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ABSTRACT A novel haplotype association method is presented, and its power is demonstrated. Relying on a statistical model for
linkage disequilibrium (LD), the method first infers ancestral haplotypes and their loadings at each marker for each individual. The
loadings are then used to quantify local haplotype sharing between individuals at each marker. A statistical model was developed to
link the local haplotype sharing and phenotypes to test for association. We devised a novel method to fit the LD model, reducing the
complexity from putatively quadratic to linear (in the number of ancestral haplotypes). Therefore, the LD model can be fitted to all study
samples simultaneously, and, consequently, our method is applicable to big data sets. Compared to existing haplotype association
methods, our method integrated out phase uncertainty, avoided arbitrariness in specifying haplotypes, and had the same number of
tests as the single-SNP analysis. We applied our method to data from the Wellcome Trust Case Control Consortium and discovered
eight novel associations between seven gene regions and five disease phenotypes. Among these, GRIK4, which encodes a protein that
belongs to the glutamate-gated ionic channel family, is strongly associated with both coronary artery disease and rheumatoid arthritis.

A software package implementing methods described in this article is freely available at http://www.haplotype.org.

ETECTING genetic variants in association with pheno-

types is central to statistical genetics. Current genome-
wide association studies (GWAS) test single genetic markers,
usually single-nucleotide polymorphisms (SNP), one at
a time, and this is effective in detecting common variants
in association with phenotypes (e.g., Scott et al. 2007; Well-
come Trust Case Control Consortium 2007; Willer et al
2008). For the majority of complex phenotypes, however,
single-SNP common variants explained only <10% of phe-
notypic variations (Manolio et al. 2009). This “missing her-
itability” (Maher 2008) flummoxed the field and many
directions have been suggested to search for it, including
structure variations, gene—environment interactions, paren-
tal origin and phase-dependent interaction, and rare var-
iants, among others (Eichler et al. 2010). On the other
hand, a significant amount of phenotypic variation can be
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explained by common variants, as long as genome-wide
SNPs are jointly analyzed (Yang et al. 2010; Zhou et al
2013). Combined, they attest to the necessity for developing
new association methods, in addition to assaying more ge-
netic variants.

As a fundamental form of genetic variation and the unit
of inheritance, a haplotype may affect phenotypes either
directly through influencing promoter activity and protein
structure (Drysdale et al. 2000; Joosten et al. 2001) or in-
directly through tagging nearby untyped causal variants
(Clark 2004; Servin and Stephens 2007). Thus, haplotype
association is of great interest for unveiling the etiology of
complex phenotypes. Haplotype association takes into ac-
count allelic heterogeneity—different mutations within
a gene cause a similar phenotype, which is a blind spot for
the single-SNP test. An association method that takes into
account allelic heterogeneity is more powerful than the sin-
gle-SNP analysis (Pritchard 2001), as demonstrated in both
haplotype analysis (Zollner and Pritchard 2005) and multi-
SNP analysis (Guan and Stephens 2011). (In fact, multi-SNP
analysis takes into account not only allelic heterogeneity, but
also locus heterogeneity—mutations at different genes
cause a similar phenotype.) Arguably, haplotype analysis is
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more powerful than multi-SNP analysis within a gene region
because it accounts for not only allelic heterogeneity, but
also possible statistical interactions among markers. Con-
sider a two-marker haplotype and suppose that the C-T hap-
lotype increases disease risk. A haplotype method may
detect the association, while a multi-SNP method has to in-
voke an interaction term between the two markers.

A primitive haplotype association method first phases
diploid genomes, specifies a window of arbitrary length to
define haplotypes, and then tests each haplotype in turn
for association. This approach suffers drawbacks in every
aspect. First, it requires phasing a diploid genome and it is
difficult to account for phase uncertainty in subsequent
statistical testing. Second, using a fixed window to define
haplotypes is both arbitrary and unsatisfactory because the
size of the linkage disequilibrium (LD) block varies along the
genome. Third, compared to testing for each haplotype in
turn, grouping haplotypes is necessary because a large num-
ber of haplotypes increases the degree of freedom for a test
statistic (Schaid 2004). Existing haplotype methods improve
various aspects of the primitive haplotype method, particularly
in grouping haplotypes before testing (Zollner and Pritchard
2005; Browning and Browning 2007; Feng and Zhu 2010; Li
et al. 2010a). In both Feng and Zhu (2010) and Li et al
(2010a), authors selected a subset of individuals as a training
data set to identify and group haplotypes into disease causal
and protective categories; Zollner and Pritchard (2005)
grouped haplotypes according to the posterior estimates of
the coalescent trees; and Browning and Browning (2007)
used their LD model to cluster local haplotypes and used
cluster membership as a surrogate for haplotype grouping.
These methods require phasing to obtain haplotypes and ig-
nore the phasing uncertainty in the association testing, and
Zollner and Pritchard (2005), Feng and Zhu (2010), and
Li et al. (2010a) require a window to define haplotypes.

Here we describe a novel method to detect associations
between haplotypes and phenotypes. Our method relies on
a hidden Markov model developed previously to model LD
and haplotype variation (Guan 2014), from which we can
infer ancestral haplotypes and their loadings at each marker
for each individual. (Note that although the loadings are
estimated at each marker, they are determined by local hap-
lotypes around the core marker.) Then, local haplotype
sharing (LHS)—the probability of two diploid individuals
descending from the same ancestral haplotypes—can be
quantified using the loadings. LHS reflects genetic similarity
between individuals and it is a natural extension of identity
by descent, a measure of genetic similarity for individuals in
a pedigree, to unrelated samples. By testing whether the
genetic similarity is associated with the phenotypes, we
can identify associations—at each (core) marker—between
local haplotypes and phenotypes.

In a case-control design, haplotypes conferring higher
disease risk are expected to be more abundant in cases than
in controls. Inevitably, the amount of local haplotype sharing
is expected to be higher between two case individuals than
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that between a case individual and a control individual or
that between two control individuals, which forms the basis
for the association testing. The same argument applies to
disease-protective haplotypes. And the rationale applies to
quantitative phenotypes as well. Compared to existing hap-
lotype association methods, our LHS method has the follow-
ing novelties: (1) we worked directly with diploid genotypes
and integrated out phase uncertainty that plagues other
haplotype methods; (2) we avoided arbitrariness in specify-
ing a window to define haplotypes (the extent of haplotypes
is learned from the data through the LD model); (3) each
SNP is a core SNP for its local haplotypes and is tested for
association, so that our LHS method has the same number of
tests as the single-SNP analysis; and (4) our LHS method is
computationally efficient. We developed a linear algorithm
that can fit the LD model to all study samples simultaneously.

