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Abstract

Systems biology has primarily focused on studying genomics, transcriptomics, and proteomics and

their dynamic interactions. These, however, represent only the potential for a biological outcome

since the ultimate phenotype at the level of the eventually produced metabolites is not taken into

consideration. The emerging field of metabolomics provides complementary guidance toward an

integrated approach to this problem: It allows global profiling of the metabolites of a cell, tissue,

or host and presents information on the actual end points of a response. A wide range of data

collection methods are currently used and allow the extraction of global or tissue-specific

metabolic profiles. The great amount and complexity of data that are collected require multivariate

analysis techniques, but the increasing amount of work in this field has made easy-to-use analysis

programs readily available. Metabolomics has already shown great potential in drug toxicity

studies, disease modeling, and diagnostics and may be integrated with genomic and proteomic

data in the future to provide in-depth understanding of systems, pathways, and their functionally

dynamic interactions. In this review we discuss the current state of the art of metabolomics, its

applications, and future potential.
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I. METABOLOMICS–METABONOMICS: BASIC PRINCIPLES AND

CONCEPTS

Understanding the mechanisms by which biological systems respond to physiological and

pathophysiological stimuli is of great scientific and clinical interest. Systems biology studies

interactions between interconnected networks that involve changes at the genomic,
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proteomic, and metabolomic levels under homeostatic conditions and in response to stimuli.

Biomedical scientists are ultimately interested in determining links between experimental

conditions and clinically relevant phenotypic changes, motivating experimental techniques

that can quantify high-level responses to complement transcriptome-level information that

can be difficult to link to biological function. Evaluating changes at a higher organizational

level allows for a primarily data-driven approach because of the ability to quickly collect

and analyze data on the state of an organism. It provides novel information on phenotypic

characteristics and therefore the potential to investigate the output of complex,

interconnected networks. This review focuses on monitoring changes at the metabolite level

by discussing techniques, potential applications, opportunities, and challenges in studying

the dynamics of a host response.

The terms metabolomics and metabonomics both refer to studying metabolites of a

biosample. Metabolomics, or metabolic phenotyping, is the study of the quantitative

description of all low-molecular-weight (<1 kDa) components in a biological sample. 1,2

These may consist of metabolites solely under endogenous control and may also involve

those originating from exogenous sources (microbiome,3 diet,4 drugs,5,6 etc.).

Metabonomics is the study of the interactions of these metabolites over time in a complex

system.1,2 Although metabonomics is in fact a subcategory of metabolomics, many use these

terms interchangeably.

Metabolomics is a unique top-down approach for studying complex systems.7 Rather than

attempting to decipher the interactions among transcriptional and translational level data,

metabolomics studies the end result. Each type of cell and tissue has a characteristic

metabolic composition that is uniquely altered in response to physiological and

pathophysiological stimuli. These phenotypes reflect the collective effects of epigenetic

factors, heterogeneous distributions of molecules, and differential reaction rates. The

metabolome of a sample, that is, the concentrations of these metabolites at a given time, can

be thought of as a metabolic “fingerprint” representative of the state of the organism at that

time.8 Metabolomics involves the quantification of these metabolites, often in a temporal

manner, to track the developing response to a stimulus.

Genomics and proteomics are the -omics techniques most widely used to study the effects of

stimuli on integrated systems and individual pathways. Genomics and transcriptomics are

used to study the genome and gene expression levels of an organism, respectively. The data

obtained by these methods is at the lowest level of organization, shedding light on the origin

of specific phenotypes. Proteomics quantifies the abundance of proteins, elucidating the next

level up from gene expression data. The integration of these fields provides a unified picture

of cellular-level responses from transcription through translation.

While genomic studies have linked genetic factors to disease predisposition9,10 and

proteomic studies have identified proteins that enable monitoring disease progression,11

both proteomics and genomics are limited in their potential applications.2 Genetics alone

cannot fully explain differences in disease predisposition.1 Only about 5–10% of the total

human genetic variance occurs across populations and ethnic groups, although disease

distributions and drug toxicity may vary greatly. Broadly speaking, genomics does not
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account for differences in phenotype.2 Although a gene may be expressed and a protein may

be synthesized, this protein may not be in the proper form to induce a metabolic change and

therefore induce a phenotypic effect. Xenobiotics and other environmental factors may also

cause gene expression to provoke differential phenotypic responses.5 In addition to the lack

of information on phenotypic changes using genomics and proteomics, true end point results

are difficult to unravel from this low-level data alone. Gene expression and protein

concentrations vary within each organ and tissue, and organs and tissues interact through

complex signaling pathways.3 Variables must be measured frequently to achieve accurate

results based on gene-protein coupling, which is time-consuming and expensive.12

Infrequent genomic and proteomic measurements, even taken together, may lead to incorrect

conclusions about the relationship between a specific gene and its complementary protein

because of the time lag between protein synthesis and gene transcription.3

The microbiome, an assemblage of more than 100 trillion microorganisms belonging to

