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Abstract

Recent progress in molecular engineering of genetically-encoded probes whose spectral properties

are controlled with light, such as photoactivatable, photoswitchable and reversibly switchable

fluorescent proteins, have brought the new possibilities to bioimaging and super-resolution

microscopy. The development of modern photoconvertible proteins is linked to the studies of

light-induced chromophore transformations. Here, we summarize the current view on the

chromophore chemistry in the photocontrollable fluorescent proteins. We describe both the

fundamental principles and specific molecular mechanisms underlying the irreversible and

reversible chromophore photoconversions. We discuss advancements in super-resolution

microscopy that became possible due to the new protein phenotypes and understanding of their

chromophore transformations.

Introduction

The progress in biological imaging is tightly linked to the development of molecular probes.

Among different probes, genetically-encoded fluorescent proteins (FPs) of Aequoria victoria

green fluorescent protein (GFP) family enable specific labeling of cells and molecules. Of

particular interest are FPs whose fluorescence is regulated by light irradiation of specific

wavelengths. These photocontrollable FPs are indispensable tools for monochrome and

multicolor super-resolution imaging [1]. Specifically, new probes have advanced different

types of super-resolution techniques, including single molecule based photoactivated

localization microscopy (PALM) [2], and ensemble imaging based reversible saturable

optical fluorescence transition (RESOLFT) [3]. In addition, modern light controllable FPs

are used in photochomic Fluoresence resonance energy transfer (FRET) [4], photolabelling

of tissues in live animals [5] and optical manipulation of processes in a cell [6].
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The light-controllable FPs can be classified in three groups: photoactivatable FPs (PAFPs),

photoswitchable FPs (PSFPs) and reversibly photoswitchable FPs (rsFPs). PAFPs undergo

activation from a dark to a fluorescent state. PSFPs can be photoconverted from one

fluorescent state (color) to another. In contrast to PAFPs and PSFPs, which could be

photoactivated only once, fluorescence of rsFPs can be photoswitched on and off repeatedly.

Engineering of FPs controllable by light was accompanied by studies of their chromophore

chemistry and rearrangements in the protein structure. These studies laid the basis for

development of FPs with improved characterstics and FPs with new photochemical

phenotypes.

In this review we focus on the chromophore chemistry of light-controllable FPs. We first

summarize the basic principles of chromophore formation and spectral properties of FPs.

Then we describe various irreversible and reversible chromophore phototransformations in

FPs. Finally, we discuss how new photocontrollable FPs and understanding of mechanistic

basis of their photoconversion provide the new imaging applications.

Principles of chromophore chemistry

FPs form a chromophore without enzymes or cofactors except for molecular oxygen. In

most FPs a chromophore-forming tripeptide consists of invariant Tyr66 and Gly67 and a

variable residue at position 65 [7]. The chromophore is positioned inside a β-barrel protein

fold. In a variety of chromophores several core structures can be defined (Figure 1a).

Transformations of these structures, such as oxidation, cyclization, protonation-

deprotonation, formation of hydrogen bonds and stacking with surrounding residues,

determine the spectral properties of specific FPs [1, 8]. Red shift of FP spectra correlates

with the increased number of conjugated double bonds in a chromophore and its planarity

[8]. Protonation of the chromophores results in a blue shift of their absorbance. In most

cases, protonated forms do not emit light, and their fluorescence can be observed only at low

temperatures [9, 10]. Upon light absoption they either quickly undergo excited state proton

transfer (ESPT) [9, 11], dissipate the excited-state energy [12] or exhibit cis-trans

isomerization [13, 14].

Green and some cyan FPs share a core green GFP-like chromophore, which is 4-(p-

hydroxybenzylidene)-5-imidazolinone (Figure 1a). Its anionic form absorbs at 470–510 nm

and emits at 500–530 nm, while in the protonated form the spectra shift to 390–400 nm and

460–470 nm, respectively.

There are two types of core red chromophores: a DsRed-like and a Kaede-like (Figure 1a)

[15, 16]. The DsRed-like chromophore can be formed either autocatalytically or by a

photochemical transformation, while the Kaede-like chromophore appears only

photochemically from the His65-Tyr66-Gly67 tripeptide. Anionic forms of both

chromophores absorb at 540–570 nm and emit at 570–630 nm. Protonated DsRed-like

chromophore absorbs at 440–460 nm. Emission of the protonated DsRed-like chromophore

observed at low temperatures peaked at 530 nm [9].
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The DsRed-like chromophore forms via a core TagBFP-like chromophore (Figure 1a)

through oxidation of the Cα-Cβ bond in the Tyr66 side chain [17, 18]. The TagBFP-like

chromophore absorbs at 390–410 nm and emits at 450–470 nm [18].