Materials and Methods
The LD model and local haplotype sharing

The LD model was originally developed to infer local
ancestries of admixed individuals (Guan 2014). It is an ex-
tension of the fastPHASE model (Scheet and Stephens
2006) to more than one source population. Briefly, it is a hid-
den Markov model that uses two layers of latent clusters to
approximate coalescence with recombination [two-layer
hidden Markov model (HMM)]. In each layer, clusters are
labeled to represent ancestral alleles, and multiple clusters
of the same label over adjacent loci represent an ancestral
haplotype. Each cluster associates with an allele frequency
parameter; the upper-layer clusters emit lower-layer cluster
allele frequencies and the lower-layer clusters emit the ob-
served genotypes. Recombination is approximated by cluster
switching within each layer. Although only the lower-layer
cluster loadings (defined later) were used in the association
testing and the upper-layer clusters appeared irrelevant,
they are indeed helpful in inferring both ancestral allele
frequencies and loading matrix through enforcing structure
on lower-layer clusters.

The structure of local haplotypes is a ubiquitous phe-
nomenon in genetic data, and the two-layer model is
effective in inferring such structure of haplotypes. The local
ancestry of admixed individuals is a more apparent example
of structure of haplotypes, where the upper-layer clusters
represent the source population and lower-layer clusters
represent ancestral haplotypes (Guan 2014). In fact, the
two-layer model is also effective for haplotypes that are
sampled from a single source population, where the up-
per-layer clusters represent subtle structure of more similar
haplotypes that are represented by the lower-layer clusters.
For example, the upper-layer clusters may represent two-
digit human leukocyte antigen (HLA) allele classes (such
as HLA-A02 and HLA-A03), which enforce structure on the
lower-layer clusters that represent four-digit HLA alleles (such
as HLA-A0202, HLA-A0203, HLA-A0301, and HLA-A0303).



The ability to detect subtle structure of haplotypes,
particularly that among haplotypes sampled from a single
source population, makes the two-layer model useful for
genetic association studies.

An HMM contains a set of parameters to model Markov
transitions of latent states and a set of parameters for ancestry
allele frequencies at each marker, collectively denoted by & We
assume individuals are unrelated, and, thus, conditional on &
individuals are independent, so we may compute each individ-
ual in turn. Denote g the collection of genotypes of individual
i, which are assumed to be biallelic and are coded as 0, 1, or
2 counts of a reference allele. Let Z. = (X},Yl) and
Z2 = (X2,Y2) be two sets of latent states at marker m, where
X represents the upper-layer cluster and Y the lower-layer
cluster (index i omitted). Assuming the numbers of upper-
and lower-layer clusters are S and K, respectively, then X}
and X2 take valuesin 1 ... S and Y. and Y2 take values in

1 ... K. The conditional likelihood for the ith individual is
(g0[z},22,€) = [Ta_1p(gm )|Y1 Y2 &) (recall that observed

m? m?
genotypes are assumed to be emitted from the lower-layer
clusters Y and thus upper-layer cluster X plays no role in this

likelihood), and the emission is modeled as

p(gw [Yh =j. Y2 = k.€)
OmiOmi if gS,R -
Omj(1 = Opi) + (1 — Opj) Opic  if gl —1 (1
(1= Omj) (1 = Ouie) if g§,2 =
1 if gm is missing,

where 0, is the allele frequency associated with the lower-
cluster k. The Markov transitions of the two sets of latent
states are independent a priori and are modeled as

p(Zh=(s1,k1), 22 =(s2.ka)|Z}, 1 = (s1 , ki), Z5—1 = (s5,K))

= [pmag?ﬁmslkl + (1 - pm)rmBmslqu(sl = Si)
(1 o) (1= 1) (51 = )1kt = k)]
X [pma§i>ﬁnls2k2 + (1 - pm)rmﬁm52k21<52 = Sé)

+ (1= pp) (L = rm)I(s2 = s5)I (kg = k5)], 2)

where I(a = b) is an indicator function and vectors p and r
are cluster-switch probabilities for the upper and lower
layers, respectively, and

(s2,k2)) = ag?ﬁls]klag)ﬁlszkzv (3

P(Zl (s1,k1), Zl

where a® is an S vector to denote the admixture proportion,
and B,, is an S X K matrix shared by all individuals.

To fit the LD model, we need to specify three parameters:
the number of upper-layer clusters S, the number of lower-
layer clusters K, and the number of admixing generations vy.
The parameter y controls the ratio between p and r, the

cluster-switching probabilities of upper- and lower-layer clusters,
respectively, which are used to model Markov transitions in
Equation 2. The name, admixing generation, becomes a mis-
nomer in the current context, but we keep it for consistency
with the original model setup, which was designed for local
ancestry inference (Guan 2014). The correct interpretation of
v in the current context is through its reciprocal, 1/y, which
provides an a priori average length of shared haplotype seg-
ments (in centimorgans) among ancestral haplotypes. In all
data analyses, we used vy = 50 and 100, which correspond
to 2 cM and 1 cM of average length of shared haplotype seg-
ments, respectively. And, unless otherwise noted, we used S =
2, K = 10 for our association analyses throughout the article.

After fitting the model, we obtain £¢*. The details of fitting
the two-layer model using the classical EM algorithm can be
found in Guan (2014); a fast linear algorithm to fit the two-
layer model is documented in Results. For individual i at marker
m, define haplotype loading as

K
L= > p(Ym =k 2 =jig.¢), @

J=1

where because of symmetry between two sets of latent
states, the loading needs to be defined only on one set of
latent states. The imputed allele dosage can be computed as
Xim = 2Lf;)kemk.

Local haplotype sharing between individuals and between
markers: At each marker, the LHS between two individ-
uals was defined as the probability of the two individuals
descending from the same ancestral haplotypes, which
is simply an 1nner product of two loading vectors:
LHS,;; = ZkL LU) A high LHS value between two indi-
viduals at a marker implies similar local haplotype back-
ground between the two individuals at that marker. The
LHS estimates are correlated between nearby markers.

LHS can be used to quantify the LD between markers.
Intuitively, if two markers are in strong LD, then, for an
arbitrary individual, the loadings at the two markers are
expected to be similar and if two markers are in weak LD,
they are expected to be less similar. Thus, with slight abuse
of notation, we define LHS between two markers indexed
by h and j, as mLHSy; = (1/n)>; ZkLhk ]k When markers
are independent, our model produces an mLHS estimate, as
a measure of LD background noise, with mean 1/K. [To see
this, we may assume each K vector is Dirichlet distributed
with mean (1/K, ..., 1/K).]

