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Pleiotropic Mutations Are Subject to
Strong Stabilizing Selection
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ABSTRACT The assumption that pleiotropic mutations are more deleterious than mutations with more restricted phenotypic effects is
an important premise in models of evolution. However, empirical evidence supporting this assumption is limited. Here, we estimated
the strength of stabilizing selection on mutations affecting gene expression in male Drosophila serrata. We estimated the mutational
variance (VM) and the standing genetic variance (VG) from two well-matched panels of inbred lines: a panel of mutation accumulation
(MA) lines derived from a single inbred ancestral line and a panel of inbred lines derived from an outbred population. For 855 gene-
expression traits, we estimated the strength of stabilizing selection as s = VM/VG. Selection was observed to be relatively strong, with 17% of
traits having s. 0.02, a magnitude typically associated with life-history traits. Randomly assigning expression traits to five-trait sets, we used
factor analytic mixed modeling in the MA data set to identify covarying traits that shared pleiotropic mutations. By assigning traits to the
same trait sets in the outbred line data set, we then estimated s for the combination of traits affected by pleiotropic mutation. For these
pleiotropic combinations, the median swas three times greater than s acting on the individual component traits, and 46% of the pleiotropic
trait combinations had s . 0.02. Although our analytical approach was biased toward detecting mutations with relatively large effects,
likely overestimating the average strength of selection, our results provide widespread support for the prediction that stronger selection can
act against mutations with pleiotropic effects.

THE extent to which new mutations have pleiotropic ef-
fects on multiple traits, and ultimately on fitness is cen-

tral to our understanding of the maintenance of genetic
variation and the process of adaptation (Kondrashov and
Turelli 1992; Otto 2004; Johnson and Barton 2005; Zhang
and Hill 2005). Analyses of Fisher’s (1930) geometric model
of adaptation have shown that a mutation with effects on
many traits will have a reduced probability of contributing
to adaptive evolution (Orr 2000; Welch and Waxman 2003;
see also Haygood 2006). For a population close to its opti-
mum under mutation–selection balance, a direct corollary of
this is that selection must act more strongly against muta-
tions with wider pleiotropic effects (Zhang 2012).

Evidence for the strength of selection increasing with the
number of traits that are pleiotropically affected by a muta-

tion is limited. At a phenotypic level, nonlinear (stabilizing)
selection is much stronger on combinations of metric traits
than on each individual trait contributing to the combination
(Blows and Brooks 2003; Walsh and Blows 2009). Given that
genetic correlations among such traits are expected to be
a consequence of pleiotropic alleles (Lande 1980), stronger
selection on trait combinations is consistent with stronger se-
lection on pleiotropic mutations that are likely to underlie the
genetic covariance among such traits. There is some evidence
that per-trait allelic effects might be greater for alleles with
more widespread pleiotropic effects (Wagner et al. 2008;
Wang et al. 2010); as mutations with larger phenotypic effects
might be more effectively targeted by selection, this also sug-
gests stronger selection against more pleiotropic mutation.

Mutation accumulation (MA) breeding designs, in which
the opportunity for selection is reduced, allowing new muta-
tions to drift to fixation, provide an opportunity to characterize
the strength of selection acting directly against new mutations.
Rice and Townsend (2012) proposed an approach for deter-
mining the strength of selection acting against mutations at
individual loci, combining information from QTL mapping
and MA studies. This approach could conceivably be extended
to associate the strength of selection with the number of traits
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a QTL affects. More typically, estimates of selection from MA
designs are focused on traits, rather than alleles. Under the
assumption that most mutations are deleterious, an assumption
supported by MA studies (Halligan and Keightley 2009), the
strength of selection acting on mutations affecting quantitative
traits can be measured as the ratio of the mutational to the
standing genetic variance, s = VM/VG, where s is the selection
coefficient of the mutation in heterozygous form (Barton 1990;
Houle et al. 1996). While estimating s in this way provides
a framework for estimating selection on pleiotropic combina-
tions of traits, we are not aware of any studies adopting this
approach to directly estimate the strength of selection acting on
mutations affecting multiple traits.

Within an MA framework, Estes and Phillips (2006) ma-
nipulated the opportunity for selection, providing rare direct
evidence of stronger selection against mutations with pleio-
tropic effects. In a DNA repair-deficient strain of Caenorhab-
ditis elegans, Estes and Phillips (2006) observed lower
mutational covariance among life-history components when
selection was allowed (larger populations) than when the
opportunity for selection was limited (small populations).
Similarly, McGuigan et al. (2011) compared Drosophila ser-
rata MA lines accumulating mutations in the presence or
absence of sexual selection on males, reporting reduced co-
variance between two fitness components in the selection
treatment. These studies reveal that selection can eliminate
nonlethal alleles with pleiotropic effects, but whether traits
other than life-history components exhibit similar evidence
of selection against pleiotropic alleles remains unknown.

In parallel to the quantitative genetic predictions that
pleiotropic alleles will be under stronger selection, molec-
ular genetic theory predicts that the rate of gene evolution
will be negatively correlated with pleiotropy (Pal et al. 2006;
Salathe et al. 2006). More highly pleiotropic genes, as iden-
tified through the extent of connectivity (the number of
interactions) in protein–protein interaction networks (Jeong
et al. 2001), or the number of gene ontology (GO) terms
(Jovelin and Phillips 2009) are more likely to be essential
(i.e., knockout mutations result in lethality), suggesting that
selection is stronger against large-effect (knockout) mutations
in more highly pleiotropic genes. However, the selection act-
ing against small-effect, nonlethal mutations in pleiotropic
genes is less clear (Pal et al. 2006). Several studies have
found an association between gene pleiotropy indices, such
GO annotation of the number of biological processes or tissue
specificity of expression, and the rate of sequence evolution
(e.g., Pal et al. 2001; Salathe et al. 2006; Jovelin and Phillips
2009; Su et al. 2010). These pleiotropy indices typically ex-
plain little of the variation in sequence evolutionary rates, and
it remains unclear whether more highly pleiotropic mutations
are typically under stronger selection (Pal et al. 2006; Salathe
et al. 2006).