300–500 different species that live inside of every human being13 also represents an obstacle

in the context of using genomics or proteomics to study responses.1,3,7,14 Each individual’s

microbiome is as unique as a fingerprint, 14 with each person sharing as little as 1% of the

same species.15 The species contained in a single human changes with diet, drugs, age,

disease, and medical or surgical intervention.14 The gut microbiome interacts with the

endogenous systems in the human body and has metabolic, trophic, and protective

functions.13,16 It influences levels of cytochrome P450, an important group of enzymes that

metabolize both endogenous and exogenous materials,3 and plays a large role in obesity in

humans14,17–19 and rodents, 19,20 sepsis,21,22 inflammatory bowel disease, irritable bowel

syndrome, and colon cancer.13 The gut microbiome contributes to heterogeneous responses

to drugs and interindividual variability in drug toxicities and may contribute to the

carcinogenicity of certain compounds by metabolizing substances that otherwise would not

be broken down.23 Metabolites that originate from the gut microbiome merge with

endogenous metabolites, directly altering the metabolome without necessarily influencing

gene and protein expression.

Metabolomics complements more traditional -omics techniques by allowing the

investigation of properties that cannot be directly assessed through proteomics and

genomics. Epigenetics, or the study of heritable changes in DNA expression that are not

explained by the underlying DNA sequence,24 can be studied at the end point level.

Heritable epigenetic factors predispose to some types of cancer, autoimmune diseases,

mental disorders, and diabetes, all of which can be passed on through generations.25,26

Although not used in epigenomics to date, metabolomics has the potential to play an

important role in the emerging field of epigenetic therapy,25 which has already shown

promising results in curing some types of leukemia and anemia.27

Integration of metabolomics with genomics and proteomics is also possible and can help

make the relationship between the levels of information produced by each technique more

clear. Using data from one level to predict function at another is not always accurate. By

obtaining data at multiple levels through the application of multiple -omics techniques, the

interactions between the genome, proteome, and metabolome can be further studied and
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understood. Changes in gene expression levels and protein concentrations can then be linked

to physiological changes and interpreted in the biological context.

In addition to offering a different level of information about biological processes that cannot

be obtained through other -omics approaches, metabolomics simplifies certain aspects of the

analysis. It presents several benefits over lower-level approaches that uncover only the

potential for a phenotypic result.28 Because it provides data on the phenotypic response, it

eliminates the need for any assumptions to be made about the origin of a phenotype,

although the individual contributions can still be drawn out.7 Xenobiotic and protein kinetics

do not have to be predicted, although kinetic data can be reverse engineered from

metabolomic data. Low experimental variability results in the generated data being generally

reproducible and transferable29—2 factors that are of extreme importance when studying

biological systems. Experimental30 and analytical30,31 variations of commonly used

methods are several orders of magnitudes smaller than biological variation and therefore do

not undermine the applications of metabolomics in modeling and classification.

It is often difficult or even impossible to pursue certain studies on humans because of ethical

reasons, even though applications in humans are typically the ultimate goals of biomedical

researchers. Although metabolic rates may differ among mammalian species, metabolic

pathways are highly conserved.29 This enables the information collected about common

laboratory animals, such as rats and mice, to provide useful information that can be

relatively easily related to humans. Metabolomics also will allow for a greater understanding

of the role and mode of action of the gut microbiome18,19 since the samples of the

microbiome are easily attainable. There is great potential for determining cause-and-effect

relationships between microbiome and metabolite profiles considering the critical role that

the microbiome plays in the development of many pathologies mentioned earlier. Urine and

blood—the 2 biofluids most commonly used in metabolomics studies—are relatively cheap

and easy to collect, enabling time series measurements to facilitate the study of temporal

changes.7 Metabolomics may therefore aid in directing the use and timing of more complex

procedures to maximize efficiency and minimize the collection of insignificant data.29

Because certain combinations and ratios of metabolites are specific to individual conditions,

metabolic profiles of urine can also indicate the region of an organ and mode of toxicity of a

response through a biomarker-like approach. By observing changes in metabolic phenotype

after exposure to a toxin that causes a specific response, biomarkers indicative of the toxicity

can be uncovered and used as an indicator in future studies.29

II. DATA SOURCES, COLLECTION, AND ANALYTICAL METHODS

A. Sample Sources

Because each type of cell and tissue has its own unique metabolic fingerprint, one must

choose what cell or tissue type to study or measure biofluids that represent the combined

output of interactions between multiple organs.32 Urine and plasma are the most commonly

used biofluids in metabolomics33 because they are reasonably easy to obtain7,34 and are

collected relatively noninvasively,2,35 which enables high-frequency sampling even in

critically ill patients. They are always at dynamic equilibrium with the body, rapidly

reflecting metabolic changes within the host.12 It must be kept in mind, however, that while
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plasma represents a snapshot of the state of an organism, urine provides a time-averaged

representation.30 Less common samples for study include cerebrospinal fluid, saliva, and

semen,33 as well as various tissue samples.36 Tissue samples, unlike biofluids, can be used

to quantify organ-specific metabolic fingerprints,32 making it possible to study the origins of

metabolites.

