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Abstract

The development of spectral computed tomography (CT) using binned photon-counting detectors

has garnered great interest in recent years and has enabled selective imaging of K-edge materials.

A practical challenge in CT image reconstruction of K-edge materials is the mitigation of image

artifacts that arise from reduced-view and/or noisy decomposed sinogram data. In this Note, we

describe and investigate sparsity-regularized penalized weighted least squares-based image

reconstruction algorithms for reconstructing K-edge images from few-view decomposed K-edge

sinogram data. To exploit the inherent sparseness of typical K-edge images, we investigate use of

a total variation (TV) penalty and a weighted sum of a TV penalty and an ℓ1-norm with a wavelet

sparsifying transform. Computer-simulation and experimental phantom studies are conducted to

quantitatively demonstrate the effectiveness of the proposed reconstruction algorithms.
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1. Introduction

The development of spectral X-ray computed tomography (CT) using binned photon-

counting detectors has received great attention in recent years and is prompting a paradigm

shift in X-ray CT imaging. These advancements are likely to benefit numerous preclinical

and clinical imaging applications. For example, K-edge CT has been investigated as a

modality to image contrast agents such as iodine (Abudurexiti, Kameda, Sato, Abderyim,

Enomoto, Watanabe, Hitomi, Tanaka, Mori, Kawai, Takahashi, Sato, Ogawa & Onagawa

2010, He, Wei, Cong & Wang 2012), gadolinium (Feuerlein, Roessl, Proksa, Martens,

Klass, Jeltsch, Rasche, Brambs, Hoffmann & Schlomka 2008), bismuth (Pan, Roessl,

Schlomka, Shelton, Senpan, Scott, Allen, Zhang, Hu, Gaffney, Choi, Rasche, Wickline,

Proksa & Lanza 2010), and gold (Cormode, Roessl, Thran, Skajaa, Gordon, Schlomka,

Fuster, Fisher, Mulder, Proksa & Fayad 2010). Ytterbium was recently discussed as a

contrast agent for conventional CT (Liu, Ai, Liu, Yuan, He & Lu 2012) in general and K-
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edge imaging (Pan, Schirra, Senpan, Schmieder, Stacy, Roessl, Thran, Wickline, Proska &

Lanza 2012).

The task of image reconstruction in spectral CT can be implemented in a two-stage

processing scheme. In the first step, estimates of material-decomposed sinograms are

obtained from the measured energy-resolved photon counts. In the second step, material

images are reconstructed from knowledge of the material sinogram estimates. Statistically-

principled reconstruction algorithms have been proposed (Sauer & Bouman 1993, Fessler,

Elbakri, Sukovic & Clinthorne 2002, Thibault, Sauer, Bouman & Hsieh 2007, Schirra,

Roessl, Koehler, Brendel, Thran & Proksa 2011) that seek to minimize a penalized weighted

least squares (PWLS) cost function. The weighting matrix employed in the data-fidelity

term, which corresponds to the inverse covariance of the computed material sinograms, can

be estimated in different ways (Fessler 1996, Roessl & Herrmann 2009a, Zhang, Thibault,

Bouman, Sauer & Hsieh 2012).

While it holds great potential for important preclinical and clinical applications, selective

imaging of K-edge materials in spectral CT faces challenges that currently limit its

applicability. Implementations of K-edge CT employ photon counting detectors to detect the

energies of individual photons. To avoid pulse-pileup in the detector, photon fluxes must be

limited, which can result in long data-acquisition times. One way to mitigate long data-

acquisition times is to develop image reconstruction algorithms that can produce useful

images from few-view and/or noisy decomposed sinogram data. While K-edge images are

often sparse, the ability of sparsity-based regularization strategies coupled with knowledge

of the object-specific noise properties of the decomposed K-edge sinogram data to improve

reconstructed image quality in K-edge CT remains largely unexplored.