Here, we estimate the selection coefficients acting against
naturally occurring mutations affecting gene-expression traits
in male D. serrata to quantitatively test if selection is stronger
on mutations that affect multiple traits. Gene-expression phe-

notypes are uniquely positioned to enable detailed investiga-
tions of pleiotropy: there are many of them, they represent
a broad coverage of biological function, they can be analyzed
to quantify developmental pleiotropy in the same way as traits
traditionally considered in quantitative genetics, and GO in-
formation can be used to index molecular genetic pleiotropy.
We use multivariate mixed-model analyses of expression traits
in a set of inbred lines from a mutation accumulation exper-
iment to estimate the mutational variance in individual ex-
pression traits, and the pleiotropic mutational covariance
among random sets of five expression traits. Using a second
panel of inbred lines, derived from a natural, outbred, popu-
lation, we estimate the standing genetic variance in the same
individual traits and five-trait combinations. From these esti-
mates of mutational and standing genetic variance, we calcu-
late s for each of the individual traits and trait combinations to
determine whether selection has typically been stronger on
mutations with pleiotropic effects than on other mutations
affecting each trait. We complement this quantitative genetic
analysis of developmental pleiotropy with an analysis of mo-
lecular genetic pleiotropy (Paaby and Rockman 2013), deter-
mining whether the strength of selection acting on individual
expression traits can be predicted from the number of biolog-
ical functions that the gene annotates to in the GO database or
to the range of tissues in which the gene is expressed.

Materials and Methods

Populations and data collection

Here, we estimate the selection coefficient of new mutations
using two populations of D. serrata, which were established in
a similar manner, maintained under the same culture condi-
tions, and assayed in a similar way. The first, referred to as
the mutation (M) population, consisted of a set of 45 inbred
lines that were derived from a single, ancestral line that was
inbred using full-sib mating for 13 generations and main-
tained through full-sib inbreeding for a further 27 generations
in a MA experiment (McGuigan et al. 2011). The second,
genetic (G) population, consisted of a set of 42 inbred lines,
which were derived from females collected from a natural
outbred population, with each iso-female line subjected to
15 generations of full-sib mating (Allen et al. 2013).

RNA sample collection was similar between the two sets of
lines. In the generation prior to sample collection, replicate
vials were established per inbred line to ensure that random
microenvironmental variation was not confounded with
variation among lines. Within each data set, all replicate
breeding vials of all lines were established on the same day,
and subsequent collection of virgins and RNA extractions
were also performed on the same day for all lines within
a data set. From the replicate rearing vials, a total of 40
(M-lines) or 60 (G-lines) virgin males were collected and held
in groups of 5 until 3 (G) or 4 (M) days posteclosion. At that
time, two random subsamples of 20 (M) or 30 (G) males
were snap frozen on liquid nitrogen, and total RNA was
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extracted using Trizol (Invitrogen), and then purified using
RNeasy kits (Qiagen), all according to manufacturer’s instruc-
tions. Pooling of RNA from multiple individuals is a standard
approach for small organisms, such as Drosophila (Rifkin et al.
2005; Ayroles et al. 2009; Yang et al. 2011), particularly when
individuals within a line are genetically nearly identical after
many (here, at least 15) generations of full-sib inbreeding.

A microarray was designed for D. serrata as described in
Allen et al. (2013) and manufactured by NimbleGen (Roche).
Briefly, each array had 20K random probes, plus 11,631 fea-
tures from ESTs, targeted by five 60-mer oligonucleotide
probes; this set of 5 probes per 11,631 genes was fully repli-
cated an each array, with each probe appearing twice. A sin-
gle sample, with a single color (Cy-3), was hybridized to each
array. Twelve arrays appeared on each slide, and samples
within a data set were randomly assigned to a slide, with
the stipulation that replicate extractions from a single line
did not appear on the same slide. cDNA synthesis, labeling,
hybridization, and microarray scanning were performed by
the Centre for Genomics and Bioinformatics, Bloomington,
Indiana. We determined the quality of the array data using
the BioConductor oligo package probe-level models (Gentleman
et al. 2004; Carvalho and Irizarry 2010; Draghici 2012) and
using the experimental metrics report provided by NimbleGen
(Roche Nimblegen 2011). Due to poor quality data (e.g., high
mean empty signal or strong local stains) in at least one
replicate of a line, we discarded several lines, resulting in
41 M-lines and 30 G-lines retained for analysis. Due to lack of
probe replication, 27 features on the microarrays were not
included in analyses, resulting in 11,604 traits for further
analysis. The expression data are available through the NCBI
Gene Expression Omnibus (Edgar et al. 2002; Barrett et al.
2011) (G-lines, GSE45801; M-lines, GSE49815).

Analytical approach and preliminary analyses

We used a series of linear mixed models to allow us to
characterize the mutational and standing genetic variation and
covariation among traits. As described in detail in McGuigan
et al. (2014), we took the mean of the log10 expression of the
two replicates of each probe on an array, and variance stan-
dardized (mean = 0; SD = 1) these data prior to analyses to
facilitate the multivariate analyses, where large differences in
the scale of each trait within a single model can inhibit con-
vergence. We did not perform any other preprocessing steps,
preferring to allow the mixed model to partition variation (in-
cluding technical variation) in signal intensity.

