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Abstract

Objective—The generalized matrix learning vector quantization (GMLVQ) is used to estimate

the relevance of texture features in their ability to classify interstitial lung disease patterns in high-

resolution computed tomography images.

Methodology—After a stochastic gradient descent, the GMLVQ algorithm provides a

discriminative distance measure of relevance factors, which can account for pairwise correlations

between different texture features and their importance for the classification of healthy and

diseased patterns. 65 texture features were extracted from gray-level co-occurrence matrices

(GLCMs). These features were ranked and selected according to their relevance obtained by

GMLVQ and, for comparison, to a mutual information (MI) criteria. The classification

performance for different feature subsets was calculated for a k-nearest-neighbor (kNN) and a

random forests classifier (RanForest), and support vector machines with a linear and a radial basis

function kernel (SVMlin, SVMrbf).

Results—For all classifiers, feature sets selected by the relevance ranking assessed by GMLVQ

had a significantly better classification performance (p < 0.05) for many texture feature sets

compared to the MI approach. For kNN, RanForest, and SVMrbf, some of these feature subsets

had a significantly better classification performance when compared to the set consisting of all

features (p < 0.05).

Conclusion—While this approach estimates the relevance of single features, future

considerations of GMLVQ should include the pairwise correlation for the feature ranking, e.g. to

reduce the redundancy of two equally relevant features.
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1. Introduction

The ability to detect and classify pathological patterns in medical images is a key challenge

in computer-aided diagnosis systems that consist of a feature extraction and machine

learning task. In high-resolution computed tomography (HRCT) images of the chest, the

classification of pathological patterns of interstitial lung diseases (ILDs) is a complicated

classification task which requires substantial expertise. Different texture features and

classifiers have been proposed to achieve the goal of distinguishing healthy lung patterns

from disease patterns [1–3]. A reliable, consistent and reproducible computer-aided

diagnosis could improve the radiologists efficiency and avoid surgical lung biopsies for

some patients.

One approach to design an image-based, automated detection tool is to extract texture

features from regions of interest (ROI) and then use supervised machine learning techniques

to classify the ROI as healthy or pathological. Too many features deteriorate the

classification performance of the machine learning algorithms summarized as ”curse of

dimensionality’ [4]. In addition, irrelevant features degrade the classification performance.

Because of these negative effects, it is common to precede the learning with a feature

selection stage that strives to eliminate all but the most relevant features.

This study addresses the question how the texture feature can be identified that provide the

best information from the underlying lung HRCT images for a specific (classification)

problem. This objective can be addressed by estimating the global relevance of each

individual texture feature relative to all other texture features in the set. The resulting

relevance allows the ranking of texture features for a specific classification problem. The

ranks in relevance can then be used (1) to compare the performance of texture features and

(2) to select only a subset with the texture features most important for the classification task

thereby reducing the dimensionality of the data set and avoiding any over-fitting [4]. With

an independent feature selection step, many proposed texture feature approaches can be

tested and the best set can then be used for the actual classification task.

The generalized matrix learning vector quantization (GMLVQ) [5] offers such a relevance

estimation for features in a supervised pattern classification problem. The GMLVQ

algorithm provides a discriminative distance measure of relevance factors, which can

account for pairwise correlations between different texture features and their importance in

classification using real-world data [6]. From lung HRCT images, texture features were

extracted, ranked and selected according to the relevances obtained by GMLVQ. For

comparison, features were also selected by a mutual information criteria. The selected

features subsets were then evaluated in their ability to classify the lung patterns.

2. Related work

The learning vector quantization (LVQ) approach [7] and its variants (e.g. LVQ3) [8, 9]

constitute a popular family of supervised classifiers based on prototypes in the feature space.

Specifically, LVQ3 shifts the decision borders toward the Bayesian limits and applies an

correction term that ensures that the prototypes approximate the corresponding class

distribution. Relevance learning schemes quantify the importance of extracted features for a
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certain classification task in heterogenous data sets [9]. The GMLVQ is an extension of this

concept that provides a matrix of relevances that accounts for correlations between different

features. A similar approach is the distinction sensitive LVQ (DSLVQ) [10], which adapts

LVQ3 for the weighting factors according to plausible heuristics. In contrast, the GMLVQ

update constitutes a stochastic gradient descent on a cost function [8].