Light can cause reversible and irreversible chromophore transformations. The reversible

photoconversions include cis-trans isomerization, protonation-deprotonation, and hydration-

dehydration [19, 20]. The irreversible transformations include extension of conjugated π-

system in a chromophore [16, 21], decarboxilation of neighboring Glu222 [21, 22], and

polypeptide backbone break [5, 16]. The residues at positions 69 and 203 are minimally

required for irreversibly photoactivatable phenotype, as well as conservative Glu222 in

some FPs [7]. Reversibly switching phenotype depends on residues at positions 148, 165,

167, and 203 [7]. The light-induced chromophore transformations in photocontrollable FPs

are discussed below.

Irreversible chromophore phototransformations

Dark-to-green PAFP PAGFP and cyan-to-green PSFPs PSCFP and PSCFP2 (Table 1) share

a common mechanism of photoactivation, which was first studied in wild-type GFP (Figure

1b). Initially the protonated chromophore is stabilized by the Glu222 [23, 24]. Violet light

absorption induces ESPT, which transforms the chromophore into intermediate anionic

excited states, and leads to subsequent Glu222 decarboxylation. The decarboxylation causes

rearrangement of hydrogen bonding network and stabilization of the anionic GFP-like

chromophore. PAGFP differs from wild-type GFP by a single Thr203His mutation [25],

which stabilizes protonated form in its initial state and lowers the energy of the excited state

via stacking with the chromophore [22]. Similar mechanism was suggested for PSCFP and

PSCFP2 with the difference in cyan emission of the protonated GFP-like chromophore

before photoactivation (Figure 1c).

Photoactivation of all dark-to-red PAFPs (Table 1), such as PAmCherry1, PATagRFP, and

PAmKate, is based on photoinduced formation of the anionic DsRed-like chromophore from

its different precursors. The dark form of PAmCherry1 corresponds to non-fluorescent

TagBFP-like chromophore [21]. In the photoactivated form PAmCherry1 adopts the anionic

DsRed-like chromophore in the trans conformation (Figure 1d). The photoactivation causes

decarboxylation of Glu222, which leads to the oxidation of Tyr67 Cα-Cβ bond and

formation of the DsRed-like chromophore [21]. In contrast to PAmCherry1, spectroscopic

data suggests that the dark state of PATagRFP has a structure of cyclized dehydrated α-

enolate, the mTagBFP-like chromophore precursor (Figure 1e) absorbing at about 350 nm

[26]. Spectral data for PAmKate suggest that the dark state of PAmKate likely corresponds

to the protonated DsRed-like chromophore. A conjugation of the anionic chromophore with

a side chain of the Arg203 residue possibly causes its far-red shift (Figure 1f) [27].

Kaede-like green-to-red PSFPs include a large number of FPs (Table 1), all of which share

common His65-Tyr66-Gly67 anionic GFP-like chromophore in their initial state (Figure

1g). Irradiation with violet light initiates a β-elimination reaction, which results in the

Kaede-like red chromophore. In this process His65 Nα-Cα bond is cleaved and a Cα-Cβ

double bond in the His65 side chain is subsequently formed, thus, extending the π-
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conjugated chromophore system [16]. While red chromophores of EosFP and Dendra2 have

the His65 Cα-Cβ double bond in the trans conformation [28, 29], KikGR adopts the cis

chromphore (Figure 1g). To account for this difference, a two-step elimination E1

mechanism, involving a loss of the leaving group followed by a deprotonation of a hydrogen

nearby the carbocation, has been proposed for KikGR [30].

IrisFP and NijiFP possess unique ability to undergo both irreversible and reversible

chromophore photoconversions. The irreversible chromophore photoconversion is

analogous to those observed in their parental EosFP and Dendra2 [31, 32]. Both green and

red forms of these proteins can be reversibly switched on and off similar to negative

switching green and red rsFPs, see Table 1 and below. In both FPs this phenotype is induced

by F181S mutation, which leads to rearrangements of the residues surrounding the

chromophore and enables reversible photoswitching via cis-trans chromophore

isomerization.

Phototransformation of the most red shifted PSFPs orange-to-farred PSmOrange and

PSmOrange2 (Table 1) results in the unique far-red chromophore. Blue-green light

irradiation of the mOrange-like chromophore causes its oxidation and cleavage of the

polypeptide backbone. The formed far-red PSmOrange-like chromophore contains N-

acylimine with the C=O group in the third five-member dihydrooxazole ring, which is co-

planar with the chromophore core (Figure 1h) [5]. The greater co-planarity of the C=O

group in PSmOrange-like chromophore than in the DsRed-like chromophore results in the

most far-red shifted absobance of this chromophore among currently available red FPs.