We describe the modeling approach taken in detail below,
but here give an overview of preliminary results to explain
how we defined a subset of expression traits for which we are
able to contrast selection against pleiotropic mutation vs. the
total selection on traits. McGuigan et al. (2014) presented
a detailed description of the mutational variance in the M-
lines. Of the 11,604 expression traits analyzed in that study,
only 3385 (29%) exhibited among-M-line variance, with sta-
tistical support for mutational variance in 1035 traits, 533 of
which remained significant after false discovery rate (FDR)

correction (McGuigan et al. 2014). For the remaining 71% of
traits, the restricted maximum likelihood (REML) estimates
of among-mutation line variance were zero; negative esti-
mates of variance were not permitted. There could be several
causes for the large number of zero REML estimates of mu-
tational variance. First, these expression traits might not have
a genetic basis. McGuigan et al. (2014) also analyzed the
G-lines to demonstrate that the vast majority of these same
traits were heritable in that population of outbred lines, with
only 489 (4.6%) traits displaying zero REML estimates of
among-G-line variance components. Therefore we can dis-
count this possibility. Second, these traits might have been
affected by mutations, but with effect sizes too small to be
detected by the analyses. Third, none of the 41 MA lines
accumulated any mutations affecting these traits over the
27 generations that the experiment ran, during which an
average of 34 mutations per MA line are expected to have
accumulated (McGuigan et al. 2014). We cannot distinguish
between a large class of mutations of very small effect, vs.
a large class of traits with a relatively low mutation rate.
Irrespective of which of these two explanations is responsible
for the zero variance components, estimates of s for these
traits (with a zero numerator) would be zero, but it is not
known if they are under negligible selection or if we simply
failed to sample any alleles in our study.

For the 3385 traits with nonzero variance among the M-
lines, McGuigan et al. (2014) identified pleiotropic covariance
among traits through multivariate mixed-model analyses (de-
tailed below). This was done by assigning each of the 3385
variable traits to one of 677 five-trait sets; each trait appeared
in only one five-trait set. Traits were assigned randomly, with
no consideration of their biological function. Since the prob-
ability of detecting covariance among random sets of five
traits will depend on the true number of traits that a mutation
affects, this approach is biased toward detecting mutations
with relatively widespread pleiotropic effects. The size (five)
of each trait set was selected as a consequence of the mixed-
model convergence behavior; models with more traits some-
times did not converge or had convergence times that were
prohibitively long.

Although for individual traits we can estimate s, irrespec-
tive of whether the mutational variance surpasses any statis-
tical threshold, identifying pleiotropic covariance does depend
on statistical testing. If we want to understand how much of
the selection a trait might experience as a consequence of
pleiotropic mutations, we need to ensure that we are looking
at mutations that demonstrably affected more than one trait.
To detect mutational pleiotropic covariance among traits
(details below) McGuigan et al. (2014) fit a model with a co-
variance structure that partitioned variation that is shared
among traits in the five-trait set (covariance) from variation
that is unique to each trait. Statistical support for the presence
of a shared component of the variation reveals mutational
covariance among traits. McGuigan et al. (2014) detected sig-
nificant pleiotropic covariance in 245 of the 677 five-trait sets,
145 of which remained significant after FDR correction. These
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245 five-trait sets therefore provide a subset of traits in which
we can clearly characterize the effect of selection through
pleiotropic effects.

As noted previously, 489 expression traits were invariant
among the genetic lines; 303 of these invariant traits were not
coincident with invariant traits in the mutation data set. Since
selection coefficients are undefined when the standing genetic
variance (denominator) is zero, we excluded any of the 245
five-trait sets that included traits that were not variable among
G-lines. These matrices were excluded without reference to
the magnitude of estimated mutational pleiotropy. An alter-
native analytical strategy would have been to reanalyze the
M-lines for a new set of random five-trait matrices constructed
from traits that were variable in both data sets, but we
discounted this approach for two reasons. First, retaining the
same five-trait sets retained comparability to the published
results (McGuigan et al. 2014) and further analyses to be
conducted on these data in future work. The assignment
of traits to matrices can be found in supporting information,
File S1. Second, the computational demands of repeating the
very large number of multivariate mixed-model analyses of
the two sets of lines (to construct the LRT; see below) for
the 616 matrices in the M-data set was prohibitive.

The above criteria resulted in 855 (520 at FDR), individual
expression traits for which we could estimate the strength of
selection in a univariate fashion and for which we could then
contrast the strength of selection acting on combinations of
those traits within the 171 (104 at FDR) five-trait matrices.
We therefore base our estimates of selection coefficients on
the traits for which we have statistical evidence of pleiotropic
effects, with the caveat that there might be a class of smaller-
effect pleiotropic mutations in the matrices that were excluded
by the statistical significance testing on mutational pleiotropic
variance. We further consider in the Discussion how various
factors, including our data subsetting approach, has resulted
in our analyses describing only part of the total distribution of
selection acting on mutations.

Estimating selection coefficients of individual
gene-expression traits

To estimate the mutational and standing genetic variation in
each trait, we ran separate mixed models for each trait in
each data set. Analyses were implemented on the variance-
standardized data within a restricted maximum-likelihood
framework in SAS (v. 9.3), using the univariate model,

Yijk ¼ mþ bþ Linei þ RepjðiÞ þ eijk; (1)

where, for each gene, the variance in standardized log10 mean
expression, Y, of the kth replicate probe in the jth replicate
extraction and hybridization of the ith line was partitioned to
among-line variance (Line), among replicate extractions
within lines (Rep), and the residual (e) variance among the
five replicate probes of each gene. To account for substantial
differences in mean signal intensity among the five replicate
probes of some genes in the G-data set, we fit replicate probe

as a fixed effect. We observed a segregating factor in the M-
lines that must have been present in the ancestor and was
therefore not a product of mutation during the experiment
(see McGuigan et al. 2014, Supporting Information). To pre-
vent this factor from contributing to estimates of mutational
(among-line) variance, a fixed effect was fit to remove the
mean difference in trait expression between the two groups of
lines with the two alternative forms of this segregating factor.