We randomly chose a marker and computed the mLHS
between this marker and the rest. The LD block around
a marker was defined as the largest region that has mLHS
value larger than, say, 2.5 times the background mLHS value
(i.e., 0.17 for K = 15 and 0.25 for K = 10). For 100 markers
we sampled, the sizes of the LD block vary substantially in
the HapMap3 CEU (Utah residents with Northern and West-
ern European ancestry from the CEPH collection) samples
(International HapMap Consortium 2010), ranging from 20
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kb to 1.1 Mb with mean 170 kb. Figure 1 shows four exam-
ples of LD blocks with different strength and size. In all exam-
ples, the patterns of LD agreed with each other between two
choices of parameters (K = 10, 15). The background noise
level matched perfectly with the theoretical predictions: ex-
cluding the spike regions, the mean values are 0.101 for K =
10 and 0.067 for K = 15. For a significant association, we
quantified an LD block around the core SNP, using mLHS,
and located relevant genes. The mLHS was more informative
to quantify a LD block than were the R? values between SNPs.

Testing for associations

Denotey = (yy, - .-, Yn) a vector of phenotypic values. Let W
be an n X g matrix representing g covariates such as age,
sex, and principal components (PCs), including a column of
1 for grand mean, and a be a q vector. At an arbitrary marker
m, use L (an n X K matrix) to denote the loading matrix and
L to denote its jth column. We have

K
y=Wa+> LiB+e, (5)
=1

where e ~ MVN(0,77'I,)), I, denotes an identity matrix of
dimension m, and MVN stands for multivariate normal.
When multiple columns of L tag different markers that affect
phenotypes, the model accounts for allelic heterogeneity.

Taking a Bayesian approach, we specify priors in model
(5) as

a ~ MVN(0,7 'o2l,)
B ~ N(0,7"'a%) ©)
T ~ Gamma(k, K2),

where the Gamma density is in shape-rate parameterization,
and By are independent and identically distributed.

With the above prior specification, model (5) is equiv-
alent to a random-effect model y = Wa + Ab + e, where
b ~ MNV(0, LLY). To see this, without loss of generaliza-
tion, assume each column of L is centered at 0 and denote
B = (B, ..., Bx); then for the first moment we have E(LB) =
0 = E(Ab), and for the second moment we have E(LBB'L!) =
U%/TLLt, and the right-hand side equals Var(Ab) when
A = o1/71/2. Thus, model (5) in fact captures the association
between local haplotype sharing (LLY) and phenotypes.

Define X = (W, L1,...,Lg) and V™! = diag(o2ly, o3Ik );
following a standard normal-inverse-Gamma prior (c¢f. Servin
and Stephens 2007), letting k; — 0, then k; — 0, and oy —
o, we can compute the Bayes factor (BF) in a closed form

BF(o1)

_ Wt |2 1
XX + V|2 of

_ -n/2
yy -y xeex vy xy )
Yy -y W(WIW + Vo) 'wey )

@)

where V! = diag(c3l;). Note here although improper pri-
ors (on nuisance parameters a and 7) are used, the Bayes
factor is proper as priors associated with the nuisance
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parameters cancel out (¢f. Servin and Stephens 2007). Spec-
ifying o is required to compute a Bayes factor. We used
o1 = 0.2, 0.5 and averaged Bayes factors over two choices
of priors. These priors put probability of 0.98 for effect sizes
to be in the interval of [—1.0, 1.0], probability of 0.84 for
effect sizes to be in [—0.5, 0.5], and probability of 0.50 for
effect sizes to be in [—0.2, 0.2].

To extend the Bayesian linear regression model (5) to
a case—control design is conceptually straightforward, but
computationally difficult, particularly for the case of multiple
covariates—the situation that we face. Because of the logistic
(or probit) link function, the Bayes factor can no longer be
evaluated in a closed form; instead, the integration over
a prior distribution of 8 requires a numerical method such
as the Laplace approximation (c¢f. Guan and Stephens 2008),
which can be prohibitively slow for a genome-wide analysis.
We therefore treated the binary phenotypes as quantitative
ones and directly applied Equation 7 to compute Bayes fac-
tors. Treating binary phenotypes as quantitative ones has
been used by others (Kang et al. 2008; Zhou and Stephens
2012) in genome-wide association studies.

Of course, for a case—control design we have a logistic
regression model

Pr(y =1 K
logﬁ = Wa+ ZLij. (8)
Jj=1
This model can be fitted using standard iterative weighted
least squares to obtain the likelihood [; under the alterna-
tive. Setting 81 = ... Bx = 0 and refitting the model to
obtain the likelihood [, under the null, we obtained
Xz ~ 2(l; — lp) and thus a P-value.

Combining test statistics

To account for uncertainty of LD inferences, test statistics
over multiple EM runs were combined. It is a nagging
problem, however, to combine P-values: the minimum P-
values (over multiple EM runs for each marker) cause inflated
type I error; converting P-values to z scores (or chi-square
values) and producing a P-value based on the mean gz
score (or chi-square value) is too conservative; and Fisher’s
method has an independence assumption on P-values to be
combined, which is not satisfied by our P-values. Combining
test statistics is simple, however, for Bayesian analysis be-
cause Bayes factors over multiple EM runs can be directly
averaged. In both power and real data analysis, we chose
the Bayes factor as the test statistic and report minimum
P-values for significant associations. The Bayes factor is the
change of odds ratio in light of data (cf. Stephens and Balding
2009). We have w; = w, - BF, where wy is the prior odds for
association, and w; is the posterior odds, from which the
posterior probability of association, denoted by 7, can be calcu-
lated as m = w1/(1 + w1). For example, if we assume 10 loci of
1,000,000 are associated with a phenotype, then wy = 107>;
if a locus has a Bayes factor of 106, with wg = 105 we obtain
w7, = 10 and hence 7= = 0.91.
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Figure 1 Examples of LD blocks quantified by mLHS, using chromosome 22 of CEU samples in HapMap3. In all four panels the shaded line corresponds
to K = 10 and the solid line to K = 15. The four panels show LD blocks of different strengths and sizes. Note that the observed LD background noise

matches the theoretical predictions. See Materials and Methods for details.

Simulating data to assess statistical power

A case-control design was assumed to assess the statistical
power of our association method. Here we describe how we
simulated data. We assumed two, four, and eight causal
haplotypes that span 10 adjacent common SNPs (minor al-
lele frequencies >5%), and the aggregated causal haplotype
frequencies were chosen to be >0.05. Following Browning
and Thompson (2012), we assumed the penetrance was 0.1
and the sporadic rate was 0.01 (an individual carrying one
or multiple disease alleles has a probability of 0.1 to be a case
and a wild-type individual has a probability of 0.01 to be
a case). Our assumption put the prevalence of disease at
~2-3%. As noted by Browning and Thompson (2012), the
power is determined by the ratio between penetrance and
the sporadic rate, and our choice of parameters was some-
what realistic and had a reasonable power. We also com-
pared with a sporadic rate of 0.02.

