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ABSTRACT The distribution of admixture tract lengths has received considerable attention, in part because it can be used to infer the
timing of past gene flow events between populations. It is commonly assumed that these lengths can be modeled as independently
and identically distributed (iid) exponential random variables. This assumption is fundamental for many popular methods that analyze
admixture using hidden Markov models. We compare the expected distribution of admixture tract lengths under a number of
population-genetic models to the distribution predicted by the Wright–Fisher model with recombination. We show that under the
latter model, the assumption of iid exponential tract lengths does not hold for recent or for ancient admixture events and that relying
on this assumption can lead to false positives when inferring the number of admixture events. To further investigate the tract-length
distribution, we develop a dyadic interval-based stochastic process for generating admixture tracts. This representation is useful for
analyzing admixture tract-length distributions for populations with recent admixture, a scenario in which existing models perform
poorly.

THERE has been interest in analyzing population genomic
data by using methods that partition an admixed indi-

vidual’s genome into blocks originating from different an-
cestral populations. An early version of the popular program
Structure (Falush et al. 2003) accomplished this with a hid-
den Markov model (HMM), indexed along the genome, with
hidden states corresponding to the ancestral population
each position was inherited from. The contiguous blocks of
the genome inherited from a population are called “admixture/
migrant tracts/segments,” depending on the context. For
consistency, we use the term “admixture tract” in this article.
Admixture tracts are unobservable, and their existence can
be inferred only from genomic data. The process of doing so
is called “admixture deconvolution” or “ancestry painting”
and has been used in a number of different contexts, such as in
admixture mapping for identifying human disease-associated
genes (Hoggart et al. 2003; Reich et al. 2005), population-
genetic inferences aimed at understanding human ancestry
(Bryc et al. 2010; Henn et al. 2012), or identifying regions
affected by natural selection (Tang et al. 2007).

The technique of using HMMs to partition an individual’s
genome into admixture tracts has been used in subsequent

methods. Hoggart et al. (2003) and Smith et al. (2004) used
HMMs for inferring admixture tracts with the purpose of
admixture mapping and controlling for population stratifi-
cation, similar to the method of Falush et al. (2003). More
recent publications have focused on admixture deconvolu-
tion for more general population-genetic purposes, such as
Tang et al. (2006) and Sundquist et al. (2008).

In HapMix (Price et al. 2009), the HMM model of Li and
Stephens (2003) for modeling linkage disequilibrium is ex-
tended to include admixture between two populations. HapMix
uses a genotype-based state space and so does not require
phased data.

LAMP (Sankararaman et al. 2008; Paşaniuc et al. 2009;
Baran et al. 2012) is similar to HapMix, in that it also can
be considered an extension of the Li and Stephens model.
However, the size of its state space does not depend on the
number of reference haplotypes, which allows it to run faster
than HapMix.

PCAdmix (Bryc et al. 2010; Brisbin et al. 2012; Henn et al.
2012) also uses an HMM to identify admixture tracts, but
replaces observed data with admixture scores inferred from
principle component analyses (PCA). As in the case of LAMP,
it is applicable to multiple populations. Brisbin et al. (2012)
argue that the method performs better than LAMP in simu-
lations and has performance comparable to that of HapMix,
which is limited to two populations.

There are also methods for estimating population-genetic
parameters of admixture events from genomic data without
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first inferring admixture tracts, such as ROLLOFF (Moorjani
et al. 2011). Other more general methods for estimating
population-genetic parameters, such as @a@i (Gutenkunst
et al. 2009), can also be used to estimate time and the strength
of admixture events. Finally, there are a many pregenomic
methods for analyzing divergence and gene flow exemplified
by the IM methods developed in Hey and Nielsen (2004) and
Hey (2010). However, these methods do not directly use the
information contained in the distribution of admixture tract
lengths.

As a result of these efforts, there has been considerable
interest in the relationship between admixture tract lengths
and the time of admixture (T) and admixture fraction (m),
to be defined mathematically later. Pool and Nielsen (2009)
derived the admixture tract-length distribution under the
assumptions that inbreeding is not significant and that tracts
are so rare that they are unlikely to recombine with each
other. Gravel (2012) relaxed this second assumption to model
tracts descended from multiple migrant ancestors, but under
simplified model of reproduction called the Markovian
Wright–Fisher (MWF).

