one metabolite that was at significantly

(p = 0.02) lower levels in the Tg compared with the wt hippocampus, lactic acid (Lac). The

levels of the remaining metabolites did not differ significantly between Tg and wt mice.

In the striatum of adult Tg mice, the levels of four neuro-chemicals including those of the

combined NAA + NAAG, were significantly higher than those measured in wt striatum (Fig.

2b). These were: Glu (p = 0.04), NAA (p = 0.05), NAA + NAAG (p = 0.04), and taurine

(Tau) (p <0.01). Thus, the levels of Glu, NAA, and NAA + NAAG were differentially

elevated in both hippocampus and striatum of the Tg mice. Also in the striatum, the levels of

six metabolites were significantly lower in Tg than those in wt mice. These neurochemicals

were: aspartate (Asp) (p = 0.04), GABA (p = 0.02), Lac (p = 0.04), myo-inositol (mI) (p =

0.05), NAAG (p = 0.01), and serine (Ser) (p = 0.01). The only neurochemical that was

consistently lower in both hippocampus and striatum was Lac.

The significantly higher levels in Tg versus wt mice of GSH, PCr, NAA, NAA + NAAG,

and Glc in the hippocampus, and of NAA, NAA + NAAG, and taurine in the striatum,

represent new observations, as were also the lower levels of Lac in both hippocampus and

striatum, and of GABA, mI, Ser and NAAG in the striatum only in Tg mice. However, the

metabolic profiles of wt and Tg mouse hippocampus and striatum at a single age represent

only a snapshot of what may be a progressive, aging-related, differential change in the

metabolic activity in the brains of these two genotypes of C57BL/6 mice.

Age-Related Changes in Neurochemical Levels in Glud1 Tg and wt Mouse Hippocampus
and Striatum

To explore possible age-associated changes in the levels of the metabolites we detected in

hippocampus and striatum, we performed in vivo MRS measurements in adult, middle-aged,

and old-aged Tg and wt mice. Eight neurochemicals, including NAA + NAAG, increased

significantly with advancing age in the hippocampus of Tg mice and two neurochemicals,

alanine (Ala) and Asp, had age-related decreases (Fig. 3a, b). In the wt mouse hippocampus,

the levels of eight neurochemicals changed significantly with advancing age. Of these, the

levels of six increased and those of two, Ala and Asp, decreased significantly with

advancing age (Fig. 3c, d). Similarities in age-related changes in the levels of

neurochemicals in the hippocampus of both Tg and wt mice included increases in creatine
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(Cr), phosphorylcholine, (PCho), Glc, mI, and NAAG, and decreases in Ala and Asp (Fig.

3). Particularly noteworthy differences between Tg and wt hippocampus levels during aging

were those for Gln and the ratio of Gln to Glu (Gln/ Glu), both of which increased in the

hippocampus of the Tg mice (p ≤ 0.023 and p ≤ 0.04, respectively). The amino acids Gln

and Glu are linked in terms of metabolic inter-conversions of Glu to Gln in glial cells and of

the reverse in glutamatergic neurons, thus the age-associated elevations in Gln and the

Gln/Glu ratio may represent a characteristic change of the aging process in the hippocampus

of Glud1 Tg mice.

There were several common changes in the levels of neurochemicals across age in the

striatum of wt and Tg mice. These included significant decreases with advancing age in

three neurochemicals: Asp, GABA, and GSH, and significant increases in five

neurochemicals: Gln, mI, NAA, NAAG, NAA + NAAG (Fig. 4a, b). The Glu levels in the

striatum increased with age only in the Tg mice, whereas those of Gln increased in both the

wt and Tg striatum (Fig. 4).