We first simulated 10,000 haplotypes in a 200-kb region;
the causal haplotypes were drawn from the middle 20-kb
region. After causal alleles were determined, haplotypes were
grouped as wild types (with count ng) and carriers (with
count ny). We used sampling with replacement to obtain
diplotypes of cases and controls separately. For cases, we first
defined p = n;/(n; + ng) and then computed two weights
wy = p(2 — p) X 0.1 and wy, = (1 — p)? X 0.01; with prob-
ability w1/(w; + w,) we sampled one haplotype from carriers
and another from all haplotypes to form a case diplotype, and
with probability w,/(w; + w,) we sampled two haplotypes
from wild types to form a case diplotype. Similarly for con-
trols, we computed two weights w; = p(2 — p) X (1 — 0.1)
and w, = (1 — p)? X (1 — 0.01); with probability w,/(w; +

wy) we sampled one haplotype from carriers and another
from all haplotypes to form a control diplotype, and with
probability wo/(w; + ws) we sampled two haplotypes from
wild types to form a control diplotype.

Data quality control

We first excluded individuals and SNPs as suggested by the
Wellcome Trust Case Control Consortium (2007). To select
SNPs to perform principal component analysis (PCA), we
started with the full set of autosomal SNPs, thinned SNPs
so that the remaining SNPs were spaced at least 0.001 cM
apart (HapMap estimates), and removed SNPs in the MHC
and the lactase regions (2q21) and known inversions of
8p23 and 17921.31. The number of SNPs used for the
PCA was ~208,000. Based on the PCA analysis, we further
removed outlier individuals. The final numbers of samples
for each phenotype can be found in Supporting Information,
Table S1. Based on these individuals, we further excluded
SNPs if the Hardy-Weinberg equilibrium exact test P-value
was <1 X 1075, or minor allele frequency was <1%, or the
proportion of missing genotypes was >5%. The final num-
ber of SNPs used for association analysis was ~395,000
(exact numbers are in Table S1).

Results
A linear algorithm to fit the two-layer LD model

We needed to fit the two-layer HMM (see Materials and
Methods) for thousands of individuals over a few hundred
thousand to several million SNPs and needed to do so mul-
tiple times to average over uncertainty of LD inferences. A
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diploid individual requires two sets of latent states (one for
each haplotype), and, consequently, fitting a two-layer
model is quadratic in number of haplotype clusters (Guan
2014). This poses a serious computational challenge for
a genome-wide analysis. We now describe a linear algorithm
to fit the two-layer HMM.

The model setup can be found in Materials and Methods,
and more details can be found in Guan (2014). Following
the notations in Materials and Methods, we have that (Z!, Z2)
are two sets of latent states, each for a haplotype; we are
interested in computing their posterior distribution

p(2.Z%]g..€) =~ p(e|Z".22.£)p (2} [O)p(22le). (@)
p(glé)

where g is the genotypes of an arbitrary individual (super-
script dropped) and ¢ is a collection of parameters. This
computation requires K? operations because each joint state
needs to be computed (recall K is the number of lower-layer
clusters). To make the computation linear in K, we first
marginalized (integrated) over Z? under the prior distribu-
tion p(Z? ‘f) and then predicated allele frequencies t! at each
locus, using the marginal posterior distribution of Z'. Con-
ditional on the t! we computed the marginal posterior dis-
tribution of Z? (and obtained updated t? as well). The first
marginalization is exact and the second involves approxima-
tions. We first marginalize over Z2 to obtain

p(ZV)g. €)= @ S (e 171, 22, 0p (2 |9)p (72¢)

1 M
“pem 117 (8ml0z3Eze(e(0).£)p (2 6).
(10)

where M is the total number of markers, and t2 = EZZ‘ £(022)

is the expected allele frequency at maker m for the latent
state Z2. We may compute forward and backward probabil-
ities from the marginalization to get p(Z., |g., ¢) for all m and
obtain t} = Z_l‘ﬁg(ezrlrl), the expected allele frequency at
marker m for the latent state Z! after marginalizing over
Z2. Then conditional on ¢}, we marginalize over Z! to obtain

1 M
2 1 — 1 ) 2

The joint posterior was approximated by two conditional
marginals in the sense that for any linear function f(6;,, 0,,),
we have

2 1
Ep pofg ef ()~ EZ‘l\gﬂt?‘gf(ezl,t, ) +EZ?‘g.,t?,§f(t- ,0z,). (12)
Intuitively, at each EM iteration, the ancestral allele dosages

and the Markov transition parameters provided an a priori
average haplotype (in our model, this a priori average hap-
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lotype is different for each individual). Conditioning on the
average haplotype, we computed the marginal forward and
backward probabilities of one set of latent states. The for-
ward and backward probabilities gave rise to a posterior
mean haplotype, conditioning on which we computed the
marginal forward and backward probabilities again for an-
other set of latent states. Using these two sets of forward
and backward probabilities, we approximated the joint prob-
abilities of the two sets of latent states, from which we
updated the ancestry allele frequencies and the Markov
transition parameters. We call this algorithm stochastic lin-
ear iterative marginalization (SLIM).

Performance of the linear algorithm

The linear algorithm SLIM plays a key role in our LHS
method, allowing the genome-wide LD inference using all
study samples simultaneously. The accuracy and consistency
of L and 6 estimates are critical to the power of our associ-
ation method. We therefore assessed the performance of
SLIM in inferring L (and #) and compared it with the qua-
dratic method. The first comparison is the LHS, which
reflects the accuracy and consistency of L estimates. Be-
tween different EM runs, there were substantial variations
in LHS inferences for both linear and quadratic methods.
When averaged over 10 independent EM runs, however,
the two methods showed high concordance: the Pearson
correlation was 0.96 between two LHS inferences. As a com-
parison, between two trials of the quadratic method—each
trial was obtained by averaging over 10 EM runs—the Pear-
son correlation was 0.98 (Figure 2).

Next we computed the imputed allele dosages x = 2L6
and compared them with the actual genotypes. The mean
(median) Hamming distance between genotypes and im-
puted allele dosages was 0.058 (0.005) for the SLIM and
0.040 (0.002) for the quadratic method (Figure 3). Given
that L was inferred consistently and x was accurate, we
concluded that the 6 estimates were sensible.