Several schemes for adaptive distance learning exist, e.g. the large margin nearest neighbor

(LMNN)[11]. A comparison between the LMNN technique and the GMLVQ approach on

the basis of a content based image retrieval application revealed that both methods can reach

a similar performance; however the computational cost for GMLVQ training is typically

lower [12, 13].

Several authors investigated the performance of certain groups of texture features and their

combination with classifiers [1–3, 14–18] in lung HRCT images as well as other types of

images [19, 20]. In addition, various feature selection schemes based on mutual information

were proposed [21, 22].

In this work, the feature selection based on the GMVLQ relevances is compared with a

mutual information criteria using a real-world data set.

3. Generalized matrix LVQ

LVQ [7] constitutes a particularly intuitive classification algorithm, which represents data

by means of prototypes. LVQ itself constitutes a heuristic algorithm, hence extensions have

been proposed for which convergence and ability to represent the data structure can be

guaranteed [9, 23]. One particularly crucial aspect of LVQ schemes is the dependency on

the underlying metric, usually the Euclidean metric, which may not suit the underlying data

structure. Therefore, general metric adaptation has been introduced into LVQ schemes [9,

24]. Recent extensions parameterize the distance measure in terms of a relevance matrix, the

rank of which may be controlled explicitly. The algorithm suggested in [5] can be employed

for linear dimension reduction and visualization of labeled data.

We consider training data x⃗i ∈ ℝN, i = 1…S with labels yi corresponding to one of C classes

respectively. The aim of LVQ is to find m prototypes w⃗j ∈ ℝN with class labels c(w⃗j) ∈ {1,

…,C} such that they represent the classification as accurately as possible. A data point x⃗i is

assigned to the class of its closest prototype wj⃗, where d(x⃗i, w⃗j) ≤ d(x⃗i, w⃗l) for all l ≠ j and d

usually denotes the squared Euclidean distance

(1)

Consider a function μ(x⃗i),

(2)

where w⃗J denotes the closest prototype with the same class label as x⃗i (c(w⃗J) = yi), and w⃗K is

the closest prototype with a different class label (c(w⃗K) ≠ yi). Let Φ(·) denote a
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monotonically increasing function; then, the general scheme of generalized LVQ (GLVQ)

[8] adapts prototype locations by minimizing the cost function

(3)

In this contribution, Φ was chosen to be the identity function, Φ(x) = x; other choices include

e.g. the logistic function [9]. This cost function aims at an adaptation of the prototypes, such

that a large hypothesis margin is obtained and a reliable and robust classification (see [25])

is achieved. A learning algorithm can be derived from the cost function EGLVQ by means

of a stochastic gradient descent as shown in [9, 23].

Matrix learning in GLVQ (GMLVQ) [24, 25] substitutes the usual squared Euclidean

distance d by a more advanced dissimilarity measure which contains an adaptive

dissimilarity measure, thus resulting in a more complex and better adaptable classifier. In

[5], it was proposed to choose the dissimilarity as

(4)

with an adaptive, symmetric and positive semi-definite matrix Λ ∈ ℝN×N. The dissimilarity

measure Eq. (4) possesses the shape of a Mahalanobis distance. Note, however, that the

precise matrix is determined in a discriminative way according to the given labeling, such

that severe differences from the standard Mahalanobis distance based on correlations can be

observed. By setting

(5)

with Ω ∈ ℝM×N with M ≤ Nsemi-definiteness and symmetry is guaranteed. Optimization

takes place by a stochastic gradient descent of the cost function EGLVQ in Eq. (3), with the

distance measure d substituted by dΛ (see Eq. (4)).

The training takes place as an iterative learning scheme picking a sample xi⃗ in every step t

from the randomized labeled training set and performing an update of both the prototypes

w⃗K,J and the matrix. The update of the nearest prototype w⃗J with the same class label like x⃗i
and the nearest prototype w⃗K with a different class label is given by

(6)

(7)

(8)

The corresponding update of the matrix reads
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(9)

(10)

with L ∈ {J, K}. After each training step t the matrix is normalized to ∑i[Λ]ii = 1 in order to

prevent degeneration to 0. An additional regularization term in the cost function proportional

to −ln(det(ΩΩ⊤)) can be used to enforce full rank M of the relevance matrix and prevent

over-simplification effects, see [26]. The learning stops after a maximal number of epochs

(sweep through the shuffled training set) is reached. At the end of the learning process the

algorithm provides a set of prototypes w⃗j, their labels c(w⃗j), and a task specific

discriminative distance dΛ.