In this Note, sparsity-regularized PWLS methods are investigated for reconstructing K-edge

images from few-view decomposed sinogram data. Object-specific information regarding

the decomposed K-edge sinogram variance is employed to weight the data fidelity term in

the PWLS cost function. Two choices for the penalty term in the cost function are

investigated: a total variation (TV) penalty and a weighted sum of a TV penalty and an ℓ1-

norm with a wavelet sparsifying transform (Lustig, Donoho & Pauly 2007, Dutta, Ahn, Li,

Cherry & Leahy 2012). While TV and other sparsity promoting regularization strategies

have been extensively applied for reconstruction problems that explictly or implicitly

minimize a penalized least squares (PLS) cost function (Sidky & Pan 2008, Bian,

Siewerdsen, Han, Sidky, Prince, Pelizzari & Pan 2010, Gao, Yu, Osher & Wang 2011, Xu,

Yang, Tan & Anastasio 2012, Xu, Sidky, Pan, Stampanoni, Modregger & Anastasio 2012,

Yang, Wang & Guo 2013), relatively few works have investigated the impact of exploiting

such regularization strategies in combination with a statistically weighted data fidelity term

in a PWLS framework (Ramani & Fessler 2012, Ma 2011). Computer-simulation and

experimental phantom studies are conducted to visually and quantitatively demonstrate the

efficacy of the proposed reconstruction methods.

Xu et al. Page 2

Phys Med Biol. Author manuscript; available in PMC 2015 May 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



2. Materials and Methods

2.1. PWLS Image Reconstruction with TV and ℓ1-norm Regularization

In spectral CT imaging equipped with photon-counting detectors, a set of Nb energy

resolved photon count measurements are obtained and employed to estimate a collection of

Nm ≤ Nb sinograms that represent pre-determined material properties. This process is

referred to as material sinogram decomposition. Let An denote a lexicographically ordered

vector representing the decomposed sinogram corresponding to the n-the material, and let A
= [A1; …; ANm] denote the vector formed by stacking all of the An. Maximum likelihood

(ML) estimates of A, denoted by Â, can be obtained assuming a Poisson noise model

(Roessl & Proksa 2007). Given the ML-estimator, the diagonal elements of the Fisher

information matrix can be numerically computed (Cowan 1998, Roessl & Herrmann 2009b)

and used to estimate the variance of the decomposed sinograms.

We consider the problem of reconstructing an estimate of the n-th object material

individually, which is assumed to be a K-edge material. Let fn denote a N-dimensional

approximation of the sought-after K-edge material distribution. In this work, conventional

pixels were utilized to form fn. The M-dimensional vector Ân representing the decomposed

K-edge sonogram estimate is related to fn by the approximate imaging model Ân = Hfn,

where the M × N matrix H represents a discrete 2D fan-beam forward projector in the two-

dimensional studies described below.

The following PWLS estimators of fn were considered:

(1)

and

(2)

where λtv and λl1 are positive regularization parameters, ||·||tv and ||·||1 denote the TV and ℓ1-

norms, and Φ is a wavelet transform operator. In this work, Φ was chosen as the Daubechies

discrete wavelet transform involving three wavelet scales. The M×M diagonal weight matrix

Wn contains elements that are specified by the inverse of the variance of each sinogram

element that, in this work, are estimated by use of the Fisher information matrix as described

previously (Roessl & Herrmann 2009a). Since the second order statistics of the decomposed

sinograms can be accurately described by Gaussian statistics (Schirra, Roessl, Koehler,

Brendel, Thran, Pan, Anastasio & Proksa 2013), the above PWLS estimators can be

considered as accurate approximations of penalized maximum likelihood estimators. Our

method for solving Eq. (1) will be referred to as the PWLS-TV method. In the case when the

sinogram variance information is ignored and Wn is redefined as the M×M identity matrix,

the implementation of Eq. (1) will be referred to as the PLS-TV method. Similarly, our

method for solving Eq. (2) will be referred to as the PWLS-TV-ℓ1 method. The PWLS-TV

and PLS-TV methods were implemented by use of the fast iterative shrinkage- thresholding

algorithm (FISTA) (Beck & Teboulle 2009). The PWLS-TV-ℓ1 method was implemented
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by use of the combination of the splitting algorithm proposed by Combettes (Combettes &

Pesquet 2008) and the FISTA. A similar strategy has also been proposed by two previous

works (Ma, Yin, Zhang & Chakraborty 2008, Huang, Zhang & Metaxas 2011) for MR

image reconstruction, in which the variance Wn was an identify matrix.

It should be noted that combining the TV and ℓ1-norm penalties (Carter 2013) in Eq. (2) is

motivated by the fact that use of a PLS-TV estimator can result in patch-like image

distortions if the chosen value of the regularization parameter λtv is too large. Combining the

penalties yields the opportunity to exploit the effective denoising properties of TV

regularization while mitigating these distortions. A previous work (Gao et al. 2011)

employed a similar approach for a ‘fully-spectral’ CT problem in which the sinogram

decomposition step was avoided. That work differs from our study in several ways. For

example, it was based on a linearized imaging model that assumed monochromatic

illumination, it did not investigate the incorporation of the second-order statistical properties

of the measurement data into the reconstruction method, and did not exploit object sparsity

in the wavelet transform domain.

