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Abstract

The bacterial pathogen Klebsiella pneumoniae is a cause of community- and hospital-acquired

lung, urinary tract, and blood stream infections. A common contaminant of indwelling catheters, it

is theorized that a common infection pathway for this organism is via shedding of aggregates off

of biofilm colonies.

In an effort to better understand bacterial proliferation in the host bloodstream, we develop a PDE

model for the flocculation dynamics of Klebsiella pneumoniae in suspension. Existence and

uniqueness results are provided, as well as a brief description of the numerical approximation

scheme. We generate artificial data and illustrate the requirements to accurately identify

proliferation, aggregation, and fragmentation of flocs in the experimental domain of interest.
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1 Introduction

Klebsiella pneumoniae is a member of the family Enterobacteriaceae and an important

human bacterial pathogen. As causes of both pneumonia and urinary tract infections,

Klebsiella are among the most common Gram-negative organisms isolated from the blood

stream of critically ill patients [15]. Important virulence factors for this organism include

two surface exopolysaccharides, the O-antigen and the capsule, which lie on the exterior

face of the pathogen and may impart pathogenicity by interfering with host defense

strategies involving the complement system, phagocytosis, and antibacterial peptides. These

carbohydrates, particularly the capsule, are also believed to contribute to the formation of

extended extracellular structures known as biofilms. Biofilms serve as structural anchors,

barriers to contact with host defenses, and as impediments to antibiotics [4]. As with many

other bacteria, biofilm production by Klebsiella is not a passive process, rather one

genetically regulated, in part, through active sampling of the external environment by a

process known as quorum sensing [5].
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Flocculation, whereby planktonic organisms coalesce in suspension into multicellular

aggregates, may be a process homologous to biofilm formation on a substrate. Preliminary

experimental evidence in our laboratory suggests that Klebsiella may flocculate under

conditions closely mimicking flowing blood. As all flowing blood must pass through

capillaries of a fixed diameter (~ 10 μm), the final distribution of bacteria in tissues may be

governed by multicellular aggregates becoming lodged in capillaries (a process called septic

embolization). These bacterial aggregates, whether free-floating or entrapped in a capillary

network, exhibit growth kinetics different than organisms growing in isolation as well as

those in biofilms. An improved understanding of the discrepancies is an important step in

studying the behavior of the pathogen when it resides in the blood stream of a host. That

bacteria might exist and proliferate in aggregate while circulating in the bloodstream has

implication for their ultimate clearance from the blood stream and their susceptibility to

humoral and cellular defenses and to antibiotics.

The focus of this paper, therefore, is in studying the bacterial aggregation phenomenon, and

is organized as follows. Section 2 describes the PDE model development. Section 3

addresses the mathematical issues of existence and uniqueness. Section 4 describes the

numerical scheme used to approximate the solution. Section 5 discusses the modeling of the

aggregation and fragmentation kernels. Section 6 tabulates the results of the numerical

experiments. Section 7 summarizes and discusses the conclusions from the work.

2 Model Development

There is a rich and well developed literature on biofilm formation and bacterial growth on a

substrate, even for K. pneumoniae [4, 27, 28]. We are interested, however, in studying

bacterial aggregates in suspension, as an important infection pathway involves seeding a

patient’s vasculature with flocs off of biofilms.

Aggregation phenomena occur in a wide range of fields and the basic mathematical model

for such phenomena, the Smoluchowski coagulation equations 1, has been employed in such

disparate fields as aerosols [7], meteorology [17], chemically dispersive systems [24], algal

dynamics [2, 18], immunology [13], and planetesimal evolution [11]. The seminal ideas

were originally developed in the early 1900’s by von Smoluchowski to model the rapid

aggregation of colloids. Smoluchowski considered a static dispersing medium, assuming

that all interactions (particle-particle, particle-aggregate, and aggregate-aggregate) were

binary and driven by Brownian motion. This research [25, 26] resulted in a governing

equation for discrete kinetic aggregation

(1)

where pk represents the density of aggregates of volume k and K(i, j) is a kernel describing

the collision rate of aggregates of volume i and j. Under further approximations (such as

1For the remainder of this article, we use “aggregation” in place of “coagulation” to avoid confusion with hematological phenomena,
and “flocculation” to describe the overall clustering process.
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assuming that the van der Waals forces have an effective radius equal to the radius of the

aggregate), Smoluchowski was able to solve the infinite system of discrete equations (1).