Selection coefficients (s) for each gene were estimated as
the mutational variance divided by the genetic variance
(VM/VG), where VG was the among-line variance from model
1, and VM was defined as the among-M-line variance from
model 1 divided by twice the number of generations of
mutation accumulation (here, 27 generations) to give the
per-generation rate of input of mutational variance to this
diploid population (Lynch and Walsh 1998). To return the
estimates of s to the original scale (log10 signal intensity),
we multiplied the estimates of s by the corresponding ratio
(M/G) of the total phenotypic variance, estimated on the
unstandardized data (i.e., on the log10 scale) using model
1. We note that our estimates of VG are biased upward com-
pared to estimates of the additive genetic variance (VA) in
an outbred population as a consequence of the inclusion of
nonadditive sources of variance. It is therefore likely that
our estimates of s are biased downward by this component
of the experimental design when considering the strength of
selection under more natural conditions.

Estimating selection coefficients of pleiotropic
trait combinations

To allow us to directly compare mutational and standing
genetic variances for the same multivariate combination
traits, expression traits in the genetic data set were assigned
to the same five-trait matrices as those previously used in
the mutation data set. These random sets of five traits were
analyzed separately in each data set using the multivariate
form of model (1),

Y ¼ mþ Xbi þ Zldl þ Zrdr þ e; (2)

where X is a design matrix for the fixed effects (replicate
probe per gene in the G-data set and the groups segregating
the two different ancestral variants in the M-data set), e is
a diagonal matrix containing the residual (among probe
mean) variances for each trait, Zl and Zr are design matrices
for the line and replicate within line random effects respec-
tively, and dl and dr are the covariance matrices for these
effects. We fit two different types of covariance structures
in these analyses. The among-line variance (dl) in the M-
data set and the within-line variance (dr) in both data sets
were modeled using a reduced rank factor-analytic (FA)
structure,

d ¼ LLT þ c; (3)

where L was a lower triangular matrix of factor loadings for
a single factor capturing the covariance shared among the
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five traits, and c was a diagonal matrix containing specific
variances for each trait (Meyer 2009; McGuigan and Blows
2010). The FA structure has two important benefits over other
covariance structures for our analyses. First, the relatively low
variation in the M-data set caused problems with model con-
vergence, and fitting a reduced rank model at the within-line
level improved behavior of the models. To minimize differ-
ences in the way that the two data sets were handled, we also
fitted a reduced rank model to the within-line level of the G-
data set. In the G-data set, we confirmed that this resulted in
almost identical estimates of the variance component used to
estimate s as fitting an unstructured covariance matrix at the
within-line level.

Second, and most importantly, fitting the FA model
structure at the among-mutation-line level allowed us to
partition the variation shared among traits (the pleiotropic
mutational variance) from the mutational variance unique to
each trait. The single factor contained inL can then be used to
estimate a reduced rank mutational covariance matrix with
a single dimension, M (M = LLT, where T indicates trans-
pose). The single dimension of mutational covariance captured
by this model (the eigenvector ofM,m1) is the combination of
the five randomly combined traits in a set that exhibits the
greatest mutational covariance. Note that the trait-specific var-
iances, which make up the diagonal of c, might still contain
variation that is due to mutational pleiotropy; we do not test
for the presence of more than one pleiotropically affected trait
combination per matrix (i.e., we do not test for improved good-
ness of fit from FA[2] model over an FA[1] model). Our goal in
this analysis was to identify some trait combinations corre-
sponding to mutational pleiotropy for further investigation,
but not to exhaustively identify all pleiotropic trait combina-
tions within each five-trait set (an enormous task given the
multivariate models involved).

As outlined above in preliminary analyses, McGuigan
et al. (2014) analyzed the M-data set using model 2. Statis-
tical support for pleiotropic covariance between at least two
traits in a set was determined using log-likelihood ratio tests
(LRT), comparing a model in which the common factor (i.e.,
pleiotropy) was fit vs. a model in which only trait-specific
variances were estimated. This LRT has 5 d.fr. and is con-
sidered a conservative test because the precise mixture of x2

distributions is unknown (Self and Liang 1987; Littell et al.
2006). McGuigan et al. (2014) applied a 5% false-discovery
rate (FDR) (Benjamini and Hochberg 2000; Storey and
Tibshirani 2003) correction based on these P- values, using
the MULTTEST procedure in SAS.

In the G-data set, the among-line (i.e., genetic) variance
was modeled using an unstructured covariance structure,
resulting in a 5 3 5 unstructured covariance matrix (G).
This analytical difference between the two data sets was
required to allow us to directly compare the level of genetic
variance found in the major axis of mutational variance, m1,
with the standing genetic variance for the same trait com-
bination in the outbred population. This required a full-rank
covariance to be estimated in the G-data set. We then esti-

mated the standing genetic variance in m1 by projecting the
normalized (m1

T m1 = 1) vector through the total genetic
space to find the genetic variance in this trait combination,
gm1

, using

Vgm1
¼ mT

1   G m1: (4)

We calculated the strength of stabilizing selection acting on
the multivariate combination of traits as s ¼ ðlm1=54Þ=Vgm1 ,
where lm1 was the among-M-line variance (the eigenvalue of
the common variance component from model 2), divided by
twice the number of generations (here, 27 generations) to give
the per-generation input of variance (Lynch and Walsh 1998),
and Vgm1 came from Equation 4. To return s to the original
log10 scale, we multiplied it by the ratio (M/G) of phenotypic
variances in the m1 trait combination, on the original scale. To
do this, we first calculated values of the index trait m1 by
applying the equation yijkTm1i, where m1i was the normalized
vector from the ith five-trait set, and yijk is the ith trait set
five-element vector of log10 (unstandardized) expression
trait replicate probe means for the kth replicate of the jth
MA or G line. We subjected these univariate trait scores for
the m1 index to analysis through model 1 to estimate the
phenotypic variance associated with each m1 trait combina-
tion in the M- and G-data sets.