B. Data Generation

1. Nuclear Magnetic Resonance Spectroscopy—Nuclear magnetic resonance

(NMR) spectroscopy is the most common technique used to generate metabolomic data

from biofluids.37 While it is less sensitive than some other techniques described later, it

offers several advantages. NMR spectroscopy is high-throughput, taking only a few minutes

per sample,38 has relatively low per-sample cost, and requires no a priori knowledge34,39 of

what metabolites to study7 since it outputs a superposition of the spectra of all detectable

metabolites. NMR spectroscopy also includes a large range of metabolites per measurement

and provides information on the chemical structure, chemical environment, dynamic

molecular motions, and molecular interactions between metabolites.38 NMR spectroscopy is

nondestructive, so it can be applied to samples before they are subjected to further

destructive analysis.7 Downsides to NMR spectroscopy include low spectral resolution and

sensitivity, although both of these can be mitigated by applying stronger magnetic fields.39

NMR spectroscopy can be performed on any spin-active nuclei,38 although 1H and 13C are

most commonly used. 1H allows high sensitivity since it is ubiquitous in organic materials

and has a natural abundance of 99.98%, but it has a smaller chemical shift range than 13C,

resulting in greater peak overlaps that make the data more difficult to analyze.38 13C

benefits from a chemical shift range that is about 20 times greater than that of 1H40 and

therefore provides much greater spectral resolution. Although 13C has a much lower

sensitivity because of its low natural abundance, it has been demonstrated that using a

cryogenic probe can drastically improve such results.40 By using a combination of these

different NMR spectroscopy methods, sensitivity and resolution can be optimized to

increase the accuracy and integrity of generated metabolomic data.

2. Mass Spectrometry—Mass spectrometry (MS)–coupled techniques,38 including liquid

chromatography MS (LC-MS),41 gas chromatography MS (GC-MS),42 and high-

performance liquid chromatography (HPLC-MS),20,41 have proven to be very useful in

generating metabolomic data. Metabolites are typically separated from the biological fluid7

before MS, which causes these methods to be slower and more complex than NMR

spectroscopy. However, they provide a much higher sensitivity38 and therefore enable the

quantitative measurement of a broader spectrum of metabolites.

Compared to other MS-coupled techniques, GC-MS has the highest resolving power, and 2-

dimensional GC-MS can further increase resolution.42 This method is selective, however,

and can be used to analyze only certain substances. Several classes of compounds (sugars,

nucleosides, amino acids, etc.) cannot be analyzed directly because of their polarity and lack

of volatility.38 Although LC-MS does not have the high resolving power as GC-MS,38 it is

popular because of the minimal sample preparation41 and small sample size.43 High-
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performance liquid chromatography also has shown great advancements in recent years,

especially in combination with 1H NMR spectroscopy, since the 2 techniques identify

complimentary sets of metabolites.20 Other MS methods also have been used to measure

metabolomic data from biofluids, including microbore LC-MS, ultra performance LC, and

capillary electrophoresis–MS (CE-MS) for metabonomics38, although to date these

techniques have not been widely applied.

3. Magic-Angle Spinning NMR Spectroscopy—While the above techniques are used

predominantly on biofluids, magic-angle spinning (MAS)–NMR spectroscopy has been

extensively used for metabolic phenotyping of tissue samples. MAS-NMR enables the

acquisition of tissue-specific metabolic phenotypes38 in contrast to the integrated

metabotypes obtained by biofluid samples. It can be applied after the biofluid analysis to

confirm the origin of certain biomarkers,29 which can play an important role in drug toxicity

studies. MAS-NMR spectroscopy can also provide valuable and unique information on the

compartmentalization of metabolites in vivo,38 as some pathologies are characterized by a

redistribution of metabolites rather than a change in their concentration. A modified MAS

1H NMR method that makes use of changes in the apparent diffusion coefficient of

metabolites is capable of detecting changes in the cellular environment.44,45 Like other

NMR spectroscopy techniques, it requires little sample preparation, is not destructive, and

requires only small amount of samples (~20 mg).46

III. DATA ANALYSIS METHODS AND SOFTWARE

One of the main challenges in metabolomics is that the large volume of data produced

requires the use of complex multivariate analysis techniques. Although none of the currently

available data collection methods can capture the quantitative and qualitative information on

all metabolites in a given sample,41,43 all methods still generate and process immense

amounts of information. Data collected by 1H NMR spectroscopy contains information on

up to 100 metabolites in urine and up to 30 in plasma and tissue extracts,47 whereas data

collected by MS-coupled techniques can contain information on more than 1000 metabolites

per sample.42 Extracting meaningful data for biological interpretation from this vast amount

of data requires the use of robust computational techniques, which are being developed for

and widely used in other application areas of systems biology.