Later work by Müller [12] (and others) extended this equation to the continuum PDE

(2)

where p is now a continuous aggregate size density function and K(x1, x2) is a kernel

describing the rate with which particles of size x1 coalesce with particles of size x2.

As discussed in Section 5, the equations themselves have been the focus of intense

mathematical study. While closed form solutions exist for simple (constant, additive, and

multiplicative) kernels, solutions for more complicated forms have proven elusive. For

multiplicative kernels, moreover, the second moment of p is known to blow up in finite

time. That is, for K(x, y) = xy, there is a finite time, called a gelation time, at which there are

a positive number of aggregates with infinite volume. The conventional interpretation is that

a phase change has occurred in the media. For a review of further mathematical results, we

direct the interested reader to [8].

Lastly, we note that there are probabilistic models of aggregation (coalescent) phenomena as

well. The coalescence process can also be modeled using a Marcus-Lushnikov (ML)

stochastic process; and in finite volumes, the limiting distribution of the ML process is the

solution to (2). A good review of stochastic models of aggregation and their relation to

deterministic models can be found in [3].

2.1 Experimental Methods

We present the experimental methods here, since the details strongly inform our modeling

approach.

An encapsulated strain of Klebsiella pneumoniae (serotype O1:K2, American Type Culture

Collection number 43816) was plated on Luria Bertani agar and grown at 37°C overnight.

The following morning, individual colonies, with the underlying agar plug, were sharply

excised and placed, one colony per flask, in 200ml Erlenmeyer flasks containing 15 ml of

minimal media with 1% glucose (Difco, Detroit, Michigan). Agar plugs with no bacterial

colony were added to control flasks. Flasks were placed in an orbital shaker at 37°C rotating

at 100 rpm. Samples were taken at various time points, and experimental conditions

(including control conditions) were always studied in triplicate.

Suspended particles were assayed using a Z1 cell and particle counter (Beckman Coulter,

Fullerton, California). Each sample was assayed for particles contained in 5 windows (5–50

fL, 50–100 fL, 100–200 fL, 200–300 fL, and 300–400 fL).

2.2 Model Equations

The microscopy images in Figure 1 depict K. pneumoniae in fetal calf serum and we

interpret the bacteria and the extracellular structure surrounding it as a floc. The electrical

sensing zone method particle sizer in our lab can measure the total volume of biomass in a
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floc. Accordingly, our equations characterize the continuous distribution of biomass volume

and not a discrete distribution of the number of bacteria in an individual floc. Since bacteria

add to the extracellular carbohydrate structures in a continuous manner, a discrete approach,

while attractive because of the simpler analysis and numerical schemes, is thus not

appropriate here.

We define

In volumes between x1 and x2, the total number of flocs B0 (zeroth moment of b) is

and the total flocculated bacterial biomass B1 (first moment of b) is

for [x1, x2] ⊂ [x, x̄], where x and x̄ are the minimum and maximum aggregate volume sizes,

respectively. While in principle, there is no upper limit for floc volume, in practice, the finite

nutrient supply and the duration of the experiment allow us to assume that x̄ is finite. We

also assume that the extracellular structures must be actively maintained and thus the

minimal size x is the volume of one bacteria.

