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Variations on a Common STRUCTURE: New
Algorithms for a Valuable Model
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In this commentary, John Novembre discusses tools for
the study of population structure, including the novel, fast
algorithm fastSTRUCTURE presented by Raj et al. in the
June issue of GENETICS.

Over the last 14 years, a highly influential tool for the
study of population structure has been the admixture

model of Pritchard, Stephens, and Donnelly (the “PSD”
model, Pritchard et al. 2000) and its associated inference
software STRUCTURE. In its basic form, this model does
not explicitly consider the effects of mutation, drift, selec-
tion, or linkage. Nor is it a dynamical model, as it does not
explictly have any temporal component. Viewed simply, it
is just the Hardy–Weinberg model with two wrinkles: (1)
subpopulations that differ in allele frequency, and (2) in-
dividuals whose genetic ancestry can be admixed, i.e., an
individual can inherit alleles from more than one of the
multiple subpopulations according to a probability vector
of “admixture proportions.”

This simple model of population structure has proven
incredibly useful. The original paper (also published in
GENETICS) has garnered over 10,000 citations, and if one
considers the impact of subsequent papers that elaborate on
this approach directly (Falush et al. 2003, 2007; Hubisz et al.
2009) or use related approaches (e.g., Dawson and Belkhir
2001; Anderson and Thompson 2002; Corander et al. 2003;
Wilson and Rannala 2003; Huelsenbeck and Andolfatto
2007), the sum impact is truly remarkable. Interestingly,
the same underlying model has played an independent and
important role for text classification and mining, where it is
known as the latent Dirichlet allocation (LDA) model (see
Blei et al. 2003, which alone has over 8,000 citations). For
biologists, the broad impact of the PSD model stems from

the suprisingly large number of questions in evolutionary
biology and ecology in which a simple assessment of popu-
lation structure proves to be an insightful exercise. As an
example, consider how useful it is to identify genetic sub-
populations when managing a species or studying its his-
torical biogeography. Also, consider how useful it is in a
disease mapping study to be able to identify hybrid indi-
viduals, to infer the source of tissues of uncertain origins,
or to assess case/control population stratification. The PSD
model and its close relatives have been important in all of
these applications.

While the PSD model is relatively simple, performing
inference with it poses substantial computational challenges.
To understand the crux of the problem, remember the
original PSD paper sought to infer the vector of ancestry
proportions for each individual (a vector qi for individual i)
assuming individuals are completely unlabeled with respect
to origins. That is, any understanding of the subpopulation
allele frequencies and the mixture proportions will need to
be discerned from the genotype data alone. If one knew the
population source of each allele in each individual, then the
problem would be straightforward, but these are “missing
data” or latent variables. The PSD paper approached the
problem from a Bayesian perspective—it aimed to sample
from the posterior on the qi’s by integrating out the uncer-
tainty in the unobserved subpopulation allele frequencies
and allelic source variables. This integration is in a highly
dimensional space (with dimensions proportional to the
product of sample size, the number of loci, and the number
of alleles per locus) and thus it is computationally imprac-
tical to carry out the integration exactly. Thankfully, a Gibbs
sampling approach allows approximation of the integral,
and this is used in the algorithm that underlies the resulting
software STRUCTURE.

The last 10 years have seen great strides in the scale of
our observations of genetic variation, and this has been
a blessing for our learning but a curse for computation.
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STRUCTURE worked well for analyzing complete datasets
until the advent of large SNP genotyping arrays with
hundreds of thousands of SNPs in the mid-2000s (reviewed
in Novembre and Ramachandran 2011). At that scale of
data, the Gibbs sampler is simply too slow to be practically
applied, and many researchers turned to using alternative
approaches such as applying principal component analysis
(PCA) to genotype data (Price et al. 2006). There are theo-
retic reasons why using PCA (and other forms of factor anal-
ysis) can provide insight to admixture proportions (Patterson
et al. 2006; McVean 2009; Engelhardt and Stephens 2010),
but the PSD model still is appealing as a probabilistic model-
based approach for inference with admixed samples. For ex-
ample, it explicitly considers how alleles within a genotype
are a binomial sample from underlying subpopulation allele
frequencies, rather than implicitly treating them as continu-
ous variables (as PCA does), and thus can compute measures
of uncertainty in an appropriate way.

To address the computational challenges that arise from
applying the PSD model to SNP data, two groups recognized
that the likelihood function underlying the model is ame-
nable to efficient optimization techniques such that one can
obtain maximum likelihood estimates of the ancestry propor-
tions and allele frequencies. Tang et al. (2005) developed an
EM algorithm distributed in their FRAPPE software, and an-
other team (that I worked with) leveraged tools from convex
optimization theory to develop the ADMIXTURE software
(Alexander et al. 2009).