The methods for ancestry deconvolution discussed above
use an HMM, assuming that the spacing between recombi-
nation events is independent and exponentially distributed
and that ancestries of these recombination segments are in-
dependent. This is equivalent to assuming that admixture
tracts have lengths that are independent and exponentially
distributed. Population-genetic models that are designed to
be Markov along the genome, such as the MWF, sequentially
Markov coalescent (SMC) (McVean and Cardin 2005), or
SMC9 (Marjoram and Wall 2006) models generate admix-
ture tracts with these properties. Under the Wright–Fisher
(WF) model with recombination, which is not Markov along
the genome, we show that admixture tract lengths do not
have an exponential distributionand, furthermore, that these
lengths can be highly correlated. When T is small, these prop-
erties are a result of inheritance from a small, fixed sample
pedigree, and when T is large, they are a result of inbreeding
(in the sense of identity-by-descent due to genetic drift, as
opposed to nonrandom mating). This former cause was first
discussed by Wakeley et al. (2012) in examining the conver-
gence of the ancestral recombination graph (Hudson 1983;
Griffiths and Marjoram 1996) to the WF genealogical process.
Because of this integration over pedigrees, the ancestral re-
combination graph diverges from the WF model when T is
small and, like the Markov population-genetic models, gen-
erates independent, exponential tract lengths.

Parallel to the literature on inference methods for admix-
ture deconvolution is a well-developed literature on the seg-
regation of tracts in pedigrees. This starts with Fisher’s theory
of junctions (Fisher 1949). A junction is defined with respect
to an ancestral population and is a point in the chromosome
where, due to a crossover, the segments to the left and right
trace their descent back to different members of the ancestral
population. The distribution of the distances between junc-
tions is of prime interest in this body of theory and is closely

related to the distribution of admixture tract lengths. Fisher
(1949) was interested in determining the expected number of
junctions under different models of inbreeding. Stam (1980)
extended Fisher’s original results by considering a randomly
breeding population of constant size and derived a number
of different results under the assumption of independent and
exponentially distributed tract lengths. Many studies have sub-
sequently focused on the amount of genetic material passed
from an individual to its descendants, given a known pedigree.
Donnelly (1983) showed that the probability that an individual
contributes no genes to a descendant T generations in the
future is �exp(2TR/2T), where R is the recombination map
length. Barton and Bengtsson (1986) looked at the inheri-
tance of blocks of loci under selection in hybridizing popula-
tions. Other studies have subsequently studied properties of
the distribution of junctions and the distances between junc-
tions, for fixed pedigrees including Guo (1994); Bickeböller
and Thompson (1996a,b); Stefanov (2000); Cannings (2003);
Dimitropoulou and Cannings (2003); Ball and Stefanov (2005);
Walters and Cannings (2005); Rodolphe et al. (2008).

Baird et al. (2003) also consider the distribution of sur-
viving tracts among the descendants of an individual. They
model the number of descendants as a branching process
and the lengths of inherited material carried by all descend-
ants as a branching random walk. Assuming complete cross-
over interference (i.e., at most one recombination event per
chromosome), they derive the generating function for these
lengths as a function of T and the map length. They also
derive expressions for the mean number of tracts of a certain
length under both the complete crossover interference model
and a Poisson process of recombination. Baird et al. (2003)
note that their results can be used to understand the process
of genetic fragments between introgressed species, similar to
the admixture problem considered here. In particular, they
note that the standard deviations of both tract lengths and
number of tracts are comparable to their means, indicating
a high degree of variability. These results have been extended
in other applications, for example, to derive the distribution
of reproductive values (Barton and Etheridge 2011).

Chapman and Thompson (2002) derive general expres-
sions for the mean and variance of the number of junctions.
Their results can be applied under different demographic mod-
els because they show that these two moments depend only
on the recombination map length and the one- and two-locus
probabilities of identity-by-descent (IBD).