To obtain a governing equation for b, we will employ a conservation of mass derivation. 2

As depicted in Figure 2, we consider three phenomena by which a floc could enter or exit a

window of volumes x to x + Δx, bacterial growth, aggregation, and fragmentation. The

mathematical model is thus

(3)

(4)

(5)

2In the engineering literature, this is frequently referred to as a “population balance” model. We refer the interested reader to [20, 21,
22]
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(6)

where the subscripts describe the effect upon the floc. Since there is a finite nutrient supply,

our initial efforts use a logistic growth term, with growth rate γG and carrying capacity κG,

similar to the limiting growth function for an avascular tumor

The function Ain is the rate with which flocs of size in [x, x + Δx] are created

while Aout is the rate a floc of size in [x, x + Δx] joins with another floc, to form a volume

greater than x + Δx

The function KA is the aggregation kernel, describing the rate with which flocs of volume x

and y combine to form a floc of volume x + y.

The function Fin is the rate with which fragmentation of a floc results in at least one

daughter floc being of size in [x, x + Δx]

while Fout is the rate a floc of size [x, x + Δx] fragments

(7)

Analogously, we define KF (x) to be the fragmentation kernel, which calculates the rate with

which a floc fragments. We also define Γ(x; y) as the function describing the distribution of

daughter flocs for the fragmentation of a parent floc of size y. Note that, given a parent floc

of size y, Γ is just a probability density function of x (hence it can be integrated out of (7)).

If we divide (4)–(6) by Δx and denote A = Ain − Aout and F = Fin − Fout, then in the limit as

Δx → 0, we have the following nonlinear transport equation

(8)
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as our “mean-field” model to describe flocculating biomass dynamics.

We assume that after placing the bacterial colony into the flask, it fragments into aggregates

of volumes between x and x̄ and that growth or fragmentation beyond either limit is not

possible. With these boundary conditions, our full model is

where b0 ∈ ([x, x̄], ℝ+) is the density function 5 minutes after the biofilm colony is placed

in the swirling flask. We wait 5 minutes to allow the original colony to break apart, so that

our initial condition doe not consist of a single massive floc. The boundary condition

G(x)b(t, x) = 0 enforces the restriction that there is no biomass in the flask smaller than x that

can grow bigger. In Section 5, we will focus our attention on choosing a reasonable form for

KA and KF, while in Section 6 we will describe our strategy for estimating b0 from

observable data.

3 Analysis

Our overall goal is to study the Klebsiella pneumoniae flocculation dynamics in suspension

and we have proposed a general model (8) to mathematically characterize the behavior. To

continue, however, it is crucial to verify that we have created a viable model and thus we

now investigate the basic well-posedness properties of our equation.

We define the solution space H = L2([x, x̄], ℝ+), the space of square integrable functions

mapping a closed, bounded subset of the positive reals, i.e., [x, x̄] ⊂ ℝ+, into ℝ+, where x

and x̄ are the upper and lower limits of floc volume, respectively. We consider the abstract

evolution equation formulation for equation (8)

and b(t, ·) ∈ H for t ≥ 0. The operator : dom  ⊂ H → H is defined as

with dom  = {φ ∈ H: Gφ ∈ H1(x, x̄), limx→x̄(Gφ)(x) = 0}. The operators  and  are

similarly defined as mappings H ↦ H, wherein (b) = A(·, b) and (b) = F(·, b),

respectively. We make the following assumptions
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The biological interpretation of the last restriction on KF is that individual bacteria will not

fragment.

Theorem 1

There exists a unique classical (strong) solution to equation (8).

PROOF—We know from [6] that , as defined above, is an infinitesimal generator for a

C0-semigroup T(t) where ||T(t)|| ≤ exp(ωt), ω > 0. The continuous differentiability of  with

respect to b is proven in [2]. The continuous differentiability of  is straightforward, since

 is linear in b. The right side of (8) is, thus, locally Lipschitz in b and therefore by

Theorems 1.2 and 1.6 in Chapter 6 of [14], there exists a unique classical (strong) solution to

equation (8).