The diagonal elements Λii of the dissimilarity matrix can be interpreted as overall relevances

of every feature i for the classification. The off-diagonal elements Λij with j ≠ i weight the

pairwise correlations between features i and j. High absolute values in the matrix denote

highly relevant features, while values near zero can be seen as less important for the

classification accuracy. So the GMLVQ approach offers typical representatives of the

classes in form of prototypes, a discriminative distance measure and feature relevance

information suitable for the specific classification task.

The cost function of GMLVQ is non convex and, in consequence, different local optima can

occur, which lead to different results and subsequent data visualizations. The non-convexity

of the cost function is mainly due to the discrete assignments of data points to one prototype,

which may not be unique for real-world data sets with overlapping classes. In the

experiments, different assignments and, in consequence, different data representations could

be observed, where these representations focus on different relevant facets of the given data

sets.

The choice Ω ∈ ℝM×N with M ≤ N transforms the data locally to an M-dimensional feature

space. It can be shown that the adaptive distance dΛ(wj⃗, x⃗i) in Eq. (4) equals the squared

Euclidean distance in the transformed space under the transformation x⃗ ↦ Ωx⃗, because

dΛ(w⃗j, x⃗i) = (Ωxi⃗ − w⃗j)2. The target dimension M must be chosen in advance by intrinsic

dimension estimation or according to available prior knowledge. For visualization purposes,

usually a value of two or three is appropriate.

4. Experiment

4.1. Data

For each of the 14 patients with known occurrence of ILD patterns, a stack of 70 axial

images reconstructed with a lung kernel from HRCT of the chest was assessed by an

experienced radiologist. The resulting images are comparable to classical HRCT with the

exception that not only reconstructions of a small number of slice positions are available. A

morphological pattern related to a heterogenous group of ILDs is the so-called
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honeycombing. All images have a slice thickness of 1mm, an in-plane pixel size of

0.69×0.69 mm, and a slice distance of 5 mm. In this data set, 964 two-dimensional, squared

ROIs with an edge length of 23 pixels were defined in 608 healthy and 356 pathological,

honeycombing lung patterns (Fig. 1). In each of these ROIs, the set of the following vectors

of texture features was calculated.

4.2. Texture features

Gray level co-occurrence matrices (GLCM) [19] are second order histograms that estimate

the joint probability P(gi, gj) for the occurrence of two pixels with the gray levels gi and gj

for a given pixel spacing and direction. In each ROI, the gray levels were rescaled (min-

max-scaling) to 128 gray level values and texture features were calculated for ndir = 4 offset

directions (0°, 45°, 90°, 135°) and five pixel spacings sp = {1, 2, 3, 4, 5}. Pixels pairs were

excluded from the GLCM if the neighbor pixel was outside the ROI. To achieve rotation

invariant features, the GLCM of the four directions were summed to one matrix. From those

isotropic GLCMs, 13 statistical features fi(sp) (i = 1,…,13) were calculated resulting in a set

of 65 GLCM texture features. After the calculation, all features were standardized to zero

mean and unit variance.

4.3. Mutual information

For a comparison with the estimated feature relevance by GMLVQ, an information theoretic

approach to feature selection is used. Mutual information (MI) [4] is a measure of general

independence between random variables. For two random variables X and Y, the MI is

defined as

(11)

where entropy H(·) measures the uncertainty associated with a random variable. The MI I(X,

Y) estimates how the uncertainty of e.g. X is reduced if Y has been observed. If X and Y are

independent, their MI is zero.

For ROI data set in this study, the MI between the single texture features fi(sp) and the

corresponding class labels yi was calculated by approximating the probability density

function of each variable using histograms P(·):

(12)

Here, the number of classes nc = 2 was used; the number of histogram bins for the texture

features nf was determined adaptively according to

(13)

where κ is the estimated kurtosis and N the number of ROIs in the data set[21]. Hence, more

histogram bins were assigned to non-Gaussian distributed features.
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4.4. Classification performance

After the ranking of the texture features, different classifiers were used to test the

classification performance on ranked features acquired by the GMLVQ algorithm and the

MI approach. Three commonly used classifiers were investigated in this study: a k-nearest

neighbor (kNN), support vector machines with a linear and a radial basis function kernel

(SVMlin, SVMrbf, respectively), and random forests (RanForest) [27, 28].