2.2. Computer-Simulation Studies

Computer-simulation studies were conducted to investigate: (1) the advantages of the

PWLS-TV method over the PLS-TV method for reduced-view K-edge image

reconstruction; and (2) the advantages of the PWLS-TV-ℓ1 method over the PWLS-TV

method for the same task. A numerical phantom was created from a representative

conventional CT image dataset that had been originally acquired with a clinical system

(Brilliance iCT, Philips Healthcare, Eindhoven, The Netherlands). The clinical CT image

was segmented into ‘soft tissue’ and ‘bone’ components. In addition, objects containing

ytterbium were inserted as shown in Fig. 1 (left). A zoomed-in region containing the

ytterbium inserts is provided in Fig. 1 (right). The cylinder indicated by the arrow in the

upper-left region was intended to mimic a fibrin-targeted contrast agent in a coronary artery.

All material attenuation coefficients were determined from the Photon Cross Sections

Database (Berger, Hubbell, Seltzer, Chang, Coursey, Sukumar, Zucker & Olsen 1998).

From this numerical phantom, material-specific line integral data and variance estimates

(Roessl & Herrmann 2009a) were computed for the material basis set ‘photo-electric

absorption’, ‘Compton effect’, and ‘ytterbium’, assuming a 2D equal-angle fan- beam

geometry. The source-to-rotation center distance was 0.57 m and the distance between the

source and the center of the detector was 1.04 m. The fan-angle was approximately 52

degrees and the number of detector units was 1024. An x-ray source spectrum and detector

response function for a binned photon-counting detector was employed as described in a

previous study (Schlomka, Roessl, Dorscheid, Dill, Martens, Istel, Bumer, Herrmann,

Steadman, Zeitler, Livne & Proksa 2008). The energy thresholds of the six energy bins were

set at 25, 46, 61, 64, 76 and 91 keV, respectively. These energy bins were determined in our

previous sensitivity of photon-counting based K-edge imaging study(Roessl, Brendel, Engel,

Schlomka, Thran & Proksa 2011). The following scan protocol parameters were assumed:

anode voltage 130 kVp, anode current 400mA, 1200 views/turn, 0.27s/turn.
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By use of the estimated variance matrix and treating the noiseless ytterbium sinogram

estimate as the mean of a Gaussian random vector, an ensemble of M = 500 noisy K-edge

sinograms was computed. The PWLS-TV and PLS-TV methods were employed to

reconstruct 500 images from the ensemble of noisy K-edge sinograms. Images were

reconstructed by use of the two reconstruction methods from reduced-view K-edge

sinograms that contained 400, 200, and 100 equally spaced tomographic view angles over

360°. Different choices of the regularization parameter values were considered as described

below. In all cases, the reconstructed images were of dimension 1024 × 1024 with a pixel

size 0.5 × 0.5 mm2. The stopping criteria adopted in all studies was chosen such that a

converged result was ensured. Specifically, iterations were terminated when changes in the

objective function occurred only in the sixth decimal place.

2.2.1. Assessment of spatial resolution and noise properties—From the

ensemble of noisy images reconstructed by use of the PLS-TV and PWLS-TV methods, the

average empirical image variance within the region-of-interest (ROI) indicated by the white

circle in the right image shown in Fig. 1 was computed. To quantify the anisotropic spatial

resolution, a cumulative Gaussian function (La Rivière 2005) was fit to two orthogonal

profiles in the mean image, respectively, whose locations are indicated in the right panel of

Fig. 1. The full-width at half-maximum (FWHM) value of the fitted error function served as

a summary measure of spatial resolution at that location in image space, with smaller values

indicating higher spatial resolution.

The values of the regularization parameters employed in this study were chosen in a way

that the appearance of reconstructed images varied subjectively from under-smoothed (high-

level noise) to relatively over-smoothed (low-noise level). The effects of incorporating

sinogram variance information can be easily identified in such a comparision, since the PLS-

TV and PWLS-TV method have the same TV regularization term and the only difference

between the two methods is whether the sinogram variances was incorporated or not. The

PWLS-TV-ℓ1 method was not examined in this component of our study due to the added

complication of having to systematically vary two regularization parameters.