4 Numerical Implementation

We chose to employ an already existing Galerkin scheme to simulate a solution to our

system (8). Since the proof for the convergence of this scheme are presented in Section 4 of

[2], we briefly describe the approach here, highlighting the notable differences. Following

the development in [2], we assume that G is continuously differentiable on [x, x̄] and define

our basis elements as

for positive integer N and  a partition of [x, x̄] with largest mesh size Δx and Δxj = xj

− xj−1. The functions form an orthogonal basis for

and accordingly, we define the projections πN: H → HN
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which is an orthogonal projection of H onto HN. By defining the approximating generators

: HN → HN of the infinitesimal generator by

for h ∈ HN, our approximating formulation of (8) is thus the following system of N ODE’s

Regarding the actual implementation, the application of  to our basis elements yields

and the matrix representation with respect to our basis is banded, with nonzero elements on

two diagonals

The details of the application of πN to the other terms on the right side are slightly more

complicated near x and x̄ and thus we let Δx1 = ΔxN = x (finer resolution did not noticeably

improve our results). The application of πN to (bN) is therefore

and to (bN) is
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5 Kernel Modeling

As mentioned before, the analysis of constant, linear, and multiplicative aggregation and

fragmentation kernels is well understood, and closed form solutions are available. There is a

global existence result for kernels (aggregation and fragmentation) with compact support as

well as one for kernels satisfying

for constant k. Unfortunately, the mathematical analysis of (2) with more physically realistic

kernels has proven challenging. The majority of the notable mathematical results, including

a maximum principle, are summarized in [8]. In this section, we describe some common

kernel forms and discuss our modeling choices.

5.1 Aggregation

The question of kernel shape in aggregation processes has been a topic of considerable

research over the past hundred years. In the early 1900’s, Smoluchowski [25] proposed

to describe perikinetic aggregation of spherical particles undergoing Brownian diffusion,

where κ is Boltzmann’s constant, T is the absolute temperature, and μ is the dynamic fluid

viscosity. Several other kernels have been proposed to describe a wide variety of

phenomena, including flow within a laminar shear field (orthokinetic aggregation) [26]

(9)

with shear rate γ. For particles smaller than the Kolmogorov microscale, the rate of

aggregation has been modeled as

(10)
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with rate of energy dissipation per unit mass ε and kinematic viscosity ν [19]. Under a

gravitational force, particles of differing masses in a pressure field will fall with different

rates. Collision kernels modeling this differential settling have also been proposed in aerosol

aggregation for particles with radii less than 50 microns

(11)

with the contact efficiency Eg(x, y) and the constant C dependent upon the ambient density,

viscosity, and gravitational acceleration. We refer the interested reader to Chapter 4 of

Drake’s review [7] for kernels used in a wide variety of applications.

As described in Section 2.1, the experimental setup in our laboratory consists of a small

volume of bacteria and media in an Erlenmeyer flask, agitated on a orbital shaker at up to to

200 rpms, suggesting that (10) is most appropriate. There are, however, some issues to be

resolved.

Recent work in evaluating petroleum dispersant efficacy compared the turbulent energy

dissipation in a swirling flask to that of a baffled one [10]. While the experimental setup is

not identical, 3 the reported mean dissipation rate of 4.43 × 10−4m2s−3 (lower and upper

bounds of 6.5 × 10−6m2s−3 and 2.0 × 10−3m2s−3, respectively) still provides a better estimate

of ε than a first order approximation of Δu3/ℓ, for shear rate Δu and characteristic length

scale ℓ.

It is known that in aggregation phenomena, flocs develop as irregular, fractal objects [23]

and thus the efficiency with which two colliding flocs join is also challenging to model. For

our purposes, therefore, we will be employing the turbulent mixing kernel

(12)

with ε = 4.43 × 10−4 m2s−3 and ν = 2 × 10−7 m2s−1 estimated from our experimental setup

and contact efficiency γA to be fit by comparison with data. To aid in identifying γA, future

experiments are planned to test the tensile strength of the flocs, similar to those done using a

cantilevered glass micropipette in [16].