Beyond the fact that we focus on the effect on an admixed
population, these approaches differ from our work in two
ways. First, we consider the backward-in-time process of the
ancestry of a sample, instead of considering the forward-time
process describing the descendants of an individual. We also
consider the merger of multiple fragments inherited from a
group of individuals (migrants), instead of the contributions
from just one. The effect of such mergers is particularly im-
portant when the number of migrants is large.

As no models other than the full WF model are available
for accurate analyses of tract lengths for recent admixture
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times, we present a new model of genealogical structure
that can be used to analyze and approximate tract-lengths
distributions and short-term pedigree-based processes more
generally. This model assumes that the sample has a full
pedigree and represents the genealogical history of a sample
in terms of dyadic intervals. It is accurate for time scales and
population sizes in which pedigree structure is important but
inbreeding is not.

Methods

For simplicity, we consider a simple admixture scenario in
which, T generations ago, two source populations contrib-
uted to form a third, admixed, population. Founders of this
admixed population come from the “migrant” population with
probability m and from the “nonmigrant” population with
probability 1 2 m. Note that the labels on the two source
populations are arbitrary.

Each of the population-genetic models analyzed in this
article model the reproduction and recombination in this
monecious population of 2N chromosomes subsequent to
the admixture event. We assume that recombination events
follow a Poisson process with rate 1 crossover/Morgan. This
assumption of no crossover interference is not biologically
accurate, but it is mathematically tractable. We later argue
that this assumption is conservative with respect to the ma-
jor conclusions of this article and show how our results can
be extended to incorporate some models of interference.

Haploid Wright–Fisher with recombination

This is the standard haploid version of the WF model with
recombination considered by Gravel (2012), Wakeley et al.
(2012), and others. Each chromosome is produced by recom-
bining two parents from the previous generation, chosen in-
dependently and uniformly at random. We consider this to be
the more appropriate model for understanding tract-lengths
distributions and compare the following models to it.

Markovian Wright–Fisher

Gravel (2012) introduced this mathematically tractable ap-
proximation of the diploid WF model. It assumes that chro-
mosomes are formed from the recombination of all 2N
chromosomes from the previous generation, instead of just
two. At each recombination point, the offspring copies from
one of the 2N chromosomes from a previous generation,
uniformly at random. Additionally, it assumes that 2N is large,
so that each crossing-over results in a new parent contribut-
ing genetic material. As its name implies, the MWF model is
a Markov process along the genome.

Coalescent with recombination

In the coalescent limit (2N/ N with time measured in units
2N generations and recombination distance in units of cross-
overs/4N), Griffiths and Marjoram (1996) showed that the
genealogical process of a sample from the haploid WF model
converges in distribution to the ancestral recombination graph

(ARG), which can be constructed as a Markov process going
backward in time. Wiuf and Hein (1999) presented a sequen-
tial construction of the ARG along the genome. This sequential
process is not Markov. Instead, the conditional distribution of
a marginal trees depends on all the trees that have appeared
to the left of it. The case of admixture tracts is slightly different
than other uses of the coalescent, because here we start with
one lineage and stop the process at the fixed time, T/2N, in-
stead of the more common case, where we start with more
than one lineage and stop the process when only one lineage
is left.

Sequentially Markov coalescent

McVean and Cardin (2005) developed an approximation of
the coalescent in which the sequence of marginal trees form
a Markov process along the sequence. In the SMC, the only
allowed coalescence events are for lineages with overlap-
ping ancestral material. The model is otherwise identical to
the coalescent.

Majoram and Wall’s SMC9

Marjoram and Wall (2006) presented a related model (SMC9)
that loosens the restrictions of the SMC while retaining its
Markov property. In addition to the coalescence events allowed
in the SMC, the SMC9 further allows coalescence events for
lineages with abutting ancestral material. This extra possibility
allows for back coalescences in the ancestral recombination
graph, which produces a significant improvement for this mod-
el’s predictive powers when these events are likely.

Perfect binary tree model

As we argue in Results, none of the four previous models
approximate the tract-length distribution well when T is
small relative to 2N. We therefore introduce the perfect bi-
nary tree model (PBT), so named because it assumes that
the sample has 2T distinct greatT 2 2 grandparents, i.e., that
the pedigree of the sample, up to generation T, is a perfect
binary tree with depth T. From simulations, we found that
this approximation produces accurate results when 2T , N,
which is the parameter space for which the coalescent ap-
proximation does not. For most biological populations, this
restricts T to a rather limited set of parameter values, but
often, this is a region of great interest. Some definitions and
properties of this process are discussed in the following sec-
tion, which can be skipped by the less mathematically in-
terested reader.