Free Parameters of all classifiers were subject to optimization via cross validation in the

training phase. In one iteration, the data set is randomly divided into a training set (70%) and

a test set (30%); all ROIs of one patient are either included in the training set or the test set.

The training set is used to estimate the relevance with GMLVQ and MI ranking and to

determine the best classifier parameter in a 10-fold cross-validation. The optimized classifier

model was then applied on the independent test set to calculate the accuracy of one iteration.

This scheme was repeated 50 times resulting in an accuracy distribution for each texture

feature sets and classifier. In addition to a feature set including all features, sets consisting of

the best {1,…,20} features according the the GMLVQ and MI ranking were evaluated for

their classification performance. A Wilcoxon signed-rank test was used to compare two

accuracy distributions.

5. Results

5.1. Feature ranking

In Fig. (2), the ranking of the used texture feature is shown for the relevance measure

obtained by GMLVQ and the MI estimation, and the 20 best features in each ranking

scheme are highlighted. Both feature selection approaches identify f8(1) as the most

important feature to distinguish the two classes of ROI patterns. However, the second best

feature is already different (f11(1) for GMLVQ, f8(2) for MI) and the overall set of the best

20 texture features is not identical as well. The best ranked texture features f8 and f11 define

the ’sum of entropy’ and the ’difference entropy’, respectively [19]. For the GMLVQ

algorithm, the off-diagonal elements of Λ are shown in Fig. (3), which weight the pairwise

correlations between two features.

For the classification task, it is interesting to investigate distribution of the feature vectors in

the high-dimensional feature space. In Fig. (4), the feature space of the sets including the

best 5 features as defined by the two ranking methods are represented by a two-dimensional

embedding, where each data point is replaced with the corresponding ROI. The embedding

was obtained with a principal component analysis (PCA) leading to the first and second

principal components, that include the highest variation found in the data set through a

coordinate transformation with the covariance matrix. Using this linear PCA projection,

features in the MI ranking seem to be more correlated compared to the GMLVQ ranking

(Fig. 4). In addition, the two images classes, healthy and diseased, can be better

distinguished in the latter ranking approach.
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5.2. Classification performance

In Fig. (5), the test accuracies obtained by the four classifiers are shown for different feature

sets including all features and the best n features selected by GMLVQ and MI rankings. For

all classifiers, feature sets selected by the relevance ranking assessed by GMLVQ had a

significantly better classification performance for the best {2,…,18} texture features

compared to the MI approach (p < 0.05). The other subsets defined by the GMLVQ and MI

ranking had a similar performance. For kNN, RanForest, and SVMrbf, some of these feature

subsets had a significantly better classification performance when compared to the set

consisting of all features, e.g. the best {3,…,10} texture features (p < 0.05). Fore these three

classifiers, the best performance was found with sets between 4 to 6 features defined by the

GMLVQ ranking; the performance decreased with increasing numbers of features. For

SVMlin classifier, the best level of performance was reached with 6 features and remained

similar with increasing number of features.

6. Discussion

In this novel application of the GMLVQ algorithm, the relevance of texture features was

estimated in their ability to classify healthy and diseased lung patterns in chest HRCT

images. This supervised learning scheme incorporates a stochastic gradient descent on an

appropriate error surface and provides a feature selection approach to determine the

relevance of several input dimensions for a specific classification task. To this end, GMLVQ

weights the texture features corresponding to their ability in discriminating between the two

lung tissue classes. In our experiment with real-world data, the feature sets selected by the

GMLVQ approach had a similar or a significantly better classification performance

compared with feature sets selected by a mutual information ranking. Some of the feature

subsets selected by the GMLVQ ranking even improved the overall classification

performance of three classifiers.