A. Computational Data Analysis

1. Metabolite Identification—NMR spectroscopy creates data in the form of spectra

consisting of multiple peaks that are the superposition of the spectra of all detected

metabolites. Each of these peaks, or combinations of peaks, corresponds to a unique

compound. Compound-specific peak combinations can be determined by conducting NMR

spectroscopy on the metabolite of interest in water alone or simply referencing the vast

amounts of published data in the literature.48–51 Statistical total correlation spectroscopy can

be used to aid in identifying molecules in NMR spectra by recognizing highly correlated

peak intensities, leading to detection of all of the peaks of a certain molecule. This

information on highly positively and negatively correlated peaks can also support the

identification of molecules in the same pathway.52
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Although peaks that correspond to a specific molecule are always in nearly the same

position on the spectra, pH differences cause these peaks to shift slightly,34,38 despite the

use of buffers.34 This can be addressed by integrating the spectra over small chemical shift

windows (~0.04 ppm)53,54 or by using peak alignment algorithms55 before analysis to

reduce the probability of incorrectly characterizing metabolites. However, sometimes the

use of these methods can be disadvantageous. Using raw data, and therefore the information

on magnitude and direction of chemical shifts, could improve the accuracy of models and

add to the understanding of physicochemical variations in metabonomic data sets.52,56

Preprocessing of MS datasets consists of similar steps. Peak alignment and deconvolution

techniques often are used to adjust for variations due to temperature, column variability,41

instrument parameters, and other sources.42

2. Unsupervised Methods: Principal Component Analysis—In most metabonomic

studies, including the majority of disease models and drug toxicity studies, the metabolites

of interest are not known a priori. Thus, unsupervised methods—those in which no prior

knowledge of class membership is assumed—are a common first step in data analysis. The

most common unsupervised method used in metabonomics is principal component analysis

(PCA), an algorithm that reduces a high-dimensional data set to a small number of

dimensions that explain as much of the variation in the data as possible. Each principal

component is a linear combination of the original variables. The principal components (PCs)

are orthogonal (uncorrelated), and the first few PCs contain the largest portion of the

variation, with each subsequent PC containing correspondingly smaller amounts.12

Once the PCs have been found, each sample can be plotted on a PCA map to give a visual

representation of the results. Because the PCs encompass most of the variability in the data,

the data points typically appear clustered in the PCA map, with each cluster being

representative of a different metabolic fingerprint. These metabolic fingerprints then are

used to find potential biomarkers—metabolites that vary most between classes. To better

visualize the interacting effects of macroscopic factors, influence vectors can be calculated

and placed in the multidimensional PCA map. Influence vectors display the general

magnitude and direction of the effects that a certain influence factor (e.g., age, sex) has on

the principal components so that each point can be understood as a result of the complex

interaction between these factors. For example, an influence vector representing the effect of

age may point in the direction of general metabolic trends during increasing age, so that a

point that lies further along the vector exhibits a profile indicative of older age. A challenge

exists, however, in calculating the simplest vectors without compromising accuracy, as the

relationships are often highly nonlinear.5 This would provide an understanding of what

factors cause the differences between fingerprints and how certain metabolites are affected.

To determine what metabolites differ most between classes, a loadings plot can be used to

help interpret the PCA map. A loadings plot is unique for each PC, where the loadings

(eigenvector components) are plotted against each of the original variables. These plots give

a graphical representation of what spectral regions (metabolites) contribute most to each PC,

thus showing the metabolites that differ most between each class.46

While PCA is very good at detecting clusters and outliers, its results often are used only in

directing future analysis since its accuracy can be improved by using supervised methods.8
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Although PCs describe the largest portion of the variation, this variation may not closely

correspond to the separation between classes57; therefore, PCA usually is used only as a first

step to aid in the development of a model using better-classifying supervised methods.

3. Supervised Methods—Once potential biomarkers have been found, supervised

methods can be used to maximize the separation between classes and identify the most

robust biomarkers.58 Because supervised methods use information on class membership,

they are much better at developing classifiers and predicting where a sample falls with

respect to those already classified. 28 Commonly used supervised methods include partial

least squares with discriminate analysis (PLS-DA),58 orthogonal PLS-DA,30 and orthogonal

partial least squares.14,52

PLS-DA uses both the descriptor matrix (e.g., class) and the results (e.g., spectra) to define a

surface in n-dimensional space that separates data into classes.7 However, in the presence of

noise, PLS-DA models can be less accurate and difficult to interpret. Because noise is so

common in biological data sets, especially those involving humans, methods are needed to

filter out noisy and unrelated variation that has no correlation with class identification.59

Orthogonal signal correction (OSC) is commonly used to improve the integrity of data sets

and has been shown to increase model accuracy in many cases,47,58–60 OSC reduces noise

by filtering out the variation in the descriptor matrix X that is orthogonal to the variation in

the results matrix Y.57 In a similar way, orthogonal PLS-DA is an extension of PLS-DA that

includes an integrated OSC filter57 and models the variation common to X and Y separate

from the uncorrelated variation. This not only leads to models that are easier to interpret