One partial drawback of the likelihood approaches is the
inability to use Bayesian priors that favor the most “sensible”
parameter estimates. For example, biological intuition sug-
gests one should favor solutions in which each individual’s
ancestry is drawn from one or at most a few populations
rather than many. Similarily one might favor solutions where
the allele frequencies in all the subpopulations are similar to
one another (e.g., for populations that are weakly differen-
tiated, such as FST , 0.1). A strict optimization of the likeli-
hood in the PSD model does not produce such solutions
unless the dataset is large; maximum likelihood may suffer
from symptoms of overfitting (e.g., erroneously inferring
small proportions of ancestry from many populations to im-
prove model fit) or from poorly estimated allele frequencies.
Stated generally, in many high-dimensional inference prob-
lems, maximum likelihood solutions can benefit from regu-
larization/penalization steps that are akin to imposing
priors. For example, as an improvement to ADMIXTURE,
Alexander and Lange (2011) introduced a penalized likeli-
hood function that mimics the way a Dirichlet prior can
create sparseness in the admixture coefficients and found
it reduced biases substantially.

In the June issue of Genetics, Raj et al. (2014) present
novel, fast algorithms that allow for elaborate Bayesian in-
ference with the PSD model. The key innovation is that they
attack the problem in a variational Bayes framework (for an
introduction see Jordan et al. 1999). Variational Bayes
avoids the difficult integration steps, which are typically

computed using time-costly Gibbs samplers or Markov chain
Monte Carlo techniques, by approximating the posterior in
a strategic way. Importantly, an approximate posterior distri-
bution (the “variational distribution”) is constructed, which is
mathematically simple to work with (e.g., designed such that
many terms factorize). It can be shown that by maximizing
the variational distribution function with respect to the model
parameters, one is maximimizing a lowerbound of the mar-
ginal likelihood, and thus finding parameters that fit the data
well. The end result is that the challenging integrals of a stan-
dard Bayesian approach are replaced by functions that are
easily computable, and only need to be optimized. In turn,
the vast grab bag of tricks from numerical optimization
(Nocedal and Wright 2006) can be used and parameter
estimation can proceed quickly. In the text mining literature,
variational methods have been used with success on the LDA
model (Blei et al. 2003). Raj et al. (2014) report running
times for their new variational algorithm, fastSTRUCTURE,
that compete with ADMIXTURE (with small problems being
solved roughly 10 times faster than STRUCTURE). Further,
the run times are linear in the number of individuals, markers,
and populations, so the approach will scale well to larger
datasets. This speed comes at the expense of working with
an approximation to the posterior, but in practice the resulting
parameters are similar to those obtained in the full Bayesian
inference.

A well-known, vexing problem for those using the PSD
model has been how to appropriately choose the number of
subpopulations (K) for the analysis and/or how to infer it
directly from the data. As the number of parameters changes
with K, this is a type of model selection problem, and several
different approaches have been taken to attack it (e.g.,
Pritchard et al. 2000; Evanno et al. 2005; Alexander and
Lange 2011). Raj et al. (2014) find a cross-validation ap-
proach that is deployed in the ADMIXTURE software does
not work as well for choosing K with fastSTRUCTURE and
so then they develop two metrics (K*

j , K
*
∅C) that can help

establish a likely range for K when using the variational
approach. While not perfect, these metrics allow a reason-
able inference of K when a dataset is large and structure is
strong, but in more weakly structured populations, the in-
ference of K will continue to be problematic.

Raj et al. (2014) also found that a new logistic prior for
allele frequencies (that replaces the standard F model used
in earlier versions of STRUCTURE) is beneficial when teas-
ing apart subtle structure in data. The elaboration of such
priors could allow more detailed modeling of population
history to be layered into the PSD model. One possibility
would be to consider elaborate hierarchical priors, such as
the tree-based prior on population frequencies developed by
Pickrell and Pritchard (2012). Raj et al. (2014) found in
their preliminary analyses that such priors did not improve
model fit in their applications, but further exploration in this
arena could prove fruitful.

As Raj et al. (2014) note, the PSD model is a coarse model
of more complex populations. For this reason, interpreting the

810 J. Novembre



results of inference under this model demands substantial care
and critical thought to avoid pitfalls (e.g., Anderson and
Dunham 2008). The results from these simple models need
to be viewed with an awareness of the complex evolutionary
processes potentially shaping genetic variation in any dataset.
Ideally, as our field matures, increasingly explicit and robust
models of complex population history will be brought to bear
on inference from genomic-scale data. It is humbling that
even relatively simple models require much careful work
and attention to computational detail, but new frameworks
for inference, such as the variational Bayes used here, and
new tools from numerical optimization, give hope for exciting
progress.
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