Power and comparison with other approaches

We studied the statistical power of our hapotype method
with the presence of allelic heterogeneity. Arguably, this is
when a haplotype method has an advantage. We used the
software ms (Hudson 2002) to simulate haplotypes under
the neutral model. Following the procedure described in
Materials and Methods, we simulated samples for cases
and controls in a 200-kb region. We removed SNPs whose-
minor allele frequencies (MAFs) are <0.05 and SNPs in the
causal center (20 kb in the middle, see Materials and Meth-
ods), but allowed Whait (Li et al. 2010a) to use all SNPs,
which effectively assumed that it has a perfect imputation to
recover all variants, both common and rare. This process
was repeated 100 times to create 100 regions for each sim-
ulation condition. The factors that determine simulation
conditions include sample size, sporadic (or background)
rate, and number of causal haplotypes. The last factor
decides the degree of allelic heterogeneity.



o
= S8
L g v IRAPRCTS
. .--. Dol ﬂ-'l
T M S
© PR A y
> 7| . ¥ g Vs T *
. _‘._r',.u‘- -\;' “'.
s N -t .
.. acay - Tl A
© - 5 "‘ _' , t"l:\:f.?.:.‘
S L R R
o . KH r £ SV 2N
T : Y S T -:-- .
QE’ .’v.a’:‘ > g _.‘P 3 ‘..w
3 . & g
= > T e
e . . B .
e ._"‘_-" ‘}:' . .
o '-ga'; P ‘v,
2300y 'r‘t =4 S A0
I o
=i | .’# %
- . ,
S
| f}g'» -
- s
o
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Quadratic

Figure 2 Consistency between the linear approximation and the qua-
dratic method (solid circles). The results were obtained by averaging over
10 independent EM runs for each method. The straight line denotes x = y.
As a comparison, shaded circles show consistency between two trials of
quadratic methods, each trial averaging over 10 independent EM runs.
The data set is chromosome 22 of CEU samples in HapMap3.

For the benefit of comparing our LHS method with other
frequentist approaches, we computed P-values using the lo-
gistic regression (8), in addition to BFs, based on a single
inference of the loadings (or a single EM run). Using a single
EM run avoided the headache of combining P-values, but at
the cost of a reduced power. We used the minimum P-value
in each region as the region P-value and the maximum BF in
each region as the region BF. We used 10° as the BF signif-
icant threshold and 108 as the P-value significant thresh-
old, the latter of which is comparable to the genome-wide
threshold in a typical GWAS study. The power of the BF is
defined as the proportion of regions (of 100 total) whose
region BF is >10°, and the power of the P-value is defined as
the proportion of regions whose region P-value is <1078,
Table 1 shows that, although the power of the BF is slightly
better than the power of the P-value in 3 of 12 simulation
conditions examined, the two sets of power are comparable
and agree with each other in most (9 of 12) simulation
conditions.

Next, we compared our haplotype method (averaged
over five EM runs) with a Bayesian single-SNP analysis
(Servin and Stephens 2007) implemented in BIMBAM
(Guan and Stephens 2008). In this comparison, both the
haplotype method and the single-SNP method produced
BFs, and we used the maximum BF in each region as the
region BF. The power for both methods is defined as the
proportion of regions whose region BF is >10°. Table 2
reflects what we expected: a larger sample size produces
more power; when the sporadic rate is higher, the power
is lower; and when more allelic heterogeneity exists (e.g.,

T T T T T
0.0 0.5 1.0 15 2.0

Figure 3 Distribution of the imputed allele dosages (same data set as in
Figure 2). Results were obtained by averaging over 10 independent EM
runs. Top, box plots of imputed allele dosages for three genotype classes
(outliers removed); bottom, corresponding density plots.

more causal haplotypes), our LHS method has a greater
margin over the single-SNP test.

Finally, we compared our LHS method with three other
haplotype methods: the one described by Browning and
Browning (2007) (henceforth Beagle), the one by Feng
and Zhu (2010) (henceforth FZ), and the Whait method
by Li et al. (2010a). All three methods require phased hap-
lotypes as input, and we supplied them with the true hap-
lotypes. For our own method, we used diplotypes, ignoring
the phase information. For the Beagle method, we used the
default setting in the software. Following the description of
the FZ method, we used 30 SNPs to define haplotypes, used
30% of individuals to screen significant haplotypes and com-
bined them, and used the remaining 70% of individuals to
perform the test—both causal and protective haplotypes—
and chose the minimum P-value as the test statistics. For
Whait, we used all SNPs with true phasing (in other words,
we assumed that the imputation and phasing are perfect for
Whait) and tried different window sizes to define haplotypes
and picked the best window size to report power. Beagle, FZ,
and Whait are frequentist methods that produce only P-
values. Therefore, we computed P-values for our LHS method
based on a single EM run. For all methods, the region P-
value is defined as the minimum P-value in each region, and
the power is the proportion of regions whose P-values are
<1078, Table 3 shows that our LHS method outperforms (or
performs as well as) Beagle, FZ, and Whait under 11 of 12
simulation conditions. In particular, when more allelic het-
erogeneity exists (e.g., more causal haplotypes), the advan-
tage of our LHS method is more apparent.
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Table 1 The power comparison between BF cutoff of 10¢ and
P-value cutoff of 10—2 under different simulation conditions

Table 2 The power comparison between our LHS method and the
single-SNP analysis for different simulation conditions

Conditions Power
Sporadic Causal
Case/control rate?  haplotypes BF > 106 P-value < 10—8
1000/1000 0.01 2 1.00 1.00
4 0.95 0.95
8 0.72 0.71
0.02 2 0.98 0.98
4 0.93 0.93
8 0.59 0.53
2000/2000 0.01 2 1.00 1.00
4 0.98 0.98
8 0.84 0.83
0.02 2 0.99 0.99
4 0.97 0.97
8 0.71 0.71

The result was obtained using a single EM run so that the P-value is valid. Under all

simulation conditions considered, two sets of powers are close to each other, and

the BF cutoff of 10° has slightly better power than the P-value cutoff of 1078,

?The penetrance is assumed to be fixed at 0.10, so that a higher sporadic rate
results in a lower power.

Analysis of Wellcome Trust Case Control Consortium
data sets

We applied our LHS method to data from the Wellcome
Trust Case Control Consortium (2007). We analyzed all
seven phenotypes, but bipolar disorder and hypertension
yielded no significant haplotype association that survived
pruning (see below) and thus were excluded from the dis-
cussion. The remaining five phenotypes are coronary artery
disease (CAD), Crohn’s disease (CD), rheumatoid arthritis
(RA), type 1 diabetes (T1D), and type 2 diabetes (T2D).
Each disease phenotype had ~1800 cases, 2800 controls,
and 395,000 autosomal SNPs after routine data quality con-
trol (QC) (described in Materials and Methods). We per-
formed the principal component analysis after the QC and
used the top 10 eigenvectors to control for population strat-
ification in our regression models. (The histograms of the
top six principal components, their pairwise plots, and the
histogram for all eigenvalues for the RA phenotype are
shown in Figure S1. Plots for other phenotypes were omitted
because they were similar to that of RA.)