(since the noise is modeled separately) but also provides the opportunity to examine the

resultant noise.52

4. Geometric Trajectory Analysis—While PCA and partial least squares are the initial

methods typically used to analyze metabolomic data, numerous other techniques add to the

extracted information and aid in the interpretation of results. The “trajectory” of a response,

where each point represents a sequential time point plotted on a PCA map, can be used to

study responses where temporal variability is of interest, such as recovery from a toxic insult

or progression of a disease.35,53,61 It is important to study the time-related changes of a

response because metabolite concentrations often fluctuate, and taking measurements at only

one time point may give misleading results.28 Response trajectories aid in the visual

interpretation of the magnitude of a response because a trajectory that deviates further from

homeostasis will plot farther away from the control time point and a slower recovery will be

visible as a higher number of points deviating from the control measurement.35 This allows

for the observation of which toxins generate more severe reactions and which toxins produce

similar responses, although the latter is often more difficult to interpret. Different drugs may

cause the same response in 2 different tissues but at different rates, and changes in sample

size can cause 2 similar trajectories to be unrecognized because of the differences in

magnitude. Keun et al.53 developed a method to make the recognition of similar responses

more accurate, despite magnitude and time scale changes. Their technique, scaled-to-

maximum, aligned, and reduced trajectories (SMART) analysis, determines if 2 responses

are homothetic, that is, they have shapes that are related by expansion or geometric
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contraction and/or translation. Two homothetic responses share many characteristics, such

as correlations in the relative size and direction of metabolic changes. This method corrects

for starting position, scaling differences, and differing number of samples to determine

whether 2 responses are the same, and it has proven successful in analyzing interlaboratory

reproducibility of results and the differences in the responses of 2 different rodents to the

same toxin.53

5. Entropy-Based Modeling—Entropy-based models have been proposed to study the

uncertainty of a group of responses as well as the uncertainty of a particular response given

specific starting concentrations of metabolites, a value termed configurational entropy by

Veselkov et al.62 Initial concentrations are important to consider because very slight changes

can lead to very different responses that seem “disordered.” Veselkov et al. also coined the

terms R-potential, the deviation of a response from homeostasis as measured by the

metabolic cost to re-achieve homeostasis, and relative entropy, the collective divergence of

metabolic phenotypes of a group of subjects from homeostasis. This type of modeling has

been successfully used to study the effects of toxins and stressors in terms of the extent and

uncertainties of the responses.62

6. Genetic Algorithms—Genetic algorithms improve the accuracy of models and aid in

finding the most robust biomarkers.63,64 The large data sets that are collected in

metabolomics experiments makes them effective tools in the interpretation of metabolomic

data. Genetic algorithms mimic biological evolution (through concepts such as mutation,

inheritance, breeding, natural selection, etc.) as the working principle by evolving solutions

to a problem over many runs of the algorithm, ranking variables’ importance by their

frequency of selection in “good” runs. Furthermore, genetic algorithms that simultaneously

select variables and samples for optimal use in a classifier have been shown to improve the

accuracy of models more than those that select variables sequentially.63 By using one or

many of these methods, significant inferences can be made about the metabolic changes in

an organism in response to a wide variety of stimuli.

B. Analysis Software

Several software programs have been developed to aid in data analysis, from data

preprocessing to biomarker identification. Many of these software packages are freely

available, which is important to gain popularity in the young, growing field of

metabolomics. rNMR is a graphically based, open-source software designed to make the

identification and quantification of metabolites from 1- and 2-dimensional NMR

spectroscopy easier. Rather than the commonly used peak lists, which give only limited

information, it uses regions of interest that contain all underlying NMR data within the range

of regions of interest. MeltDB65 and MetaboAnalyst50 are 2 web-based metabolomic data

processing tools that accept a variety of inputs (NMR spectra, MS peak lists, etc.) and

support data preprocessing, metabolite identification, and analysis methods such as PCA and

PLS-DA. These integrative programs encourage the growth of the field by making the data

analysis process simpler and more efficient without requiring the installation of complex

software packages. Metabolite Set Enrichment Analysis (MSEA),66 also available as a web-

based tool, aids in the detection of biologically important patterns in groups of metabolite
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concentrations that may be overlooked by other methods. It contains a library of about 1000

metabolite sets that vary according to certain metabolic pathways, disease states, biofluids,

and tissue locations that are compared to the uploaded metabolomic data. MassTrix67 is a

web-based tool that accepts high-precision mass spectra and presents the identified

metabolites on Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway maps. It is

unique in that it focuses on the pathway rather than the individual metabolites so that the

course of a response can be analyzed and understood in a more mechanistic context. Tools

that contain a peak alignment function68 and peak alignment algorithms also have been

proposed to align NMR and MS signals that vary from sample to sample because of pH,

temperature, and various other differences. Such algorithms attempt to preserve shape while

moving only the x-axis location of peaks to reduce misinterpretations during analysis.55

Many more programs have been developed to aid in the interpretation and analysis of

metabolomic data,69,70 all of which are freely accessible.