Exploring the estimation bias in m1

There are several potential sources of bias that could inflate
the estimate of s associated with the pleiotropic trait combi-
nations over the univariate trait estimates. First, we deter-
mined whether s might be inflated simply by including more
traits (and more variance) in the estimate. To address this
possibility, we estimated s from the sum of the mutational
and genetic trait variances for the five traits in each set.

Second, known biases are associated with estimation of
eigenvalues (Hill and Thompson 1978; Meyer and Kirkpatrick
2008), and we took two separate approaches to explore the
effect of these potential biases on our estimates. First, different
statistical approaches were used to estimate the mutational and
standing multivariate variance in m1; the mutational variance
in m1 was estimated as an eigenvalue from fitting a reduced-
rank covariance matrix, but the standing genetic variance inm1

was estimated using projection through a full-rank estimate of
G. If the eigenanalysis overestimated the mutational variance in
the trait combination m1, as might commonly occur in eigena-
nalyses, then s would be upwardly biased. To test whether the
eigenvalue of m1 was inflated, we reestimated the mutational
variance in m1 by creating a univariate trait representing m1

(as described above for estimating the phenotypic variance in
the m1 traits on the log10 scale). These univariate trait values
corresponding to m1 were then subjected to the same univar-
iate mixed model as the original individual expression traits
(model 1), and we compared the model 1 and model 2 esti-
mates of mutational variance.

Finally, overestimation of the mutational variance in m1

in the M-data set could have occurred as a consequence of
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greater sampling error in this direction being misconstrued
as mutational variance by the analysis. To directly estimate
the amount of sampling error that could inflate our esti-
mates of mutational variance inm1, we employed a random-
ization approach. Observations for each trait were shuffled
among MA lines, while keeping replicate measures within
each line together. This shuffling ensured that estimates of
variance of each trait remained the same at the among-line,
within-line, and residual levels, but covariances among traits
were disrupted. McGuigan et al. (2014) used this approach
to demonstrate that the significant pleiotropic mutational
variance detected by model 2 is lost when covariances
among traits were disrupted. Here, the shuffled data set,
subdivided into the same five-trait sets, was then subjected
to analysis using model 2, fitting an unconstrained covari-
ance matrix at the among-line level. We then projected the
m1 vector estimated for that trait set in the analysis of the
observed (not shuffled) M-data through the shuffled matrix
using Equation 4. This analysis provided a direct estimate of
variation in m1 due to random associations generated by
sampling error in the data set and consequently allowed
a quantitative correction to be applied to our estimates of
mutational variance in m1.

Molecular genetic pleiotropy and selection

Information on the products of a gene, such as obtained
from annotations in the GO project, can be used to determine
pleiotropy. Importantly, the inference of pleiotropy from GO
corresponds to Paaby and Rockman’s (2013) “molecular gene
pleiotropy,” as opposed to the “developmental pleiotropy” that
we characterize through the mixed-model analyses of variance
in expression intensity. Therefore, in this study we define plei-
otropy in two independent ways and determine the relation-
ship between the strength of selection and pleiotropy from
both gene and allele (mutation)-centric views.

Stand-alone BLASTX 2.2.27+ (Altschul et al. 1990) was
used locally to search the nonredundant protein database
(downloaded April 17, 2013) (Pruitt et al. 2012) for match-
ing sequences; we did not restrict the search to specific taxa,
but searched the entire nonredundant protein database. Gene
ontology terms (Ashburner et al. 2000) (release September
2013) were then annotated to the genes via Blast2GO 2.7.0
(Conesa et al. 2005) using default settings. A total of 1813
genes were successfully annotated to at least one GO biolog-
ical process (BP) term. Because here we consider each indi-
vidual gene, and define pleiotropy through the molecular
properties of that gene, we consider all genes for which a uni-
variate selection coefficient could also be estimated (i.e.,
among-line variance components in both the M- and G-data
sets were greater than zero in model 1). This resulted in
a subset of 1436 genes for which we could estimate both s
and which annotated to at least one BP GO term. Although
theoretically both BP and molecular function (MF) terms
could indicate gene pleiotropy, we restrict consideration to
BP terms. Pleiotropy in yeast has been correlated with the
number of biological processes a gene participates in, but

not with the number of molecular functions of the gene
(He and Zhang 2006). From the perspective of trait covarian-
ces, when a gene is involved in multiple functions, pleiotropy
might be caused by different (linked) sites within the gene; for
genes with a single function (although potentially involved in
multiple processes), pleiotropy might be generated by a single,
unlinked polymorphism (Chen and Lubberstedt 2010). There-
fore, defining pleiotropy by the number of BP is expected to be
most consistent with the pleiotropy defined through the mixed
modeling of among mutation line variance.

We also considered the range of tissues in which a gene
might affect biological processes as a measure of pleiotropy.
Extent of expression is correlated with the rate of nonsynon-
ymous substitutions (Hastings 1996; Duret and Mouchiroud
2000). t is a metric describing the tissue specificity of gene
expression, ranging from 0, for so-called housekeeping genes
that are expressed broadly across many tissue types (i.e., highly
pleiotropic), to 1 for genes with expression restricted to one
tissue type (Yanai et al. 2005). As described in Allen et al.
(2013), we calculated t for the same subset of 1436
D. serrata genes based on measures of gene expression in
nine different tissue types (male- and female-only dissections
of head, thorax, and abdomen plus ovaries, testes, and acces-
sory gland); the tissue-specific expression data can be found
in the Gene Expression Omnibus G-line accession no.
GSE45801.