2.2.2. Quantitative measurement of different reconstruction algorithms
performance—The structural similarity index measurement (SSIM) (Wang, Bovik,

Sheikh & Simoncelli 2004) was adopted to quantify the similarity between images

reconstructed by use of the different methods and the original phantom object. The absolute

value of each element in an image of SSIM values is between 0 and 1, in which the value of

1 is obtained only if the pixel values of the images being compared are identical. A mean

SSIM (MSSIM) value was computed by averaging the SSIM image.

2.3. Phantom Experiment with Targeted Ytterbium-Nanoparticles—To

corroborate the computer-simulation results, experimental data were acquired with a spectral

CT small animal scanner prototype (Philips Research, Hamburg, Germany). Figure 2(a)

shows a representative slice of a conventional CT reconstruction of the phantom (PMMA,

diameter 50 mm). It was composed of calcium chloride probes (3 mol/l), mimicking the rib

cage, and in its center four X-ray lucent tubes, two tubes filled with suspension of ytterbium

nanocolloids (Pan et al. 2012) diluted with water in the ratio 1:1 and 1:4, respectively, and
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two probes containing human fibrin-rich clots. One of the clots was targeted with YbNC

equipped with a fibrin-specific antibody designed to bind to ruptured plaque (Pan et al.

2010) while the other did not contain any YbNC. The following scan parameters were used:

anode voltage 130 kVp, anode current 50 mA, planar detector geometry, 1250 views/turn,

rotation time/turn 100 s, energy thresholds identical to the settings of the simulation. A ML

estimate of the decomposed K-edge sinogram corresponding to ‘ytterbium’ was computed

along with an estimate of the sinogram variance. The estimated K-edge sinogram and

sinogram variance are displayed in Fig. 2(b) and 2(c), respectively. Note that a high noise

level in the decomposed sinogram can be observed. Images were reconstructed by use of the

different reconstruction methods on a 256×256 matrix with a pixel size of 0.24×0.24 mm2.

3. Results

3.1. Computer-Simulation Studies

3.1.1. Spatial resolution and noise properties—The plots of image variance vs.

spatial resolution that were created by sweeping the regularization parameter and are

displayed in Fig. 3 for cases in which 400, 200, or 100 tomographic views were employed

for image reconstruction. In all cases, the PWLS-TV method (solid curves) shows a superior

tradeoff between variance and resolution compared to the PLS-TV method (dashed curves).

This confirms the expected finding that it is advantageous to employ knowledge of the

decomposed sinogram variance in the reconstruction method. This is found to be especially

important for mitigating deteroriation of the variance and resolution properties when

reduced-view tomographic data are employed, as demonstrated by the significantly

improved performance of the PWLS-TV over the PLS-TV method for the 100- and 200-

view cases.

3.1.2. Qualitatively assessments—To visually examine the effects of incorporating the

decomposed sinogram variance in the reconstruction method, examples of images

reconstructed by use of the PLS-TV and PWLS-TV methods for the 200-view case are

shown in Figure 4(a)–(d), (e)–(h). In the first and second rows, from left-to-right, the TV

regularization parameter λtv was increased from zero to some positive value. When no TV

penalty was added (λtv = 0), the impact of incorporating the sinogram variance can be

observed readily. In particular, the PWLS estimate in Fig. 4(e) contains structures whose

shapes are better preserved than those in the PLS estimate in Fig. 4(a). For the case when

TV regularization was employed, the PLS-TV estimates in Figs. 4(c) and (d) contained

lower noise levels but some of the small object structures were lost. On the other hand, the

structures in Fig. 4(h) reconstructed by the PWLS-TV method are perserved with better

appearance with less shape distortion, especially for small structures.

Note that the images in Figs. 4(g) and (h) reconstructed by use of the PWLS-TV method

contain a noise contribution that is comprised of isolated pixels having large values. This

noise can be effectively suppressed by use of the PWLS-TV-ℓ1 reconstruction method.

Figures 4(i)–(l) display the images reconstructed by use of the PWLS-TV-ℓ1 method, where

the value of λtv was fixed and the value of λl1 was increased from left to right. To more

clearly see the effects of including the ℓ1 regularization term, zoomed-in ROIs of Fig. 4(h)
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and Figs. 4(i)–(l). are shown in Fig. 5. The first column of images shows the ROIs from the

true phantom. The second column shows ROIs from the image in Fig. 4(h) that

reconstructed by use of the PWLS-TV method. The remaining columns show ROIs from the

images in Figs. 4(i)–(l) that reconstructed by use of the PWLS-TV-ℓ1 method. As the value

of λl1 is increased, the ROI-I images become more sharp and compact due to the ℓ1 sparsity

constraint. The ROI-2 and ROI-3 images also display the same tendency.