5.2 Fragmentation

Due to the complex stochastic nature of shear force-induced fragmentation, understanding

the mathematics of floc breakup has proven even more challenging than that of aggregation

[23]. We assume that shear forces are the primary mechanism driving floc fragmentation

and accordingly assume that the breakage rate of a floc of volume x is proportional to its

diameter (accounting for the fact that a single bacteria does not fragment)

3The flask contained 150mL of liquid and was agitated at 150rpms in a 1.9cm orbit.
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The larger flocs thus break apart with a higher rate than smaller flocs. The post-

fragmentation particle distribution has also been studied in a wide variety of regimes (see [9]

for a summary). In Figure 1, the bacteria in a floc appear to be on the interior, and thus it

seems unlikely that the floc will erode with a single bacteria shedding off of a floc. In the

absence of other information, given a floc of size x, we will assume a uniform post-

fragmentation distribution, centered around x/2, with width x/3

There is some evidence that for shear rates in our experimental regime, this fragmentation

distribution is a reasonable approximation [9]. Effectively, this restricts our model to binary

fragmentation (as opposed to trinary or quaternary).

6 Numerical Experiments

A primary goal of this work is to develop a methodology for making conclusions regarding

to fate of bacterial aggregates growing in suspension and experiencing shear forces. While

we were able to fit the solution to our model to observational data, preliminary results

suggested that these parameter fits were highly sensitive. We therefore, investigated the

convergence of our numerical scheme and fit simulated data with varying levels of noise and

increased volumetric and temporal resolution. Table 1 summarizes the parameters common

to all simulations, unless otherwise specified below.

For our model equation (8), there are no closed form solutions. Thus, to provide evidence

for the convergence results from Section 4, we arbitrarily created a couple of solutions

and derived forcing functions (using Maple) for the right side which would generate these

solutions. Figure 3 depicts the convergence results for b1 as the volume mesh size is

reduced. The results for b2 were similar and thus not presented here.

To identify the initial condition b0, we need to carefully incorporate the experimental

information. The particle sizer records the number of flocs having volumes in a priori

defined intervals. Let M1 be the number of windows defined by , where the

yj’s correspond to the boundaries of the data windows. To reflect a window of volumes the

sizer can accurately measure, we will consider measurements between y0 = 5 and yM1 = 400

femtoliters. Let nj(t) denote the number of aggregates at time t having volumes in [yj−1, yj].
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The shape of the initial biofilm growing on the agar is approximated by an oblate

hemisphere with diameter 1.25mm and height 0.25mm. For the same diameter and height, a

right circular cone would have a volume of 1.47 × 108 fL and a cylinder would have a

volume of 4.42 × 108 fL. We therefore assume an initial biomass of B1 = 3 × 108 fL.

Following initial fragmentation of the inoculum, we also assume that there are no flocs

bigger than 400 femtoliters.

Much work has been done to identify self-similar solutions of our equations, and we initially

tried to employ a single exponential decay for the initial condition. The fit, however, left

much to be desired, and thus in the absence of higher resolution measurements, we assumed

a bi-exponential for the shape of the initial density

(13)

Since we know the initial biomass B1, we can identify C1

(14)

To identify the other three parameters, we minimized

over γ1, C2, and γ2, where b0 is defined in (13) and C1 is defined in (14). We employed the

sequential quadratic programming method with inequality constraints and BFGS Hessian

update in Matlab’s fmincon, supplying it with the analytically computed gradient. Depicted

in Figure 4 are the initial particle sizer measurements (nj(0)) and the corresponding number

of aggregates computed from an initial density of b0(x) = 3.868 × 109e−1.5618x + 7.474 ×

10−4e−0.00676x.