Because of the nonnormal distribution of s and of the two
molecular metrics of pleiotropy, we used Spearman’s rank
coefficient to determine whether the strength of selection
increased with the number of annotated processes or decreased
with increasing tissue specificity of the genes. We used a per-
mutation test, implemented in PopTools (Hood 2009) to de-
termine whether the strength of selection was significantly
correlated with either molecular measure of pleiotropy. Gene
rank was shuffled 10,000 times for each metric (s, t, and the
number of annotated terms), and Spearman’s rank coefficient
was calculated for each replicate. Significance was assessed
through one-tailed tests at a = 0.05; estimated correlations
were considered significantly different if they were greater/less
than the 500th highest/lowest random correlation.

Results

Selection coefficients of individual
gene-expression traits

The distribution of individual selection coefficients was L
shaped, with most traits under relatively weak stabilizing
selection and relatively few traits under strong selection
(Figure 1A). The median strength of selection on each of the
855 expression traits was 0.0047. A similar distribution of the
strength of selection was observed for mutations affecting ex-
pression of 3696 genes in C. elegans, where the median s was
�0.005 (Denver et al. 2005, Supplementary Figure 3). The
strength of selection acting against mutations affecting expres-
sion traits appears comparable to the strength of selection act-
ing on mutations affecting morphological traits, where the
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median s estimated from published data on a range of traits
and taxa is 0.0087 (Houle et al. 1996). The median strength of
selection acting against viability mutations has been estimated
as 0.02 (Houle et al. 1996); 17% of the estimates of s for
individual expression traits in male D. serrata exceeded this
value (Figure 1A).

More than 75% of the estimates of s (Figure 1A) were
larger than the neutral expectation (s = 1/2Ne), assuming
an effective population size (Ne) of 500 for population of
D. serrata sampled for the outbred lines. This is a conserva-
tive assumption because 500 would be considered a small
population size for most Drosophila species (Barker 2011),
and assuming a larger Ne decreases the strength of selection
expected under neutrality, resulting in a higher proportion
of the estimates of s being greater than the neutral expecta-
tion. It should be remembered, however, that we have only
included in this analysis traits that contributed to significant
mutational covariance; individual traits that were randomly
assigned to sets with four other traits with which they did
not share statistically significant mutational covariance are
missing from this distribution. For these other 2223 traits for
which s could be estimated (i.e., nonzero genetic and muta-
tional variance), but were not included in the multivariate
analyses, the median s was slightly lower (0.0040). How-
ever, 81% of these traits had estimates of s larger than the
neutral expectation, and 15% of these estimates of s were
.0.02. This indicates that conclusions about selection on
individual traits were not markedly biased by our pleiotropy
selection criterion.

Selection coefficients of pleiotropic trait combinations

The median selection coefficient for the five-trait vectors was
0.0359, suggesting substantially stronger selection on the
pleiotropic trait combination than on the individual constit-
uent traits (for which the median s was 0.0047). We explored
three potential biases that might have inflated the estimated
strength of selection against the m1 trait combination. First,
and most simplistically, the observation of stronger selection
on m1 than on individual traits was not a consequence of
considering more traits (and variance) in these trait combi-
nations. Selection acting on the sum of the five individual
trait variances was of a similar magnitude to the univariate
traits themselves, with a median s of 0.0032.

Second, to determine whether the multivariate analysis
overestimated the variance in the trait combination m1, we
compared the FA(1) model eigenvalue estimate of variance
in m1 with the variance estimated through the univariate
model analysis of m1 index trait scores. There were seven
m1 trait combinations for which the eigenvalue estimate of
variance was .2 SD greater than the univariate model esti-
mate (Figure 2A). Excluding these seven, the average rela-
tionship between eigenanalysis and univariate index trait
estimates for the remaining 164 m1 was close to the 1:1
expected in the absence of any bias (Figure 2A) (paired
t-test: mean difference [eigenanalysism1 – univariate model
m1] = 0.00025, t163 = 1.859, P = 0.065). On average, the

eigenanalysis m1 variance was 9.6% higher than the univar-
iate estimate of variance in m1; applying this average bias
correction reduced the m1 median s from 0.0359 to 0.0324,
which was still 6.9 times greater than the univariate median
estimate (0.0047). Therefore, estimating the mutational var-
iance in m1 as the eigenvalue of the FA(1) M and the genetic
variance in m1 by projection through an unconstrained G is
unlikely to have strongly biased the estimates of s.

Finally, we explored the bias that could exist in our data if
the direction of m1 was biased by sampling variation in the
data. The magnitude of variance in the direction ofm1 in the
shuffled data set was substantial, corresponding to �50% of
the observed variance in m1 (Figure 2B). Nonetheless, the

Figure 1 The distribution of selection coefficients (on the original log10
expression intensity scale) for (A) univariate traits and (B) m1. Sixteen
individual expression traits in A had s .0.2; with the exception of one
extreme, unplotted, univariate estimate (s = 16.2), these have been plot-
ted in the inset to enhance visualization of the lower part of the distri-
bution. The dotted and dashed lines respectively indicate the median s for
individual traits (dotted line, 0.0047) and the three-times higher median s
for m1 (dashed line, 0.0159).
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variance in the shuffled data was less than in the observed
data in all but six cases (Figure 2B). Because we estimated
the among-shuffled-line covariance matrices using an un-
constrained structure, they could be negative definite; for
11 trait sets, the vector m1 fell within the null space, and
the estimated variance in the shuffled data was negative
(Figure 2B), indicating that there was no sampling variation
in that direction.

We used the estimates of variance in the shuffled data to
rescale our estimates of per-generation mutational variance
in m1, using the difference between the two estimates (ob-
served – shuffled). To do this, we set negative estimates of
shuffled variance to zero (a variance cannot truly be nega-
tive, and allowing a negative estimate would have inflated
the corrected estimate), and we set negative estimates of the
difference to zero (i.e., when there was more variance in the
direction of m1 in the shuffled than observed data, we as-
sumed that there was no mutational variance).