Discussion

The studies described above represent a unique in vivo neurochemical investigation

covering the age span from adulthood to old age in two important brain regions, the

hippocampus and striatum, and in two mouse genotypes, the Glud1 Tg and the respective wt

C57BL/6 cohorts. The 1H MRS assessment in two brain regions of the Tg and wt mice has

identified both aging-related metabolic changes, as well as changes in brain neurochemicals

resulting from glutamatergic and GDH hyperactivity in the Glud1 mouse brain. The present

study of aging-related changes in the brain was initiated using adult Tg and wt mice, 8–12.5

months-old, in order to avoid possible confounding effects of early developmental

influences resulting from the expression of the transgene.

In the adult mice, we replicated the previous observations of elevated Glu levels in

hippocampus and striatum [38]. In terms of the overall metabolic status of the Glud1 mice as

judged from the different levels of the neuro-chemicals examined in the present study, two

of the differences that we detected were particularly interesting. The first was the

significantly higher levels of GSH in the Tg as compared with the wt mouse hippocampus,

and the second was the significantly lower levels of Lac in both hippocampus and striatum

of the Tg than those of the wt mice.

A possible interpretation of the origin and relevance of these two specific neurochemical

differences between wt and Tg hippocampus and striatum might be that the elevated levels

of GSH and the lower levels of Lac in Tg versus wt mice were indicative of alterations in

the astrocyte–neuronal shuttle of metabolites that has been described in relationship to

neuronal activation and the release of Glu into the synapse [49, 50]. The release of Glu by

neurons activates the synthesis of GSH and enhances the activity of the glycolytic pathway

in astrocytes [49]. The former action of Glu leads to increases in GSH formation in

astrocytes, while the activation of the glycolytic pathway leads to increased formation of

Lac by astrocytes. Increases in GSH levels might represent an adaptive response as GSH
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leads to enhanced protection of neurons from excess oxidative stress initiated by Glu

receptor stimulation [2, 9, 51].

The increased formation of Lac in astrocytes leads to Lac release by astrocytes and the

uptake of Lac by activated neurons. The neuronal uptake of Lac averts the induction of

neuronal oxidative stress that occurs when glycolysis is the sole source of energy production

in neurons [49, 52]. The Lac taken up by neurons is converted to pyruvate which provides

the substrate for oxidative phosphorylation in neurons with high energy demands. It is

possible that the expression of the Glud1 transgene in neurons of the Tg mice leads to

increases in mitochondrial metabolism and in the overall metabolic capacity of mitochondria

in the Tg hippocampus and striatum. Thus, the lower Lac levels in the hippocampus and

striatum of the Glud1 Tg mice might be an indication of higher rates of utilization of Lac by

brain neurons because of their greater mitochondrial capacity than those of wt mice, or an

indication of a Glu-induced hyper-active state of neurons in the brain of the Tg animals. The

latter interpretation would be consistent with the previously reported switch from Glc-

dependent glycolysis to Lac-dependent energy generation in neurons that are stimulated by

excess Glu [49, 50]. We are currently exploring the possibility that there may also be a

differential metabolic capacity of mitochondria isolated from three different regions of Tg

and wt mouse brains.

The rationale for studying metabolite changes in two brain regions was based on our past

observations that neurons in adjoining regions of the brain may differ very significantly in

terms of gene expression patterns and in their vulnerability to metabolic and oxidative stress,

including the stress brought about by the aging process [38, 39, 51, 54–57]. Furthermore, it

has previously been shown that the levels of Glu, Gln, GABA and Asp may vary by a factor

of five and up to a factor of 21 in different regions of rat brains, and that the effects of aging

on the levels of these amino acids are not identical across various rat [58] or mouse brain

regions [59]. Thus, we anticipated that we might observe some differences between

hippocampus and striatum with regard to both baseline levels and aging-related changes in

the levels of Glu, Gln, Asp and other neurochemicals measured in the hippocampus and

striatum.

An interesting finding in the present study was that hippocampal Lac concentrations were

consistently lower than those in the striatum of both wt and Glud1 Tg mice. This was true

for both the measurements obtained with adult mice as well as those with mice at

progressively older ages. Others have shown that the hippocampus has lower concentrations

of Lac than either cerebral cortex or striatum [60]. One possible explanation for these

observations might be that the lower Lac concentrations indicate high utilization of Lac for

energy generation by hippocampal neurons, a region of the brain with a large population of

glutamatergic innervation.