On a small cluster of 15 computing nodes with a total of
100 cores, one Wellcome Trust Case Control Consortium
(WTCCC) data set can be analyzed overnight. This includes
10 independent replicates of LD model fitting and associa-
tion testing (The LD model fitting used 30 EM steps and the
number of upper-layer clusters S = 2 and the number of
lower-layer clusters K = 10). Figure 4 shows association
signals of our haplotype method: the core SNPs whose
logi0 BF > 4 are colored in red, and signals from the sin-
gle-SNP analysis whose log,o, BF > 4 are superimposed on
them and colored in green. Many strong association signals
could be detected by both the single-SNP analysis and the
haplotype analysis; some strong associations were detected
only by our haplotype method, and a few modest associa-
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Conditions Power

Case/control Sporadic ratea Causal haplotypes LHS Single SNP

1000/1000 0.01 2 1.00 0.99
4 0.95 0.94

8 0.76 0.58

0.02 2 0.98 0.96

4 0.95 0.88

8 0.59 0.32

2000/2000 0.01 2 1.00 1.00
4 0.99 0.99

8 0.84 0.75

0.02 2 0.99 0.97

4 0.97 0.93

8 0.73 0.67

The BF for the LHS method is averaged over five EM runs. The single-SNP analysis

was performed using BIMBAM and the BF was computed, instead of P-values. The

BF threshold for both methods is 106.

?The penetrance is assumed to be fixed at 0.10, so that a higher sporadic rate
results in a lower power

tions were detected by the single-SNP method but not by
our haplotype method. This largely agrees with our intuition
and the power analysis: for regions that have allelic hetero-
geneity, our haplotype method has more power; while for
regions that have no allelic heterogeneity, the single-SNP
method performs better due to a smaller degree of freedom
in its test statistic. For each disease phenotype, we permuted
case—control labels once and computed Bayes factors, treat-
ing these as Bayes factors under the null. Figure 5 compares
distribution of Bayes factors under the alternative and under
the null for five disease phenotypes. The maximum log;o BF
under the null for all five phenotypes combined is 3.6, which
corroborates our empirical threshold of 4 for log;o Bayes
factors.

Pruning false positives: Our LHS method is sensitive to
possible batch effect and genotyping errors. We therefore
checked cluster plots for all core SNPs that showed signifi-
cant associations. Because LHS is correlated between nearby
markers, we expected to see signal buildup near genuine
associations. Figure 4 contains nine orphan signals that
have no signal buildup. We examined cluster plots for these
SNPs and, not surprisingly, discovered data quality problems
with them all. Specifically, SNP rs7154773 on chromosome
14 appeared as an orphan signal in all five phenotypes. The
cluster plot for this SNP revealed that it has a fourth cluster
in both control samples and all five case samples (Figure
S2), which might be caused by a third allele or probes in
repeat regions. The same artifact was reported previous-
ly by Liu et al. (2011). The other four orphan signals—
rs10167057 and rs7731936 for CAD, rs5755495 for RA,
and rs2655693 for T1D—were also found problematic in
their SNP cluster plots (Figure S3).

Next, for each novel association not discovered by the
single-SNP analysis, we examined cluster plots for all core


http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.164814/-/DC1/genetics.114.164814-5.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.164814/-/DC1/genetics.114.164814-4.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.164814/-/DC1/genetics.114.164814-4.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.164814/-/DC1/genetics.114.164814-2.pdf

Table 3 The power comparison (at P-value threshold of 10-8)
between our LHS method (with a single EM run) and three other
haplotype methods—Beagle in Browning and Browning (2007), FZ
in Feng and Zhu (2010), and Whait in Li et al. (2010a)—under
different simulation conditions

Conditions Power
Sporadic Causal
Case/control rate? haplotypes LHS Beagle FZ Whait
1000/1000 0.01 2 1.00 099 099 0.97
4 0.95 0.93 092 0.95
8 0.71 060 064 064
0.02 2 0.98 0.95 095 0.93
4 093 074 089 0.87
8 0.53 0.33 0.32 041
2000/2000 0.01 2 1.00 0.99 1.00 1.00
4 0.98 0.98 098 0.99
8 0.83 071 0.81 0.73
0.02 2 0.98 0.96 098 0.98
4 097 0.92 0.97 0.95
8 0.71 0.56 0.68 0.63

Note that Beagle, FZ, and Whait require phased haplotypes for association and we

supplied them with the true haplotypes; our LHS method used diplotypes.

? The penetrance is assumed to be fixed at 0.10, so that a higher sporadic rate
results in a lower power.

SNPs that showed strong haplotype associations (log;o BF >
4). The SNPs whose cluster plots indicated possible excessive
genotyping errors or batch effects were removed, the remain-
ing SNPs were refitted to the LD model, and Bayes factors
were recomputed. This practice removed four more associa-
tions: MCF2L2 for CD, CLSNTZ2 and NID2 for RA, and MCF2L2
for T2D. In Figure 6, we plotted an example of such SNPs in
gene MCF2L2 on chromosome 3, which showed strong asso-
ciations with T2D (and CD). When these SNPs were removed,
however, the association signals disappeared. (The cluster
plots for SNPs in other gene regions can be found in Figure
S4, Figure S5, and Figure S6.) Note that all these SNPs passed
non-LD-based routine QC described in Materials and Methods.

Annals of associations: The remaining eight novel associ-
ations (not discovered by the single-SNP analysis) are
summarized in Table 4. These were separated into strong
and modest associations, at the Bayes factor cutoff of 10°.
Four of them were reported previously, but are novel to the
WTCCC study. The association between CDKN2A/CDKN2B
and T2D was reported by three GWAS in Asian populations
(Takeuchi et al. 2009; Li et al. 2013; Tabassum et al. 2013)
and a meta-analysis with European samples (Voight et al.
2010); the two gene regions—INS-IGF2 and IL2RB—are
both well known to be associated with T1D (Hakonarson
et al. 2007; Plagnol et al. 2011); and the association be-
tween HLA-DRA and CD was discovered by directly typing
and testing HLA alleles (Stokkers et al. 1999). The remain-
ing four associations appear to be novel in the GWAS con-
text: these are GRIK4 for CAD and SPON2, GRM7, and
GRIK4 for RA. Of course, these novel associations require
confirmation from other data sets and functional studies.
Here we briefly discuss their biological plausibility.

The gene GRIK4 encodes a protein that belongs to the
glutamate-gated ionic channel family. Glutamate functions
as the major excitatory neurotransmitter in the central ner-
vous system through activation of ligand-gated ion channels
and G protein-coupled membrane receptors, and multiple
neurogenetrative diseases, such as bipolar disorder (Pickard
et al. 2008), schizophrenia (Pickard et al. 2006), and de-
pression (Paddock et al. 2007), are associated with GRIK4.
Its association with bipolar disorder, however, is not shown
in the WTCCC data set.