Reversible chromophore photoconversions

All rsFPs can be classified in three groups on the basis on their photoswitching behavior

(Table 1). Negative rsFPs are switched off by the light of the same wavelength that excites

fluorescence in their on state. In contrast, positive switching rsFPs are activated by the same

wavelength that excites fluorescence. A third group is represented by a single rsFP

Dreiklang, whose on-off photoswitching is controlled by light at wavelengths that do not

correspond to its excitation maximum.

Structural studies uncovered a similar mechanism of reversible photoconversion in all rsFPs,

except Dreiklang [33, 34]. The light induces cis-trans isomerization of the p-

hydroxybenzylidene chromophore moiety between two states. In negative switching green

rsFPs, including Dronpa, rsFastlime, Dronpa3, and possibly mGeosM and rsEGFP, the

anionic fluorescent cis GFP-like chromophore undergoes a cis-trans isomerization to the

dark protonated trans GFP-like chromophore (Figure 2a). The protonation, loss of planarity,

and flexibility in the rearranged protein cavity are responsible for non-radiative dissipation

of excitation energy by the chromophore in the trans conformation [14, 33]. The

chromophore pocket preference for the coplanar cis or the noncoplanar trans configuration

determines the rsFP steady state [33]. The similar chromophore transformation also occurs

during a reversible photoswitching of green and red forms of IrisFP [31]. In contrast, in

positive switching rsFPs, such as Padron, the anionic cis chromophore in the on state does

not undergo photoisomerization. This fluorescent anionic chromophore is in a thermal
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equilibrium with the protonated non-fluorescent chromophore. The latter protonated cis

chromophore is the one, which undergoes photoisomerization into the anionic non-

fluorescent trans chromophore under violet light irradiation (Figure 2b) [35, 36].

Interestingly, the difference in photobehavior for negative and positive switching rsFPs

results from amino-acid changes at key positions 148, 165, and 167 only [35, 37].

The NMR analysis of Dronpa photoswitching proposes that the on-to-off transition starts

with a protonation of the chromophore and a loss of its hydrogen bond with the adjacent

Ser148 residue. These events cause increased chromophore flexibility, conformational

changes of the surrounding amino acids, and chromophore isomerization [14]. Overall, the

flexibility of the β-barrel during photoswitching of Dronpa was revealed. The processes of

chromophore cis-trans isomerization and protonation might be also concerted during the on-

to-off photoconversion [36]. The opposite off-to-on switching of Dronpa was found to

include the ESPT from the protonated dark chromophore [11]. In contrast to negative

switching rsFPs, structural studies of positive switching rsFPs revealed rather limited

rearrangement of the chromophore pockets during photoswitching [38, 39].

In red rsFPs, rsCherryRev and rsCherry the similar cis-trans isomerization might also occur

(Figure 2c,d). However, a lack of an absorbance peak corresponding to the neutral DsRed-

like chromophore suggests that the non-fluorescent anionic DsRed-like chromophores (trans

in rsCherryRev and cis in rsCherry) may be in the equilibrium with a small fraction of the

protonated chromophore, which undergoes photoconversion under blue light illumination.

Spectral and structural studies of rsTagRFP support a switching mechanism similar to that in

Dronpa [40]. In contrast to rsCherryRev, the presense of 440 nm absorbance peak in the

dark state of rsTagRFP indicates that in the off state the majority of rsTagRFP molecules

contain the protonated trans DsRed-like chromophore capable to photoisomerization (Figure

2c) [13].

Dreiklang has a unique photoswitching mechanism [20]. In the fluorescent state its GFP-like

chromophore is in the anionic cis form. Spectral data suggest that the anionic chromophore

is in equilibrium with the protonated chromophore, which is capable to undergo

phototransformation. Violet light causes a hydration reaction, converting the imidazolinone

ring of the chromophore into a 2-hydroxyimidazolidinone (Figure 2e). UV light reverses the

hydration reaction. Thus, decoupling of the wavelengths for fluorescence excitation and

photoswitching occurs because none of the chromophore states, which undergo

photoconversion, absorb at the same wavelengths as the fluorescent cis anionic GFP-like

chromophore.

Conclusions

Recent studies refined our understanding and uncovered new mechanisms of the light-

induced chromophore transformations. This knowledge led to engineering of advanced

photocontrollable FPs, which enabled multicolor super-resolution imaging. Possible

combinations of FPs that have been applied or potentially can be applied in two-color super-

resolution microscopy are shown in Figure 3.
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Some questions about the mechanistic basis of photoconversion are yet to be answered. For

example, chemical basis for a fatigue resistance (number of switching cycles required to

decrease fluorescence of rsFP in half) is unclear. This property is crucial to use rsFPs in live

cell RESOLFT microscopy [3]. Until the engineering of a fatigue resistant rsEGFP variant

[3], RESOLFT with rsFPs was suboptimal, and implementation of the related technique,

termed stimulated emission depletion (STED), was performed with permanently fluorescent

far-red FP, TagRFP657, in fixed cells [41]. Understanding of fatigue resistance will aid in

development of an improved version of rsTagRFP for two-color RESOLFT (denoted as

rsTagRFP* in Figure 3d). Interestingly, rsTagRFP have already shown its usefulness to

complement Dronpa in a single-molecule based super-resolution technique, called

photochromic stochastic optical fluctuation imaging (pcSOFI) [42] (Figure 3). These rsFPs

delivered robust single-molecule fluorescence intensity fluctuations observable over

extended periods, which is required for pcSOFI,

Photocontrollable FPs with unique photochemistry have found their specific applications.