Another consistent observation in the present study was that of higher NAA levels in adult

Tg hippocampus and striatum compared with those in wt mice. This was unexpected in light

of our observation of neuronal damage in the hippocampus of the Tg mice at that age [38]

and evidence that NAA levels are lower in the presence of damaged neurons, both in

humans and animals [61–64]. A likely explanation for the elevations in NAA concentrations
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in the Tg mouse brain is that NAA concentrations are the result of increased neuronal and

mitochondrial activity in the Glud1 Tg mice [65]. Mitochondrial Glu metabolism leads to

the synthesis of Asp as part of transamination reactions and this feeds into the synthesis of

NAA [66–68]. However, changes in the levels of Asp may differ from those of NAA as Asp

is involved in cytoplasmic and intramitochondrial transamination reactions that are linked to

both the tricarboxylic acid cycle and the urea cycle. Thus, changes in Asp levels are not

determined only by the activation of the NAA and NAAG synthetic pathways. Nevertheless,

even though it would be difficult to pinpoint the reasons for the direction of changes in Asp

levels with advancing age, our observation of consistent age-related decreases in Asp levels

in both wt and Tg hippocampus and striatum fits with previous observations of such aging-

associated decreases in the brains of senescence accelerated mice [69].

With regard to the aging process, there were only a few consistent age-associated

neurochemical changes that might be considered as possible markers of the aging process in

both the hippocampus and striatum of wt and Tg mice. The decline of Asp and the increase

in NAAG levels in both brain regions and in both genotypes, might be considered as in vivo

neurochemical markers of the effects of the aging process in the hippocampus and striatum.

The significant increases in NAAG concentrations during aging represent an intriguing new

observation. It is possible that the aging process in both wt and Tg hippocampus and

striatum, led to the progressive activation of the NAAG biosynthetic pathway. NAAG has

been shown to function as a neurotransmitter or neuromodulator in the CNS acting pre-

synaptically to decrease the release of Glu from nerve endings [61, 70]. As already pointed

out in preceding sections, brain aging is associated with both higher levels of depolarization-

induced release of Glu and diminished Glu re-uptake [14–16, 69]. Even though the

mechanism for the increases in NAAG levels in the brain is not known at this time, the

higher NAAG levels may modulate Glu release during brain aging and dampen the Glu-

initiated stimulation of neurons. Thus, NAAG may play a significant role in maintaining the

neurons of Tg and wt mice alive as an organism ages.

With regard to possible differential effects of the aging process on the brains of the Glud1

Tg as compared with the wt mice, there was a more consistent effect of aging on the levels

of Glc, Gln, Glu, and the ratio of Gln/Glu in the Tg than in the wt mice, especially in the

hippocampus region. The increases in the brain levels of Glc may be a sign of diminished

Glc utilization which would be consistent with observations of reduced Glc metabolic rates

in human brain during aging, especially in the frontal and temporal cortex [71, 72]. Such

decreases in Glc metabolic rates may result from either cell damage or from shifts in the use

of Lac in place of Glc as substrate for oxidative phosphorylation in hyper-activated neurons

of the Tg mouse brains. Both possibilities are likely in the Glud1 Tg mice. In addition, the

differential aging-related changes in Gln, Glu, and Gln/ Glu ratios in Tg versus wt mice,

may also be signs of an acceleration of age-associated neurodegenerative processes in the Tg

mouse hippocampus and striatum. We base this idea not only on our previous observations

of an accelerated loss of dendrites during aging in the hippocampus of Tg as compared with

wt mice [38, 39], but also on the fact that in another model of accelerated aging that occurs

in the absence of a disease, the senescence accelerated mouse model, both Glu and Gln brain
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levels are higher in the “senescence prone” as compared with the “senescence resistant”

mice [73, 74].