The common challenge in the field of feature selection is to find sets of features with a low

pairwise correlation to avoid redundancy but with a high relevance of the complete set for

the classification task. This means that even weak features can be included, if they provided

complimentary information to strong features. In general, ranking single features based on

their individual performance and then create feature sets according to this ranking may not

accommodate these requirements and thus, may not identify the members nor the size of the

optimal feature subset. The above ranking-based feature selection method considers only the

individual performance of the features and does not consider pairwise correlations between

features. However, for this application of interest, the GMLVQ relevance yields a

satisfactory performance. While this approach estimates the relevance of single features,

future considerations of GMLVQ should include the pairwise correlation (Fig. 3) for the

feature ranking, e.g. to reduce the redundancy of two equally relevant features [21, 22].

In order to improve computed-aided diagnosis systems, the presented approach can be used

to compare the performance of texture features and to optimize their free parameters in order

to find the near optimal settings for subsequent supervised learning tasks. From the broad

variety of approaches for texture classification [1], the best set of individual texture features

can be identified that is best suited to distinguish between data classes. Most of these texture

Huber et al. Page 8

Artif Intell Med. Author manuscript; available in PMC 2014 July 14.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



feature methods have free parameters and it is unclear, which set of parameters leads to the

best discrimination between texture classes. For one of these methods, the parameter setting

with the best classification performance can be found. For instance, in the presented

experiment, the GLCM features with a pixel spacing sp = 5 did not contribute to a

significantly better classification performance (Fig. 2). More complex texture feature

approaches may benefit from this reduction to the possible parameter space.

In terms of the detection of ILD patterns, a limiting factor of this study was that only one

typical pathological lung pattern, i.e. honeycombing, was classified. This represents one of

many interstitial lung disease patterns that are common in clinical chest HRCT [1] and

should be investigated in future studies. For this endeavor, the GMLVQ approach can be

extended for such a multi-class problem to provide feature rankings of individual features

for each class. This leads to class specific feature selection and may reveal further insights

into the texture quantification and the structure of the feature space.

7. Conclusions

Using the GMLVQ algorithm, the relevance of texture features was estimated in their ability

to classify healthy and diseased lung patterns in chest CT images. In our experiment with

real-world data, the feature sets selected by the GMLVQ approach had a significantly better

classification performance compared with feature sets selected by a mutual information

ranking. While this approach estimates the relevance of single features, future considerations

of GMLVQ should include the pairwise correlation (Fig. 3) for the feature ranking, e.g. to

reduce the redundancy of two equally relevant features [21, 22].
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Figure 1.
ROIs with HRCT image patterns showing examples for healthy lung tissue (upper 2 rows)

and pathological lung tissue (lower 2 rows).
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Figure 2.
Ranking of the used texture features for the relevance measure obtained by GMLVQ (upper

panel) and the mutual information MI (lower panel). For the 50 iteration, the mean ranking

is shown for each feature; the error bars indicate the corresponding standard deviation. The

GMLVQ relevance is calculated from the diagonal elements Λii of the dissimilarity matrix

(Eq. 5). The 20 best feature in each ranking approach are marked with black bars. The set of

texture features consists of the statistical measures derived from the GLCMs, fi(sp), for i =

{1,…,13} and sp = {1,…,5}.
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Figure 3.
The matrix Λ with pairwise-correlations between the GLCM features. Dark and bright

entries correspond to high negative and positive correlations, respectively. The diagonal

elements (see Fig. 2) are set to zero to emphasize the off-diagonal elements.
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Figure 4.
Two dimensional projections of feature spaces with a subset of corresponding lung patterns:

the first and second principal component are shown for the feature space of the best 5

features for the mutual information (upper panel) and the GMLVQ (lower panel) ranking.

The subimages show the complete distributions of the healthy (gray circles) and diseased

lung patterns (black dots). These representations reveal the shape of the feature space,

especially that the features in the set selected by GMLVQ are less correlated. Note that not

all lung pattern images are shown to avoid overlapping.
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Figure 5.
Classification performance for different features sets and two classifiers. Median test

accuracies (error bars indicate the 20th and 80th percentiles) are shown for a set consisting

of all features (diamond), and sets with the best n features (n = {1,…,20}) according to the n

highest relevances obtained from GMLVQ (squares) and n highest estimations of mutual

information MI (triangles). Circles mark significant differences between the two ranking

methods; crosses mark a significant better performance of GMLVQ ranking compared to the

set including all features (p<0.05).
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