3.1.3. SSIM comparison between PWLS-TV and PWLS-TV-ℓ1—In order to

quantitatively measure the difference between reconstructed PWLS-TV and PWLS-TV-ℓ1
images, the SSIM images and MSSIM values corresponding to the images in Fig. 4 (e–l) are

displayed in Fig. 6. The MSSIMvalues corresponding to the PWLS-TV-ℓ1 method are

higher than those corresponding to the PWLS-TV method. Moreover, the backgrounds of

the SSIM images are much more uniform and have a majority of pixel values close to one;

this reflects the fact that the PWLS-TV-ℓ1 method was able to remove the isolated noisy

pixels that were produced by the PWLS-TV method These quantitative results are consistent

with the qualitative observations described above.

3.1.4. Different number of views results for FBP and proposed PWLS-TV-ℓ1—
The performance of the PWLS-TV-ℓ1 method was compared to that of the filtered

backprojection (FBP) algorithm. Images reconstructed by use of the FBP algorithm by use

of 100, 200, 400 and 1200 views (full-view) are shown in Fig. 7(a)–(d). Images

reconstructed by use of the PWLS-TV-ℓ1 method, corresponding to different regularization

parameters, from 100, 200 and 400 views are shown in Figs. 7(e)–(h), (i)–(l) and Figs.

7(m)–(p). As expected, the images reconstructed by use of the FBP algorithm contain

significantly elevanted noise levels. The structures in the 100-view FBP image are difficult

to identify due to the high noise levels in the image. Conversely, the performance of the

PWLS-TV-ℓ1 method degraded much more slowly than the FBP algorithm as the number of

tomographic views was reduced. Even in the few-view cases, the PWLS-TV-ℓ1 method

produced images that possess relatively clean backgrounds.

SSIM images and MSSIM values corresponding to the PWLS-TV-ℓ1 images in Fig. 7 are

displayed in Fig. 8. The SSIM images corresponding to the PWLS-TV-ℓ1 method possess a

bright background with a majority of pixel values close to 1, indicating high similarity to the

reference image, for all cases. The major difference between the SSIM images for three

reduced-view cases is that the intensity values become slightly larger as the view number

increases from 100 to 400. This reflects that reconstructed image bias is reduced as the

number of view angles utilized is increased. The MSSIM values for the images confirm

these findings.

3.2. Phantom Experiment with Targeted Ytterbium-Nanoparticles

Images reconstructed by use of the FBP algorithm from the few-view experimental data sets

are displayed in Fig. 9. As can be seen, it is difficult to visually identify the structures in the

image reconstructed from 125 views. Even in the images reconstructed from 625 and 1250

views, the noise level appears high. The images reconstructed by use of the PLS-TV,

PWLS-TV, and PWLS-TV-ℓ1 methods from 125 views and 625 views are displayed in Fig.
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10 and Fig. 11, respectively. The 125-view results (Fig. 10) indicate that the use of the

estimated variances increases conspicuity of the low-contrast ytterbium probe (Fig. 10(b)).

In addition, the positive impact of TV-regularization can be readily observed. A comparison

between Fig. 10(d–f) and (g–i) demonstrates that the additional ℓ1-norm regularization can

suppress spurious background noise and preserves structural accuracy. Similar conclusions

follow from the 625-view results (Fig. 11). Both the 125-view PWLS-TV-ℓ1 and 625-view

PWLS-TV-ℓ1 images possess a relatively clean background and reveal the third low-

contrast ytterbium probe.