IV. CURRENT STATUS

A. Reference Information

1. The Consortium for Metabonomic Toxicology—Crucial for development of

metabolomics as a field is the widespread availability of reference information, which has

been developed in both large- and small-scale experiments. The Consortium for

Metabonomic Toxicology, a collaboration between 5 major pharmaceutical companies and

the Imperial College, London, assessed the use of metabonomics to study xenobiotic toxicity

for approximately 150 model toxins in rats and mice. A predictive expert system that

determined the organ of toxicity based on spectra then was developed, providing excellent

results.71

2. Normal Human Metabotype—The compilation of normal human urine metabotypes

through the use of 1H NMR spectroscopy has provided thorough reference information for

those conducting studies of the effects of toxins. Statistical parameters, including mean and

standard deviations for inter- and intraindividual variability for the major urinary

metabolites, were calculated to provide baseline information and confidence intervals for

future studies. This has led to the quantification of changes in metabotype based on

differences in sex and diet, giving information on intra- and inter-individual variability

under normal (no toxin) conditions. 72 Cross-study comparisons also have been made more

efficient through the development of reference tables of metabolites that vary in response to

certain toxins by integrating the information across myriad studies.73

3. Effects of Storage on Metabolites—Metabolomic variation that occurs because of

storage techniques is important to take into account to accurately categorize metabolic

fingerprints into classes. The effects of long-term storage,34 storage temperature,30 and

borate74 (a commonly used antibacterial preservative) have been investigated so that studies

can be planned accordingly. Although borate affects the 1H-NMR peaks of citrate, mannitol,

α-hydroxyisobutyric acid, and methylmalonic acid, it is a highly effective antimicrobial

agent, and its effects on the 1H NMR spectra are negligible when compared to
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interindividual biochemical variation.74 Urine can be stored for up to 9 months (at −40 °C)

with no significant changes to the 1H-NMR spectra.34

4. Sources of Biological Variation—Metabolites that vary with time of day,20,59,75,76

age,77,78 sex,79 strain,20,79 and diet4 are important to quantify so that these known sources of

variability are not misinterpreted in metabolomic experiments. Metabolite concentrations

vary most greatly in urine,33 and therefore more studies have measured this variation than

any other biofluid. The effect of age on metabolic fingerprints has been investigated in both

adults77 and children,78 which is important to consider in studies where subjects are sampled

from a wide age range. One study4 researched the urinary metabolites that vary with blood

pressure across a wide range of geographic populations. Similar studies lead to more robust

biomarkers by identifying metabolites that consistently change in response to specific

conditions, regardless of other parameters.4 While this variation can be a nuisance, it is often

systematic and therefore can be accounted for in metabolomic data analysis.30 It also has

been shown that OSC can be used to filter data and remove diurnal metabolic variation,59

and this method can most likely be used to filter out other unwanted sources of variation as

well, although this should be studied further. Finally, easy-to-follow protocols on how to

collect and analyze biofluid73 and tissue samples80 for metabolomic analysis have been

published.

B. Pharmacometabonomics

1. Predisposition for Toxicity—One of the most promising uses of metabolomics is to

noninvasively detect the site and mode of action of toxicity of xenobiotics as well as to use

predose metabolomes as predictors of individual toxicity. To date, this subfield, known as

pharmacometabonomics, has shown significant potential in its ability to contribute to

personalized healthcare. If individuals can be quickly and easily tested for adverse drug

reactions before a drug is administered, more drugs will be able to reach the market and help

those who currently cannot benefit from them because of their toxicity in some patients.

Winnike et al.6 has recently distinguished those who would endure drug-induced liver injury

from prolonged use of acetaminophen from those who would not before liver injury

occurred. Although 1H-NMR spectroscopy of predose urine samples were not able to

characterize these 2 groups, noninvasive early detection of drug-induced liver injury shows

the great potential of metabolomics in personalizing healthcare. A similar study was

conducted using rats and found a weak but statistically significant difference in the predose

urinary metabolome of responders and nonresponders.81

2. Drug Toxicity Studies—Numerous studies have been performed to discover

biomarkers indicative of the organ and mode of action of drug toxicity, especially for the

liver and kidney. These studies will aid in drug discovery and testing by quickly and

noninvasively diagnosing toxicities that are not currently easy to detect. The similarities and

differences of the NMR spectra of rodents treated with various hepatotoxins have been

characterized,35 proving that NMR spectroscopy is capable of distinguishing the mechanism

of xenobiotic action. Distinction between the changes in urinary metabotypes in response to

tubule-directed and renal medullary nephrotoxins has been accomplished by studying the

similarities and differences between different nephrotoxins.61,82,83 Models that predict the
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organ of toxicity also have been developed and show robust results.63,84 From the

perspective of clinical applications, pharmacometabonomics is still in the early stages of

accurately and noninvasively testing patients for adverse drug reactions before treatment,

but the above studies illustrate the significant potential of the field.

C. Disease Models

1. Critical Illness—Metabolomics has been widely used in creating models of disease

either to detect the presence or severity of an illness or to follow its progression. Many

studies of metabolic staging during critical illness85 have used the metabolomes of patients

with systemic inflammatory response syndrome (SIRS), multiple organ dysfunction

syndrome (MODS), and sepsis. The use of metabolomics has allowed critically ill patients to

be investigated from a wide variety of angles, from serum changes to microbiome alterations

to variations in cerebrospinal fluid. Patients with SIRS can be distinguished from those with

MODS through a combined pattern recognition and NMR spectroscopy approach, leading to

the earlier detection of MODS.58 Evidence for the theory of the “gut origin of sepsis” has

been uncovered by studies that focus on changes in the microbiome during SIRS and

sepsis.21,22 Although causation has not been proved, that critical illness is associated with

gut bacterial overgrowth and that this leads to a predisposition to sepsis have been

confirmed.21 The gut microbiomes of patients with SIRS have fewer obligate anaerobic

bacteria and a higher pH, again revealing that a disruption in the delicate balance of

commensal gut flora is associated with SIRS but providing no clear information on the

underlying mechanism that causes this alteration. Sepsis is also complicated by septic

encephalopathy, or septic brain dysfunction, in up to 70% of all patients; this has been

studied through the use of metabolomics on cerebrospinal fluid.11 Such information was not

previously easily accessible through other approaches, but it can now be studied thoroughly.