For example, mIrisFP with complex photobehavior was used in super-resolution imaging

with selective pulse-chase photolabeling [43]. rsTagRFP has been applied to photochromic

FRET in which reversible switching on and off allows the accurate FRET quantification in a

live cell. [4]. Another FRET phenomenon, termed FRET-facilitated photoswitching, was

demonstrated using PSmOrange2 [44]. The red-shifted spectra of PSmOrange, particularly a

possibility to use green light for its photoswitching, enabled its use for labeling and tracking

the specific cell population in a living animal [5]. Flexibility of the β-barrel of Dronpa

mutants led to their light-inducible oligomerization and allowed to regulate intracellular

processes [6].

Future efforts in understanding of the chromophore chemistry in light-controllable FPs

should eventually result in new probes and advanced imaging technologies. Novel FP

phenotypes can be obtained by combining different independent pathways of chromophore

transformations in a single protein. These future photocontrollable FPs should advance

multicolor photolabelling in super-resolution imaging of live cells.
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Highlights

• Basic principles and specific photochemical reactions in fluorescent proteins are

described

• Irreversible and reversible light-induced chromophore transformations are

discussed

• Advanced bioimaging and super-resolution microscopy applications are outlined
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Figure 1. Light induced chromophore transformations in irreversibly photoswitchable FPs
Colors highlighting chromophores correspond to the spectral range of observed

fluorescence. Non-fluorescent chromophores are shown in gray. [O] denotes an oxidation

reaction. (a) Core chromophores of GFP-like proteins, formed by invariant Tyr66, Gly67,

and variable residue 65 (the numbering follows that for GFP). (b-h) Chromophore

transformations are shown for PAGFP. (b), PAmCherry1 (d), EosFP (g), KikGR (g), and

PSmOrange (h) were confirmed by structural data and/or mass-spectrometry. Chromophore

transformations shown for PSCFP2 (c), PATagRFP (e), and PAmKate (f) are proposed

based on spectral studies. (b-f) The conservative Glu222 residue, which is decarboxylated

upon photoactivation, is shown.
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Figure 2. Light induced chromophore transformations in reversibly photoswitchable FPs
Colors highlighting chromophores correspond to the spectral range of observed

fluorescence. Non-fluorescent chromophores are shown in gray. (a-e) Chromophore

transformations shown for Dronpa (a), Padron (b), rsTagRFP (c), and Dreiklang (e) were

confirmed by both structural and spectral data. Chromophore transformations for

rsCherryRev (c) and rsCherry (d) are proposed based on their spectral properties.
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Figure 3. Proposed combinations of photocontrollable FPs for super-resolution microscopy
(a) Green PAGFP and red PATagRFP or PAmCherry1 are suitable for simultaneous two-

color PALM. Both FPs are activated by violet light and fluorescence signals of activated FPs

are detected in separate channels. Simultaneous imaging is possible because the activated

states of two FPs can be dicriminated from the initial states and between each other. (b)

Green rsFP Dronpa and red rsTagRFP can be imaged together in a sequential pcSOFI. First,

fluctuations of fluorescence from individual rsTagRFP molecules in the off state are

detected and analyzed. Then rsTagRFP is bleached to prevent its activation with blue light

used for switching off Dronpa. Next, fluctuations of fluorescence from individual Dronpa

molecules in the off state are detected and analyzed. (c) Two PSFPs, PSmOrange or

PSmOrange2 and PSCFP2, can potentially be imaged sequentially in two-color PALM with

no interference of non-activated signal of one FP into the channel of another FP. First,

PSmOrange molecules are activated, imaged, localized, and bleached. Orange and far-red

fluorescence signals of PSmOrange are distinguishable from PSCFP2 signal. Then PSCFP2

are stochastically activated, imaged and localized. (d) Combinations of currently available
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green rsFP, such as rsEGFP, with future red rsFP, like rsTagRFP with improved fatigue

resistance (denoted as rsTagRFP*), for use insequential two-color RESOLFT. rsTagRFP* is

imaged first with rsEGFP in the dark state. Then rsTagRFP* may be bleached to avoid

activation of rsTagRFP by blue light. Next, rsEGFP is imaged.
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