Following this correction, the median selection coeffi-
cient acting against mutational variance in the five-trait
combination m1 vectors was 0.0159 (Figure 1B). That is,
selection acting on the pleiotropic mutations causing vari-
ance in the trait combination described by m1 was 3.4 times
stronger than the median selection acting on the individual
traits comprising the five-trait sets. To determine if selection
was significantly stronger on trait combinations that shared
mutational covariance than individual traits, we used a non-
parametric approach based on sign tests as the distribution
of the s values is nonnormal (Figure 1), and the univariate
and multivariate values for each matrix are paired. For each
five-trait matrix, we applied a sign test on the comparison of
the five individual univariate trait values of s to the mul-
tivariate s value. The P-values from the 171 sign tests
were then combined using Fisher’s combined probability
test (x2 = 482, d.f. = 342, P= 1.33 1026), indicating that
selection on the multivariate combination was consistently
stronger than on univariate traits across the total set of
traits.

Molecular genetic pleiotropy and selection

Finally, we complimented our quantitative genetic analyses of
developmental pleiotropy with an assessment of the relation-
ship between the strength of selection and molecular gene
pleiotropy. The 1436 genes under consideration annotated to
between 1 and 57 biological process GO terms, with a median
of 2 (Figure 3A). That is, most of the genes considered were
inferred by this metric to have relatively low levels of pleiot-
ropy. Consistent with this, tissue specificity was also typically
relatively high, with a median of 0.6 (Figure 3B). The relation-
ship between the strength of selection and the number of GO
terms to which a gene was annotated was in the predicted
direction, but was very weak and nonsignificant (Spearman’s
r = 0.035, P = 0.0862). Similarly, as the tissue specificity of
the gene’s expression decreased, potentially allowing effects
on more processes, the strength of selection increased, but the
relationship was again weak (Spearman’s r = 20.047, P =
0.0369). Nonneutral sequence divergence between D. serrata
and organisms from which gene ontology data are available,
such as D. melanogaster, might have biased these analyses if
genes with sufficient sequence similarity to be annotated
were those that experienced stronger stabilizing selection.
The median s for the 1436 genes included in the GO analyses
was 0.0045, very similar to that observed for the remaining
traits that we could estimate s for, suggesting little bias from
this source.

Discussion

Since Fisher’s (1930) development of the geometric model of
the process of adaptation, it has been assumed that a mutation
that affects many parts of a complex organism is less likely to
be beneficial than a mutation of more restricted effect. Direct
evidence supporting the generality of this supposition has
been difficult to obtain, in part because of the challenge of
studying high-dimensional phenotypes (Houle 2010) and be-
cause of the lack of information on the relationship between
effects of pleiotropic alleles on phenotypes vs. on fitness

Figure 2 Examining the bias in the
eigenvalue estimates of pleiotropic co-
variance. (A) We estimated the per-
generation mutational variance in the
trait combination defined by the eigen-
vector m1 both as the eigenvalue of m1

(from multivariate analysis using model 2;
y-axis) and from the univariate analysis of
index traits defined by m1 (the univariate
mutational variance from model 1; x-
axis). Estimates for all 171m1 are plotted,
with points shaded in black falling more
than two standard deviations from the
mean difference between the two esti-
mates per trait. The dotted line indicates
the 1:1 relationship between estimates,

and the solid line indicates the linear regression through the observed points (excluding the seven, shaded, outliers). (B) The per-generation mutational
variance inm1 in the observed data (eigenvalue ofm1, y-axis) and in shuffled data (after projection, x-axis). The solid line indicates equality (1:1) of variance
in shuffled and observed data; six m1 fall below this line and are shown in solid black. The 11 m1 for which there was no variance in the shuffled data
(variance less than zero) are shaded.
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(Paaby and Rockman 2013). By using multivariate statistical
modeling of the genetic variance generated by new muta-
tions, and of the standing genetic variance in a natural pop-
ulation, we have shown that selection is consistently stronger
on pleiotropic mutations, supporting Fisher’s model of adap-
tation for populations in the vicinity of an adaptive optimum
(Zhang 2012).

In general, we inferred strong selection acting against new
mutations affecting the adult male D. serrata expression of
genes assayed in this study. Many individual traits appeared
to be under stronger selection than expected under neutral
evolution, and 17% had selection coefficients.0.02, a magni-
tude of selection commonly associated with life-history traits,
and with viability in D. melanogaster (Houle et al. 1996). The
proportion of traits with estimated selection coefficients com-
parable to those of fitness traits increased to 46% (after bias
correction) for the pleiotropic trait combinations. Analyses of
divergence in gene-expression profiles among taxa have also
suggested a prevailing pattern of relatively strong stabilizing
selection within taxa (Denver et al. 2005; Rifkin et al. 2005;
Bedford and Hartl 2009; Warnefors and Eyre-Walker 2012),
although per-trait stabilizing selection might be very weak
(nearly neutral) (Bedford and Hartl 2009). It is possible
that purifying selection acts directly against mutations
affecting gene expression through energy costs of tran-
scription (Wagner 2005). Alternatively, the fitness conse-
quences of gene expression might be indirect, mediated
through the effect of expression on other traits, including
morphology, behavior, and physiology.

Evidence for widespread stabilizing selection acting on
phenotypes within populations has been surprisingly diffi-
cult to detect (Kingsolver et al. 2012), despite the overriding
importance of stabilizing selection for explaining patterns of
divergence over long time periods (Estes and Arnold 2007).
Nonlinear (stabilizing) selection has previously been ob-
served to be much stronger on combinations of standard
metric traits than on each individual trait contributing to
the combination (Blows and Brooks 2003; Walsh and Blows
2009). Our results suggest that pleiotropic mutations are
likely to be under stabilizing selection stronger than that

of mutations with more limited phenotypic effects and that
the strength of selection acting against such pleiotropic
alleles cannot be inferred from the analysis of individual
traits in isolation.