2. Cancer—Metabolomics also has been used to investigate several types of cancer.

Metabolomic data can be combined with the abundant genomic, proteomic, and other “-

omics” data already available to refine our understanding. To date, metabolomics has been

used primarily as a potential diagnostic tool in colorectal cancer,86 prostate cancer,36 and

breast cancer.87–89 Although urine and serum have not yet been successful in correctly

classifying benign and cancerous prostates, sarcosine levels in tissue samples have shown

excellent results, characterizing benign prostates, clinically localized prostate cancer, and

metastatic disease.36 Metabolic profiling of colon mucosae also has shown potential in the

diagnosis of colorectal cancer, which currently is not usually diagnosed until late in disease

progression.86 Noninvasive detection of cancer is a realistic goal for metabolomic studies;

numerous urinary nucleosides that vary with certain types of cancer (e.g., leukemia,

lymphoma, nasopharyngeal cancer, breast cancer, colorectal cancer, bronchogenic

carcinoma) have been measured through electromigration.90 However, more thorough

databases must be created to include the variations of these nucleosides with age, sex, diet,

and other potential confounders before a conclusive test can be performed. Metabolomics

also has shown potential in directing the treatment of cancer patients. Weight gain after

breast cancer chemotherapy results in a decreased overall survival rate. However, various

metabolite levels in urine before chemotherapy correlate with weight gain (or absence of

weight gain); hence such information could target patients for intervention.89
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3. Obesity, High Blood Pressure, and Coronary Heart Disease—Several other

diseases have been studied through the use of metabolomics. Obese Zucker rats have been

used as a model of type 2 diabetes, an illness that continues to escalate in Western countries.

The 2 strains of rat, normal and Zucker, were determined based on metabotype alone,

shedding light on the metabolites that vary with type 2 diabetes. Correlations between blood

pressure and metabotypes have been investigated,4 particularly within the context of using

metabolomics to diagnose the presence and severity of coronary heart disease.60 The

relationship between metabolic phenotypes and obesity has revealed that obesity may often

be caused by variations in the gut microflora,17 in most cases by the relative abundance of

Bacteroidetes and Firmicutes.19

D. Integration of “–Omics” Fields

Genes code for proteins, which are synthesized when the gene is expressed, and these

proteins are processed into metabolites while also being used as the machinery that process

and control cellular reactions. The integration of knowledge about all 3 steps through the use

of genomics, proteomics, and metabolomics can greatly expand our knowledge of biological

systems and the time scales of events between these 3 levels. In the absence of

metabolomics, it would be difficult to validate the estimated metabolic outcomes of the

lower levels. Now, metabolomic results can be combined with those of other fields to draw

complete pictures of biological pathways and their interactions. It is extremely important

that changes in gene expression be understood with relation to metabolic activity at the level

of the whole organism to fully understand their biological functions.

1. Cytokines and Metabolites—Metabolic phenotypes have been studied in relation to

cytokine levels during parasitic infections of rats to decipher connections between the

immune system and metabolic pathways. While correlations have been observed between

various cytokines and metabolites, further studies must be conducted to determine whether

such correlations are a result of mechanistic links or simply covariation.91 Pro- and anti-

inflammatory cytokines have been found to increase in the blood of human patients with

severe SIRS, although no significant correlations were found between any cytokine and

anaerobic bacteria count or organic acid concentration in feces.22 While other studies have

found some possible correlations between cytokines and the gut microflora,92,93 further

studies are needed to clarify these relationships.

2. Integrative Omics-Metabolic Analysis—Integrative omics-metabolic analysis—a

constraint-based method—recently has been introduced as a way to integrate proteomic and

metabonomic data with genome-scale metabolic models. Integrative omics-metabolic

analysis is constructed as a quadratic programming problem that aims to find steady-state

flux equations that follow mass-balance and enzyme directionality constraints and is

consistent with fluxes estimated by Michaelis-Menten kinetics. It has been able to

successfully predict changes in fluxes both in the central metabolism of Escherichia coli

under various genetic perturbations and in a simulated kinetic model of red blood cells. This

method presents a unique and informative approach to the integration of the -omics fields, as

metabolic fluxes shed a great deal of light on the state of cells and tissues.94
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3. Trace on KEGG Pathways—Gene expression data has been linked with metabolomic

data and traced using the KEGG to give a more visual representation of the pathways

affected by orotic acid–induced fatty liver. Using PLS, correlations were found between

gene expression and metabolomic data.95 Studying phenotypic and metabolomic changes

during genomic analysis is essential for genomic changes to be understood in a biological

context rather than an artificial experimental time scale. Although to date few studies have

combined the -omics fields because of the lack of metabolic information relative to other

fields, the breadth of metabolomic data is quickly growing as fast and economical methods

such as NMR spectroscopy become more widespread.