We chose 2 femtoliters as a lower bound x in our simulations, which is the smallest size for

a viable bacteria without its capsule. The estimate for this value was obtained from the

bacteria length and diameter measured in a length-calibrate electron microscopy of

individual bacteria. The upper bound x̄ of the domain was chosen as 1000 femtoliters, which

is twice as large as the largest observed flocs (in the 240 minutes of the experiment).

We assume the following independent identically distributed log-normal error distribution

with mean zero and variance σ2 at time t

(15)
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For the inverse problem of parameter identification, we then naturally consider a nonlinear

least squares formulation and minimize the square of the differences of the log transforms.

That is, we minimize the cost functional

(16)

for q = (γG, γA, γF) (normalized by 10−2, 10−13, and 10−5, respectively, when computed by

the optimizer) and M2 observations at times tk, k = 1, …, M2. There is an open question of

well-posedness of the analytical and approximate inverse problems, similar to that addressed

in [1]. For the purposes of this paper, however, we will assume the problem is well-posed.

All simulations were performed in Matlab version 7.0.4.352 on an AMD Opteron 2GHz

workstation running SUSE Linux 10.0. We employed the same SQP-optimization algorithm

as above (though without analytical gradients) to minimize (16). The optimization algorithm

identified γG = 6.8 × 10−4 min−1, γA = 2.7 × 10−15 fL−2, and γF = 6.6 × 10−5 μm−1fL−1min−1

as the best fit parameters. Depicted in Figure 5 are the initial and final distributions of

particle sizes from the best fit simulation and the data. The fit is reasonable and suggests that

our model captures the macroscopic behavior. The media itself has a high carbon to nitrogen

ratio, promoting capsule formation and not proliferation. It is, therefore, reassuring that the

identified growth rate γG = 6.84 × 10−4 min−1 is relatively small, since the maximum

doubling time for K. pneumoniae is about 35 minutes (corresponding to a growth rate of

0.03 min−1).

We note, however, that the vertical axis in Figure 5 is on a log scale, and the order of

magnitude error suggests that our model does not fully capture some aspects of the

experiment. One possibility would be that bacteria are switching to a non-flocculating

phenotype. The lack of this feature in our model could explain why the errors are relatively

high for the smaller volume windows.

To explore the sensitivity of these results, we generated a baseline numerical solution using

the best fit parameters and “observed” the solution in a variety of ways. For a range of noise

variances σ2, we sampled particle sizer observations of the baseline solution (100 samples

per noise level). The sizer resolution and temporal frequency of the samplings were the same

as the original experiments. Depicted in Figure 6 is the mean of the relative error in

parameters fits to each of the 100 noisy observations as each noise level. As expected, it is

easier to recover the parameters when there is less noise in the data.

For a noise level of σ2 = 1.5, we explored the effect of increasing the resolution of the

particle sizer. In the laboratory experiment, the windows were chosen based upon valid

ranges specified by the sizer manufacturer. We increased the measured resolution in a

uniform manner and observed the distributions at the same timepoints as in the original

experiment. Depicted in Figure 7 is the variance of the relative error in parameter fits to each

of 100 noisy observations at each resolution level.
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In our lab, it is impractical to generate observations faster than approximately once every 22

minutes, and we were interested if this fact was inhibiting our analyses. For a noise level of

σ2 = 1.5, we also explored increasing the temporal resolution of the particle sizer. In the

numerical experiment, the particle sizer windows are the same as in the experiment.

Depicted in Figure 8 is the mean of the relative error in parameter fits to each of 100 noisy

observations at each observation frequency.

7 Conclusions and Discussion

An important infection pathway for both hospital- and community-acquired infections

related to indwelling catheters and devices is the shedding of bacterial aggregates off of

biofilms. In the current work, we have focused on behavior in suspension that might be

anticipated downstream from an intravascular catheter shedding material or that might occur

spontaneously among bacteria that find themselves in the bloodstream by direct invasion

from the lung or kidney.