4. Summary

We have proposed and investigated PWLS-TV and PWLS-TV-ℓl methods for reconstructing

distributions of K-edge materials from reduced-view data in spectral CT. It was

demonstrated that, by incorporating the variance information of the decomposed sinograms

in the reconstruction method, the PWLS-TV method possessed a noise-to-spatial-resolution

trade-off that was superior to a PLS-TV method that ignored the variance information. It

was also demonstrated that, by promoting object sparsity in a wavelet transfrom domain, the

PWLS-TV-ℓl method could improve the fidelity of small structures and remove isolated

noises from images reconstructed from reduced-view datasets. This can be particularly

useful for preclinical in-vivo applications of K-edge imaging, which are currently limited by

long scan-times. It is worthwhile to mention that in this study, statistical correlations

between decomposed sinograms were not exploited. However, this allows to reconstruct K-

edge images individualy, which minimizes the computational burden and yields short

computation times. The incorporation of the full covariance matrix in the reconstruction

process can potentially reduce noise levels further but presents computationally challenges

(Ramani & Fessler 2012) that are a topic of current investigation.
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Figure 1.
The numerical phantom employed in the computer-simulation studies is shown in the left

panel and is described in the text. The right panel displays a zoomed-in image of the

ytterbium inserts contained within the white box in the left panel.
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Figure 2.
Physical Phantom Experiment: (a) Conventional CT reconstruction of the physical phantom

using a standard filtered backprojection (FBP) algorithm. (b) Decomposed K-edge

(ytterbium) sinogram. (c) The estimated sinogram variance.
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Figure 3.
Computer-simulation studies: Ensemble variances as a function of spatial resolution

(FWHM) for different undersampling factors. The curves are parametrized by the

regularization parameter. FWHM values are evaluated in horizontal (black) and vertical

(gray) orientation at positions shown in Fig. 1. The PWLS-TV results (solid) show an

improved noise-resolution performance compared to PLS-TV (dashed).
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Figure 4.
Computer-simulation studies: Examples of reconstructed K-edge images ROIs for the 200-

view case corresponding to different regularization parameter values. All images are

cropped to size of 300 × 300 pixels and are displayed in the same grey-scale window.

Images reconstructed via PLS-TV (a–d), PWLS-TV (e-h) and PWLS-TV-ℓ1 (i–h).
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Figure 5.
Three zoomed-in ROIs of true phantom and corresponding reconstructed images from Fig.

4. Each column was obtained from the oringial phantom or one particular reconstructed

image, which is indicated by the name shown in first row. All images were displayed in the

same grey-scale window.
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Figure 6.
SSIM images and MSSIM values corresponding to the images in Fig.4 (e)–(h) reconstructed

by use of the PWLS-TV method are shown in subfigures (a)–(d), respectively. SSIM images

and MSSIM values corresponding to the images in Fig.4 (i)–(l) reconstructed by use of the

PWLS-TV-ℓ1 method are shown in subfigures (e)–(h), respectively. All images are

displayed in the same window [0 1].
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Figure 7.
Examples of reconstructed K-edge images via FBP algorithm (a–d) and PWLS-TV-ℓ1

algorithm by use of 100 views (e–h), 200 views (i–l) and 400 views (m–p). All images are

displayed in the same window.
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Figure 8.
SSIM images and MSSIM values corresponding to the images in Fig.7 (e)–(h) reconstructed

by use of the PWLS-TV-ℓ1 method with 100 views, are shown in subfigures (a)–(d); SSIM

images and MSSIM values corresponding to the images in Fig.7 (i)–(l) reconstructed by use

of the PWLS-TV-ℓ1 method with 200 views, are shown in subfigures (e)–(h); SSIM images

and MSSIM values corresponding to the images in Fig.7 (m)–(p) reconstructed by use of the

PWLS-TV-ℓ1 method with 400 views, are shown in subfigures (i)–(l). All images are

displayed in the same window [0 1].
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Figure 9.
Physical Phantom Experiment: Reconstructed images of the K-edge material by use of FBP

algorithm for 125, 625 and 1250 projection views, respectively. All images are displayed in

the same grey-scale window.
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Figure 10.
Physical Phantom Experiment: Reconstructed images of the K-edge material from 125

projection views. Image reconstructed by use of the PLS-TV method (a–c), PWLS-TV

method (d–f), and PWLS-TV-ℓ1 method (g–i). The arrow in subfigure (b) indicates the tube

containing the low-concentration, ytterbium dilution, which becomes more visible in the

images estimated by use of the PWLS methods. All images are displayed in the same grey-

scale window.
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Figure 11.
Physical Phantom Experiment: Reconstructed images of the K-edge material from 625

projection views. Image reconstructed by use of the PLS-TV method (a–c), PWLS-TV

method (d–f), and PWLS-TV-ℓ1 method (g–i). The arrow in subfigure (b) indicates the tube

containing the low-concentration, ytterbium dilution, which becomes more visible in the

images estimated by use of the PWLS methods. All images are displayed in the same grey-

scale window.
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