V. OUTLOOK AND OPEN QUESTIONS

A. Biological Variation

While metabolomics has great potential for more thoroughly understanding pathways in a

systems biology sense, it has certain downsides, just as any other field of study. Biological

variability in metabolomic data31 can make finding widely applicable metabolites indicative

of disease difficult to find. Metabolites also vary with circadian rhythms, diet, age, sex, and

weight,75–77, 96–98 which can be difficult to control, especially in human studies, where there

are many ethical and economic limitations. Most of these factors, however, have been

shown to vary systematically, so their effects can potentially be avoided through the use of

automated filters to reduce unwanted variations. 59 If samples are to be assessed over time,

the unwanted variability, such as metabolite degradation, can be reduced with the use of a

quality control sample consisting of aliquots from each sample. This quality control set can

then be randomly analyzed throughout the analytical run to see general trends in the

metabolic composition over time.99

B. Insensitivity of Most Common Data Generation Methods

1H-NMR spectroscopy, the most commonly used method because of its economical and

high-throughput properties, cannot measure metabolites at low concentrations. Many of the

measured high-concentration metabolites are found in multiple pathways and therefore are

not unique to a specific response. Although these high-concentration metabolites can vary

greatly during a perturbation, their ubiquity decreases their ability to be used as robust

biomarkers47 because tracing exactly which pathways are disturbed can be a difficult task.

However, the high-throughput nature of metabolomics has the ability to compensate for this;

many different metabolites can be measured and the subtle changes can potentially be

clarified.

C. Unknown Metabolites

Unknown metabolites are sometimes observed,99 but this can potentially be avoided when

sufficient metabolomic studies have been performed and large databases are created. Until

that point, LC-MS, either alone100 or in conjunction101 with other techniques, can be used to

identify unknown metabolites.
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D. Complex Data

Finally, metabolomics creates a vast amount of complex data that requires multivariate

analysis techniques. However, this is becoming less of a problem as the field grows and

high-quality, practical preprocessing and analysis software becomes available.

E. Personalized Healthcare

Metabolomics has only recently begun to significantly affect biological and pharmacological

research, but it is quickly becoming a commonly used technique offering a critical

advantage in disease diagnostics.102 It will have a large role in pharmacology in the future

and will help make personalized healthcare possible. It can be used in drug development1: in

silico models can be created to predict the effects of drugs on metabolic phenotypes before

in vivo testing. Metabolic prescreening could also be used to predict the outcome of an

intervention, thus improving the success of treatment plans. Prescreening could also allow

more drugs that currently are not sold because of the adverse effects they have in some

patients to reach the market and help those who could greatly benefit from their availability.

Finally, metabolomics has shed light on the constituents of the gut microbiota, including the

bacterial species associated with certain diseases, and therefore will influence the

development of drugs that account for these factors.14

F. Integration of ‘-omics’

The integration of genomics, proteomics, and metabolomics will be the greatest contribution

of metabolomics because it will improve our fundamental biological knowledge and impact

many areas of biomedical research.39 Rather than assuming or attempting to calculate

unknown information, the outcomes at each level can be explicitly measured and integrated

to more accurately model disease progression and drug intervention. Changes in gene

expression and protein concentrations can be understood at a cellular and whole-organism

level, which will help to decipher their biological functions. Interactions between the

environment and the organism can also be studied at the phenotypic level and may be linked

to genomic changes or inform epigenetic therapy.27

G. Diagnostics

Because metabolomics produces large amounts of data through relatively cheap and

noninvasive techniques, it has great potential to improve disease diagnostics. 60 For this

ideal to be fully reached, more sensitive data collection techniques must be used to allow for

the identification of more robust biomarkers. To date, NMR spectroscopy is most commonly

used, and most metabolites measured by this technique are not specific to certain conditions.

Changes in the metabolome with age, diet, exercise, and sex must be more extensively

studied and transcribed so that they may be accounted for before biomarker identification.

Metabolomics applied to clinically accessible urine or blood samples ultimately can be used

for diagnosis in a wide range of scenarios, including even critically ill patients. In that

direction recent advances in microfluidics offer a promising technological development

toward a broader application of metabolomics profiling.103
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VI. CONCLUDING REMARKS

The field of metabolomics has come a long way in the past decade, but it still has a long way

to go. Its potential applications in the evolution of healthcare and biomedical sciences are

immense. Metabolic phenotyping has and will aid in drug discovery, disease diagnosis,

personalization of healthcare, and noninvasive diagnosis of the mode of drug toxicity.

Because of its current lack of sensitivity, metabolomics may not have an immediate role in

all areas, although this will change as researchers continue to develop methods to improve

sensitivity. The field will most likely gain popularity as more published information

facilitates the comparative analysis of metabolomic data. Finally, when combined with

genomics and proteomics, metabolomics represents a critical puzzle piece in the

understanding of biological systems—and with that understanding, much more will possible.
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