We have developed a mathematical model for the evolution of the distribution of bacterial

aggregates in suspension. We have ensured the mathematical validity of the model by

proving existence and uniqueness of a solution to this model. We have also implemented a

uniformly (in time) convergent numerical scheme. We fit the solution to a data set, nothing

that the identified parameters were biologically reasonable. We also explored the sensitivity

of our fitted parameters to different measurement strategies. Though the use of a particle

sizer for data acquisition is attractive because of cost and simplicity, the numerical

experiments in Section 6 revealed the weakness of this approach. Future plans, therefore,

include implementing a confocal microscopy to allow compartmentalization of floc volume

into cellular and extracellular matrix components, and exploiting, via dynamic light

scattering, the autocorrelation of the Einstein-Stokes phenomena to estimate b(t, x) directly

with finer temporal and spatial resolution.

In vivo it is possible that non-flocculating bacteria are destroyed by the immune system,

while large aggregates septically embolize in capillaries. We are thus interested in the fate of

flocs smaller than 10μm in diameter, but large enough to survive an attack by a neutrophil or

by humoral defenses such as complement. With these selective pressures on the flocculating

population, it is highly unlikely that one floc will encounter another in the circulatory

system. Future experiments should, therefore, be designed to mitigate the aggregation

mechanism, since it is an artifact of the swirling flask.

There are many aspects of both the bacteria and the in vivo system which we have not

chosen to model. It is known, for example, that AI2-mediated signaling is related to biofilm

development. Current technological limitations make is challenging to quantify the

contribution of interbacterial signaling. In future modeling work, however, we plan to

explore the incorporation of this idea.
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Figure 1.
Light micrographs of aggregating Klebsiella pneumoniae in fetal calf serum. Small dark

rods are bacteria and stained aggregates are flocs.
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Figure 2.
Processes affecting bacterial clusters with volumes between x and x + Δx.
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Figure 3.
Improved accuracy of the numerical scheme as the stepsize is decreased. These results are

for the accuracy of the numerical approximation where the x and t domains are both [0, 1].
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Figure 4.
Initial data distribution and initial particle size distribution based on fitted bi-exponential

density.
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Figure 5.
Plot of fitted distributions at the initial time (bottom curves) and the final time (top curves)

for parameters γG = 6.8 × 10−4min−1, γA = 2.7 × 10−15fL−2, and γF = 6.6 ×

10−5μm−1fL−1min−1. All other parameters are as described in Table 1.
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Figure 6.
Mean relative error in the parameter estimates for increasing log-normal errors in the

simulated data observations.
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Figure 7.
Mean relative error for the parameter estimates for a range of volume resolutions. The

parameters were fit 100 times for each volume resolution level where each fit was to the

actual solution with artificial log-normal (μ = 0, σ2 = 1.5) measurement errors.
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Figure 8.
Mean relative error for the parameter estimates for a range of temporal observation

frequencies. As before, the parameters were fit 100 times for each volume resolution level

where each fit was to the actual solution with artificial log-normal (μ = 0, σ2 = 1.5)

measurement errors.
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Table 1

Parameters common to all simulations, unless otherwise specified.

Symbol Value Description Units

x 2 lower boundary of viable floc size fL

x̄ 1000 upper boundary of viable floc size. fL

N 50 number of basis elements in simulation -

M1 5 number of observed volume windows -

M2 7 number of observed timepoints -

ε 4.43 × 10−4 turbulent energy dissipation m2s−3

ν 1.99 × 10−6 kinematic viscosity m2s−1

κG 1000 maximal floc size fL

γG 6.8 × 10−4 growth min−1

γA 2.7 × 10−15 aggregation fL−2

γF 6.6e − 5 fragmentation μm−1fL−1min−1
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