In our haplotype analysis, GRIK4 was associated with
both CAD and RA, both of which are common chronic in-
flammatory diseases, and RA patients have an increased
prevalence of CAD (Seferovic et al. 2006; Abou-Raya et al.
2007). A study suggests links between glutamate receptor
and autoimmune interactions (Gahring et al. 1997). In ad-
dition, there is experimental evidence that connects GRIK4
with CAD: in rat cardiac tissue, the ionotropic glutamate
receptors (iGluRs) were detected, and immunohistochemis-
try localized the iGluRs to cardiac nerve terminals, ganglia,
conducting fibers, and some myocardiocytes (Gill et al.
1998). Meanwhile, glutamate connects GRIK4 and RA. Glu-
tamate is relevant to RA in two ways: inflammation of the
joint is accompanied by elevated levels of glutamate within
the synovial fluid (Flood et al. 2004), and glutamate mod-
ulates bone cell phenotype (Chenu 2002). The gene GRM7
and RA also find their connections through glutamate, as
GRM?7 encodes the receptor for glutamate.

The association between RA and the gene SPON2 is also
biologically plausible. SPON2 encodes extracellular matrix
proteins that bind directly to bacteria and their components
and functions as an opsonin for macrophage phagocytosis
of bacteria. This gene is essential in the initiation of the
innate immune response and represents a unique pattern-
recognition molecule in the extracellular matrix for micro-
bial pathogens. The connection between microbial infection
and RA has been long established (Wilder and Corfford
1991).

Figure 7 provides details of four strongly associated
regions. The result shown was obtained from a single EM
run (of 10 total) that produced the most significant associ-
ation. For each region, we quantified the LD block, using
mLHS, around the core SNP that showed the strongest as-
sociation; the plot illustrates that the genes of interest are
indeed within the LD block. At the same core SNP, we
obtained a loading matrix of K columns (recall K is the
number of lower-layer clusters and we used K = 10 for
the data analyses). We fitted a logistic regression between
each column of the loading matrix and the case—controls
status to obtain a P-value. Because each column of the
loading matrix corresponds to an ancestral haplotype (in-
formally, the columns are dosages of the corresponding
ancestral haplotype that each individual carries), these P-
values are evidence for whether the corresponding ancestral
haplotypes affect disease risk. We declared an ancestral hap-
lotype as significant if the P-value of its loading is <0.001.
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The two most significant haplotypes within the LD method, by aggregating association signals from multiple
block are shown in the plot. The single-SNP analysis ancestral haplotypes, is able to take advantage of the
suggested that all four regions have negligible single- allelic heterogeneity to detect associations, which is evi-
SNP associations. Put together, these four regions are dently more powerful than single-SNP analysis for such
examples of allelic heterogeneity and that our haplotype regions.
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Discussion

We have developed a haplotype association method and
demonstrated its power through both simulations and real
data analysis. Our LHS method redefines the haplotype
association. Compared to existing haplotype methods, our

method integrates out phase uncertainty, avoids arbitrari-
ness in specifying a window to define haplotypes, and
aggregates haplotypes—through ancestral haplotypes—
before testing. Each SNP serves as a core SNP for its local
haplotypes. The extent of local haplotypes is not
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Figure 6 Cluster plots for three SNPs in gene MCF2L2 (on chromosome 3), which shows a strong association with type 2 diabetes. After these three
SNPs were removed, the signal disappeared. In each panel, the x-axis is the logR-Ratio (LRR), and the y-axis is the B-allele frequency (BAF). The LRR is
a normalized measure of the total signal intensity for two alleles of the SNP. The BAF is a normalized measure of the allelic intensity ratio of two alleles.

prespecified; rather, it is learned from the data and varies
along the genome according to sample-specific LD patterns.
In regions that have no allelic heterogeneity, our method
loses power, compared to the single-SNP test, because its
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test statistic has a higher degree of freedom. This is more
than compensated for, however, by the power gain at
regions that have allelic heterogeneity. Thus, our method
complements and improves upon the single-SNP analysis.



Table 4 Significant associations

Disease SNP ID Chr Region (Mb) Gene BF, P, BF, P,

CAD rs7104543 1" 120.16-120.24 GRIK4 7.29 10.74 0.71 2.36
RA rs1010342 4 1.04-1.08 SPON2 6.11 11.98 0.60 2.33
RA rs11218032 " 120.16-120.24 GRIK4 11.60 14.50 —0.90 0.52
T2D rs2383208 9 22.12-22.13 CDKNZA, CDKN2B 7.62 8.57 1.96 3.69
CcD rs9268858 6 32.54-32.56 HLA-DRA 5.20 8.27 1.66 3.35
RA rs1605705 3 7.24-7.28 GRM7 5.76 8.43 1.04 2.82
T1D 16578246 1" 2.18-2.26 INS-IGF2 4.96 8.52 2.34 4.09
T1D rs3218256 22 35.87-35.87 IL2RB 4.60 6.47 2.44 4.26

P, = —logy P-value, which is the minimum P-value over 10 independent EM runs, and in each EM run a P-value was computed using logistic regression Equation 8. BF, =
logo Bayes factor, which is averaged over 10 independent EM runs, and in each EM run a Bayes factor was computed using our haplotype method. P; and BF; are P-values
and Bayes factors for the single-SNP test, respectively. The coordinates are from NCBI Build 35.

We compared our LHS method with three other haplo-
type methods (Browning and Browning 2007; Feng and Zhu
2010; Li et al. 2010a). We regret that the method described
in Browning and Thompson (2012) was not included in the
comparison; the significance level we examined requires 108
permutation tests for their method, which is not feasible
with our current computational resources. Although the
other three methods have advantages by assuming known
haplotype phase (Browning and Browning 2007; Feng and
Zhu 2010; Li et al. 2010a) and perfect imputation (Li et al.
2010a), our LHS method outperforms them all in all but one
simulation scenario, and the margin increases with the alle-
lic heterogeneity. The most singular advantage of our
method is to aggregate haplotypes according to ancestral
haplotypes and then to test aggregated haplotypes jointly,
via the loadings, in association with a phenotype. And this
haplotype aggregating and testing approach appears to be
more effective than other competing methods that we com-
pared with.