Our goal is to characterize the stochastic process by which
segments of ancestral genetic material are recombined to
form the genome of a particular person of interest (the proband).
We call this the ancestor-copying process, which represents
the line of descent of the proband’s genome as a function
of the genomic position. Label the parents of an individual
as the left and right parent, respectively. The ancestry of an
individual in a particular position in the genome is then de-
termined by the choices of left and right parents back in time
on the pedigree.
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In investigating IBD probabilities, Donnelly (1983) con-
sidered this ancestry as a random walk on a hypercube, with
each vertex corresponding to the set choices of left or right
parents for every individual in the pedigree. For a perfect
binary tree, the size of this state space is superexponential in
T, which Donnelly (1983) was able to considerably reduce
by using symmetries in the transition matrix. For the ances-
try-copying process, we cannot use these symmetries in the
same way and instead directly integrate over hidden recom-
bination events.

We instead represent this ancestry using dyadic intervals.
At a position in the genome, x, the ancestor-copying process
Nx takes a value from the half-open interval [0, 1). The
dyadic intervals in which Nx is contained correspond to
the ancestors this position was inherited from. We define
dyadic intervals to be half-open intervals of the real line of
the form Ij,k = [k22j, (k + 1)22j) for j, k 2 9, k , 2j. Dyadic
intervals are isomorphic to the nodes of binary trees in that
every dyadic interval is the union of two unique disjoint
dyadic intervals. We use the following notation to denote
the left and right halves of a dyadic interval Ij,k:

I ℓj;k ¼
�
k22j; ð2kþ 1Þ22j21

�
I rj;k ¼

�ð2kþ 1Þ22j21; ðkþ 1Þ22j�:
We denote the length of a dyadic interval by |Ij,k| = 22j and
define the distance between two dyadic intervals, d(I, J), to
be the length of the shortest dyadic interval containing both.
For a dyadic interval I, we define I9 to be the dyadic interval
with 2|I| = |I9| such that I � I9 and I* to be the set differ-
ence of I9 and I.

We associate an ancestor to each dyadic interval in [0, 1):
the proband to I0,0, the left parent to I1,0, the right parent to
I1,1, the left parent’s left parent to I2,0, etc. The value of the
ancestor-copying process at a particular position represents
the ancestors the proband inherited that position from; e.g.,
if the ancestor copying process is ,1

2, then the proband
inherited that position from the left parent, or if is $ 3

4,
then the proband inherited that position from the rightmost

grandparent (and consequently the right parent). A realiza-
tion of the ancestor-copying process is given in Figure 1.

The defining property of the ancestor-copying process
is that its distribution does not change after a generation
of recombination. The process of recombination between
two parental genomes can be described by a two-state
Markov process, Rx, which switches between 0 and 1 at
rate 1. If Nx and N9

x are the independent ancestor-copying
processes of the two parents, which are jointly indepen-
dent of Rx, then

Nx ¼d 1
2 Rx Nx þ 1

2 ð12RxÞ
�
1þ N9

x
�
: (1)

This property makes it clear that conditional on Rx, the be-
havior of Nx in the range

�
0; 12
�
is independent of its behavior

in
�
1
2; 1
�
. In fact, this property can be extended to any mu-

tually disjoint collection of dyadic intervals:
Theorem 1. For a dyadic interval A, the processes Nx1 {Nx 2 A}

and Nx1 {Nx ; A} are conditionally independent given 1 {Nx 2 A}.
An intuitive explanation for this theorem is that because

there is no inbreeding, ancestors that are not lineal descend-
ants will be unrelated, and hence independent. The mathe-
matical proof, as with all others in the article, is presented in
the Appendix.

To characterize the ancestor-copying process, we want to
find the rate at which Nx leaves a dyadic interval I,

nI ¼ lim
xY0

12PIðNx 2 IjN 0Þ
x

;

and the transition rates between disjoint dyadic intervals
I and J,

nI; J ¼ lim
xY0

PIðNx 2 JjN 0Þ
x

;

where PI is the measure induced by conditioning on N0 2 I
and N 0 = ({Nx: x # 0}.