In the preceding paragraphs, we drew comparisons between the data we obtained using

MRS measurements and some data from the literature obtained by direct biochemical or

immunochemical analyses. We recognize the differences in the mode of gathering these data

and of some of the limitations of the approach that was used in the present study. For

example, the use of anesthesia during MR scans may present a confounding as it may alter

the levels of some neurochemicals, such as those of Lac. However, the observed differences

in the levels of brain neurochemicals among genotypes and age groups would still be valid

as all animals were scanned under the same conditions of light anesthesia (isoflurane at 1–

1.5 %). A second limitation of our studies might be related to the voxel definition of the

MRS volumes of the hippocampus. It is estimated from the anatomical MR images that the

hippocampal VOI contains up to about 15–20 % of non-hippocampal tissue, including white

matter and cortical and deep gray matter. The inclusion of components of these regions was

necessitated by the requirement of a rectangular shape for the definition of the voxels for the

MRS measurements of the hippocampus, a brain region with a three-dimensional curvilinear

structure.

We believe that the studies described in this report provide the background for future

directed explorations into the biochemistry of the brain during aging and under the influence

of excess Glu activity. Studies of the protein levels and activity of relevant enzymes, such as

the two isoforms of lactate dehydrogenase, NAAG synthetase, and monocarboxylic acid

transporter, as well as direct measurements of mitochondrial enzyme activities, would be

informative in developing a mechanistic understanding of the neurochemical changes

observed in the present study.
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Fig. 1.
a Representative in vivo 1H MR spectra acquired from the hippocampus of Glud1 transgenic

(Tg, top) and wild type (wt, bottom) mice. b Representative in vivo 1H MR spectra acquired

from the striatum of Tg (top) and wt (bottom) mice. Neurochemical abbreviations are

alanine (Ala), aspartate (Asp), ascorbate (Asc), choline (Cho), creatine (Cr), γ-aminobutyric

acid (GABA), glucose (Glc), glutamate (Glu), glutamine (Gln), glutathione (GSH),

glyceropho-sphoryl-choline (GPC), phosphorylcholine (PCho), myo-Inositol (mI), lactate

(Lac), N-acetylaspartate (NAA), N-acetylaspartylglutamate (NAAG), phosphocreatine

(PCr), phosphorylethanolamine (PE), and serine (Ser)
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Fig. 2.
Comparison of neurochemical profiles of adult (8–12.5 month-old) Tg and wt mice. The

profiles consist of the concentration of 19 metabolites measured from the hippocampus (top)

and striatum (bottom) using in vivo 1H MRS. The calculated ratio of Gln to Glu

concentration in Tg and wt hippocampus and striatum is shown on the right hand side of

each panel, and the numerical values for this ratio are shown on the right ordinate. The

symbols (single asterisks) and (double asterisks) indicate levels of significance in the

differences between Tg and wt hippocampus and striatum: *0.01 <p <0.05; **p <0.01
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Fig. 3.
Effects of the aging process on the concentration of neuro-chemicals in the hippocampus of

Tg (a, b) and wt (c, d) mice. The concentrations of some of the amino acids as well as the

ratio of Gln to Glu concentrations are shown in b and d. In b and d, the right hand ordinate

shows the numerical values of the Gln to Glu ratios. The age groups of the Tg and wt mice

were 8–12.5, 13–17.5, and 18–22.5 months old as indicated in the figures. The group size

for Tg and wt mice at each age are described in the “Methods” section. Statistical

comparisons were between the concentration values for the 13–17.5 or the 18–22.5 month-

old mice and those of the 8–12.5 month-old mice. The symbols (single asterisks) and

(double asterisks) indicate statistically significant differences with p values of 0.01 <p <0.05

and p <0.01, respectively
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Fig. 4.
Effects of the aging process on the concentration of neuro-chemicals in the striatum of Tg

(a, b) and wt (c, d) mice. The data were obtained from the same groups of mice as those

shown in Fig. 3 and the symbols and statistical comparisons were the same as described in

the legend of Fig. 3
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