We found that many expression traits are under strong
stabilizing selection and that selection acts more strongly
against mutations affecting multiple traits than would be
expected on the basis of selection acting on each of the traits
individually. This conclusion is based on a subset of all the
traits that we measured, and there are a number of aspects of
the experimental design and analysis that must be considered
when placing these results into a broader context. First, the
classical mutation accumulation design that we employ allows
us to infer mutation from the distribution of line means, and
the relatively few generations (27) and inferred mutations per
line (34) suggest that it is reasonable to assume that each line
segregates only a single mutation affecting any particular trait.
However, our analyses are focused on the traits, not the
mutations themselves, and consequently, we cannot exclude
the possibility that lines are segregating mutations with
antagonistic pleiotropic effects, canceling one another out
and resulting in no observed covariance among traits. We
cannot infer the selection acting on this class of pleiotro-
pic mutations.

Second, we defined a subset of traits for analysis based on
several criteria. First, we excluded all traits for which we could
detect no variation among M-lines. These traits might have
been segregating mutations of very small effect (or multiple
antagonistic mutations, canceling each other’s effects). Consid-
ering all 11,604 expression traits that we measured, the me-
dian s is zero, with no evidence of selection. The median
selection acting on individual expression traits is therefore
likely to be lower than the value of 0.0047 we have reported.
Nonetheless, many expression traits were observed to be under
strong selection.

Third, our approach to defining a subset of data will have
excluded many mutations with pleiotropic effects, but where
the covariance generated was small and not statistically
detected. Because we are observing variation in phenotypes,
not the mutations themselves, we require statistically significant

Figure 3 The relationship between the
strength of selection estimated from
mutational and standing genetic vari-
ance and two metrics of molecular gene
pleiotropy. The strength of selection is
plotted on a log scale for illustration,
but was not transformed in this way
for analyses. (A) s plotted against the
number of biological process GO terms
to which the gene annotated (Spear-
man’s rank coefficient 0.035, P =
0.0862). (B) s plotted against the tissue
specificity metric, t, which ranges from
0 (broadly expressed and more pleiotropic)
to 1 (tissue specific with low pleiotropy)
(Spearman’s rank coefficient = 20.047,
P = 0.0369).
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covariance among traits to infer that a pleiotropic mutation has
occurred. Excluding other mutations with smaller pleiotropic
effects across traits might have resulted in an overestimation of
the strength of selection acting on pleiotropic mutations.
Importantly, we measure both the total selection acting on
each of the 855 included traits and the selection that is acting
through a known pleiotropic mutation affecting those traits.
The univariate estimate of s for each trait includes mutational
variance that is due just to mutations affecting that trait and
any mutations that might also have pleiotropic effects on other
traits. The key result of this article is that, for the same set of
traits, selection acting on pleiotropic combinations of traits is,
on average, three times stronger than the selection acting on
each trait in isolation.

A final aspect of mutation accumulation experiments that
should be considered is the selection acting within the
population of lines. Mutations causing a .10% decline in
fitness are unlikely to accumulate in MA experiments employ-
ing brother–sister mating (Lynch et al. 1999), and selection
against these mutations can act either through line extinction
or against further accumulation within a line (Schaack et al.
2013). We previously demonstrated that lines that went ex-
tinct during the experiment were phenotypically distinct from
extant lines (McGuigan and Blows 2013). Mutations elimi-
nated by viability selection (by definition, under strong puri-
fying selection) might have differed in their pleiotropic effects
from mutations fixed (and assayed here).

The number of annotated gene ontology terms for each
gene, a pleiotropy metric that has previously been associated
with gene knockout effects across multiple environments (He
and Zhang 2006), and with the rate of sequence evolution
(Salathe et al. 2006; Jovelin and Phillips 2009) was weakly
associated with our estimate of the strength of selection, as
was the tissue specificity of gene expression. Although previ-
ous studies have been suggestive of stronger selection on
mutations in more pleiotropic genes, these relationships have
typically been weak, with the pleiotropy metric explaining
very little of the variance in evolutionary rates (Pal et al.
2006; Salathe et al. 2006). It remains to be determined
whether this weak relationship reflects the incomplete infor-
mation available to determine gene pleiotropy or whether the
true relationship is between the pleiotropic effects of a locus
and the selection acting on mutations affecting the expression
of that locus. Other metrics derived from GO might have been
utilized in this study. For instance, the strength of selection on
gene expression varies with the functional categories a gene
annotates to in nematodes (Denver et al. 2005); however, no
independent information on pleiotropy is used to define these
categorical divisions, and such comparisons are difficult to in-
terpret if genes annotate to multiple categories (Rhee et al.
2008). Finally, it is not clear how metrics describing connec-
tions among genes based on analyses of GO-directed acyclic
graphs (Dameron et al. 2013) relate to real interactions
among genes, given the parent–child nature of these graphs
(Rhee et al. 2008). There has been considerable debate in the
literature about the effect of pleiotropy (inferred in many

ways) on the rate of protein sequence evolution (Pal et al.
2006). Useful characterization of molecular interactions un-
derlying pleiotropy might typically require more nuanced de-
tailed focus, rather than relying on broad-scale patterns (Kopp
and Mcintyre 2012).

In conclusion, selection on pleiotropic combinations of
traits was found to be over three times stronger than that on
the individual expression traits. An important consequence
of strong selection on pleiotropic mutations is that the
pattern of standing genetic variance is substantially different
from how new genetic variance is generated by mutation.
That selection appears to shape the standing genetic variance
to such an extent implies that a mutation–selection balance
(Johnson and Barton 2005; Zhang and Hill 2005) may be
a key process in the maintenance of genetic variance in nat-
ural populations.
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