Theorem 2. The length over which Nx remains in a dyadic
interval is exponentially distributed, with rate given by

Figure 1 A realization of the ancestor-copying process. In
this case, the process stays in the interval

�
0; 12
�
, indicating

that this length of chromosome was inherited entirely from
the proband’s left parent. The process jumps between

�
0; 14
�

and
�
1
4;

1
2

�
three times, indicating that each left grandparent

contributed two blocks to the proband. The pedigree, up to
the proband’s eight great-grandparents, is shown on the
right. Each ancestor has been placed in its corresponding
dyadic interval.
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nI j;k ¼ j:

Theorem 3. The transition rates between disjoint dyadic inter-
vals is given by

nI; J ¼
Y

i2PðI; JÞ

1
2
þ
�
1fTi .Ti*g21

2

�
expð22Ti9Þ

with

TI ¼ supfx, 0 : Nx 2 Ig

and

PðI; JÞ ¼ fi 2 I :jij, dðI; JÞ; J � ig:

The rate at which Nx leaves dyadic intervals depends only on
the length of the dyadic interval, which is in accord with the
results of Baird et al. (2003), Pool and Nielsen (2009), and
Gravel (2012) regarding the exponential distribution of ge-
netic distance between recombination events. However, the
process is not Markov, because the transition rates depend
on the values of Nx for x # 0 and not just N0.

The MWF and SMC models assume that segments are
inherited from distinct ancestors, but for the PBTmodel, multiple
segments can be inherited from the same ancestor. The
probability of this event decreases as T increases, confirm-
ing the prediction given in Baird et al. (2003).

Simulations

As we explain in the results, when there is a single pulse of
admixture, the Markov models (MWF, SMC, and SMC9) pro-
duce admixture tracts whose lengths are independent and
exponentially distributed. For the other models, we first wrote
Monte Carlo simulations that assigned an ancestor to each
recombination segment. For the coalescent model, we used
code that was essentially identical to the programms (Hudson
2002), with two modifications: the backward process stops
at the time of admixture, instead of when only one lineage
remains, and the simulation starts with just one lineage. The
extant lineages at the time of admixture are then traced forward
in time to find which recombination segments they contribute.

For the PBT model, we used the transition rates from
Theorem 3 to efficiently simulate Nx on the dyadic intervals with
size at least 22T in the following manner: The stationary distri-
bution of Nx is uniform on [0, 1), so we put N0 in a dyadic
interval, I, with length 2T, chosen uniformly at random. The
length for which Nx remains in this interval has an Exp(T) distri-
bution. Note that nI;I* ¼ nI;ðI9Þ* ¼ nI;ðI$Þ* ¼ ⋯ ¼ 1, and that
I, I*, (I9)*, . . . form a partition of I0,0 so we first determine which
of these dyadic intervals Nx jumps to. Conditional on this, we
then recursively determine which of the left and right dyadic
intervals contain Nx, until we have narrowed Nx down to a dy-
adic interval of length 22T. As we do this, we also update the
values of the TI’s. One of the advantages of the dyadic interval

representation is that it allows efficient simulations of pedi-
gree structure by simulating a stochastic process on [0, 1)
instead of representing full pedigrees for each segment of the
genome as a linked list in the computer memory.

The WF model is the same as the PBT model, with the
exception that inbreeding is allowed. We still represent the
pedigree as a perfect binary tree, with the caveat that some
of the nodes are taken to represent the same ancestor. For
the simulation, this means that some of the Ti’s for different
dyadic intervals that represent the same ancestor will in fact be
equal. Generating the entire pedigree is computationally expen-
sive for large T, so we extend the pedigree only as is needed,
i.e., as Nx jumps to previously unvisited dyadic intervals.

After assigning an ancestor to each recombination seg-
ment, we then independently label each ancestor as migrant
or nonmigrant, with probabilities m and 1 2 m, respectively,
allowing us to demarcate admixture tracts. For each set of
admixture parameters, we used a simulated a segment of
genome 30 times longer than the average tract length. To min-
imize edge effects, we examine only the tracts from the middle
third of this segment.