One might be tempted to combine the single-SNP
test and the haplotype test, in hopes of creating a more
powerful method. Indeed, we tried this. Adding an extra term
in model (5), we obtained a new model y = Wa + gvy;
+Zf:1L,ij + e, where g is a vector of genotypes. This model
appeared to be very powerful, producing a plethora of asso-
ciations with very large effect sizes. But, the majority of these
associations are genotyping artifacts. Let 8; = 2vy,6;, where 6;
are ancestral allele frequencies, and the model reduces toy =
Wa + gy, + Xy, + e, where x = 2L is a vector of imputed
allele dosages. This model tends to capture SNPs that have
different genotyping error rates between case and control,
which seem to be more enriched than one would expect in
the WTCCC data sets.

A new association method may have ample ways to
produce false positives. We have seen two: genotyping
artifacts and an extra term in the regression model. Allele
flipping is a third. Our method is sensitive to allele flipping
between case and control, even for those SNPs whose
MAFs = 0.5. Suppose we have two adjacent markers, the
first a C/G SNP and the second an A/T SNP, and both have
MAFs of 0.5. Suppose the G-T haplotype dominates in both
cases and controls when there is no allele flip, and suppose

in the cases the two SNPs have their alleles flipped; the
dominant haplotype in the cases then becomes C-A, and
the dominant haplotype in the controls remains G-T. A
well-behaved haplotype method can pick up this difference
easily and report a strong association. On the other hand,
prevailing QC procedures often flip alleles of A/T or C/G
SNPs to match their allele frequencies between cases and
controls. This practice is problematic for the haplotype
method because some haplotype associations might be lost
due to allele flipping—just imagine the opposite of the pre-
vious example. Therefore, it is prudent to ensure the consis-
tency of allele codings between cases and controls, and the
research community should provide strand information for
every data set (as well as low-level data to produce cluster
plots). The LD-based data QC (Scheet and Stephens 2008) is
important for haplotype association methods and methods
that detect epistatic interactions.

We developed a novel algorithm to fit the LD model that
is linear in number of clusters; this is crucial for applying our
method to big data, such as GWAS and resequencing
studies. Our linear algorithm is different from the linear
algorithm used in the phasing method SHAPEIT (Delaneau
et al. 2012). SHAPEIT groups adjacent heterozygous mark-
ers into small windows, iterates all haplotypes within each
window, and samples haplotypes across windows. Our linear
algorithm conditioned on an average haplotype and achieved
linear complexity without sampling. It can be adapted to fit
other models for phasing and imputation, such as MaCH
(Li et al. 2010b) and fastPHASE (Scheet and Stephens
2006). We also anticipate the fast algorithm will contribute
to the LD-based data QC. Moreover, its theoretical property
is of interest in its own right and we will investigate this
further elsewhere.

Our LHS method can be extended to analyze rare
variants. Aggregating rare variants to account for allelic
heterogeneity to increase power is standard in analyzing
rare variants (Li and Leal 2008). Our method suggests ag-
gregating rare variants based on their local haplotype back-
grounds. Accommodating rare variants in our LD model
requires a large number of clusters to capture more subtle
differences between more recent ancestral haplotypes. Our
linear algorithm makes the computation feasible. Moreover,
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current methods aggregate rare variants based on gene an-
notation and are not applicable to intergenic regions. Our
LD model can quantify an LD block, through the mLHS,
around each marker and aggregate rare variants within
the LD block.
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Table S1: Numbers of samples and SNPs in the final analysis.

| CAD | CD | RA | TID | T2D

Cases | 1,856 | 1,566 | 1,739 | 1,912 | 1,806
Controls | 2,826 | 2,770 | 2,737 | 2,869 | 2,729
SNPs | 394,589 | 395,452 | 395,003 | 394,681 | 394,951
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Figure S1: Pairwise plots of top 6 eigenvectors, their histogram, and all eigenvalues (scaled ac-
cording to the largest eigenvalue) of rheumatoid arthritis data. Red dots denote cases, green dots
denote 58 BC controls and yellow dots denote NBS controls.
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Figure S2: Cluster plot for SNP rs7154773 for two controls and five disease cases. There is a fourth
cluster in all seven samples. In each panel, the x-axis is the logR-Ratio (LRR), and the y-axis is
the B-allele frequency (BAF). The LRR is a normalized measure of the total signal intensity for
two alleles of the SNP. The BAF is a normalized measure of the allelic intensity ratio of two alleles.

4 SI Hanli Xu and Yongtao Guan



baf

baf

baf

baf

10

08

04

06

0.4

0.0

0.8

02

10

0.4

cad-rs10167057.58¢c

cad-rs10167057.nbs cad-rs10167057.cad

cad-rs7731936.cad

0.4 08 06 -04 02 00 0.2 0.4 08 -06 -04 02 00 02 04

ra-rs5755495.ra

0.8

baf
o

02

Irr

rs2655693.58c

1.0 06 -04 02 00 02 04 06 08 -10 -05 0.0 05 10

Irr Irr

10

baf
baf

0.0

Figure S3:

05 -25 20 15 10 -05 00 05 -15 -10 -05 0.0 05

Irr Ire

Cluster plots for core SNPs of orphan signals.

Hanli Xu and Yongtao Guan

5 SI



baf

10

cd-rs2314349.58¢

cd-rs2314349.nbs

10

o
09000
)

°

o® mpe w0
0 8°

-1.0 -05 0.0 05

cd-rs2089588.58¢

-04 -0.2 0.0 02

cd-rs2089588.nbs

10

cd-rs2314349.cd

-
o,

° o

cd-rs2089588.cd

Q o@mw o 000 O Q e 4 009 o @ 00 WO
2 2 2 N
o %e0 o o oo §°
° % 3 o, 8o °
° o
@ © © e °
= oS o 7 °
© © o |
3 3 g
® ® s
E B g
- < «
3 3 3
& o o
3 3 3
o o o |
3 3 3
T . T T T T T T T ——
-05 0.0 05 -0.4 -0.2 0.0 0.2 04 -08 -06 -04 -02 0.0 0.2 0.4 0.6
Irr Irr Irr
cd-rs906719.58c cd-rs906719.nbs cd-rs906719.cd
Q 00 @amooOo e O COg @ GO 2+ oD @
2 Xy 2 RIme OPDEoS 2 ki
o o o o
o
. o
@ o ° o o
3 2
o
© =
8 g
- - o
5 5
5 b4
3 g
3 39,
0 000
o o
3 3
o o
o o 7
-1.0 -05 0.0 05 -05 0.0 05 -15 -1.0 -05 0.0 05

I I I

Figure S4: Cluster plots for three SNPs in gene MCF2L2 (on chromosome 3), which shows a strong
association with Crohn’s disease. After these three SNPs were removed, the signal disappeared.
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Figure S6: Cluster plots of two SNPs near gene NID2 (on chromosome 14), which shows a strong
association with rheumatoid arthritis. After these two SNPs were removed, the signal disappeared.
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