Models of multiple admixture pulses

The Markov models (MWF, SMC, and SMC9) predict that
admixture tracts resulting from one pulse of admixture will
have exponentially distributed lengths, while those resulting
from two (or more) pulses of admixture will have length
distributions that are the mixture of two (or more) exponen-
tials. On the other hand, the Wright–Fisher model produces
admixture tracts that are nonexponential, even in the one-
pulse scenario. As a result, when analyzing the data using
a Markov model, it is possible to mistakenly conclude that
the observed tract-length distribution cannot be explained
by just one pulse of admixture, when in fact it can be, but
only by using the more complex Wright–Fisher model.

We investigated the probability of this happening when
using a likelihood ratio test to distinguish between an
exponential distribution vs. a mixture of two exponentials. To
draw from the null distribution, we simulated 104 admixture
tracts with exponentially distributed lengths and found the
maximum log-likelihood of these under a mixture model, with
two exponentials, i.e.,

Lðp; a; bjxÞ ¼
Y104

i¼1

½pae2axi þ ð12 pÞbe2bxi �;

where each xi is the length of a admixture tract. This max-
imization was done by a standard expectation maximization
(EM) algorithm. The 100 initial random values p0, a0, and b0
were repeatedly updated by first computing the posterior
probabilities,

ri;t ¼ ptate2atxi

ptate2atxi þ ð12 ptÞbte2bt xi
;

and then the likelihood-maximizing posterior means
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p̂tþ1 ¼
X104

i¼1
ri;t

104

âtþ1 ¼
X104

i¼1
ri;tX104

i¼1
ri;txi

b̂tþ1 ¼
X104

i¼1

�
12 ri;t

�
X104

i¼1

�
12 ri;t

�
xi
:

The values were updated until the log-likelihood improve-
ment was ,1023. We took the highest log-likelihood value
resulting from these 100 optimizations to be the maximum
log-likelihood under the mixture model for this sample.

Tests of a single admixture pulse

To test the null hypothesis of a single admixture event, we
define a likelihood ratio test statistic, S, by subtracting the
maximum log-likelihood value under the full model with
two admixture events from that obtained for a model allow-
ing only a single admixture event. The asymptotic distribution
for this test statistic is not known, because some parameters of
the alternative hypothesis are not estimable under the null
hypothesis. This implies that the general asymptotic likelihood
theory is not applicable. To obtain critical values for this test
statistic we instead used parametric simulations under the null
hypothesis and assuming independent exponentially distrib-
uted tract lengths. We simulated 105 samples to approximate
the critical values corresponding to significance levels of P =
0.05 and P= 0.02 a range of values for T and form= 0.1, 0.3,
and 0.5. We then compared this distribution of log-likelihood
ratios to log-likelihood ratios obtained in the same way for
simulated datasets of 104 tracts generated under the Wright–
Fisher model with a single admixture event.

Results

The models described in the Methods predict that the sam-
pled chromosome can be viewed as a mosaic of recombination
segments from chromosomes in generation T. The models
agree in predicting that the distance between recombination
events, and hence the length of a recombination segment, is
exponentially distributed, with scale T21, but differ in their
predictions regarding how recombination segments are inherited
from ancestors from the admixing generation. In the following,
we use simulations to illuminate these differences.

Admixture tracts lengths are neither independent and
identically distributed nor exponentially distributed

Recombination fragments are exponentially distributed in
the WF model. Under the assumption that all ancestors are
distinct, Theorem 2 shows that the distribution of the length
of fragments in which an individual has any particular
ancestor T generations ago is also exponentially distributed,
with scale T21. If admixture tracts are assumed to be so rare
that they are unlikely to recombine with each other, then
admixture tract lengths will also be exponentially distributed,
and the process will be well modeled using the independence
assumption of Pool and Nielsen (2009). However, admixture
tracts are different from recombination segments, as multiple
recombination segments can recombine to form a single ad-
mixture tract. This was the situation considered by Gravel
(2012). In general, if the lengths of recombination tracts
are independent and identically distributed (iid) exponential
random variables, and each segment is migrant indepen-
dently and with probability m, then the length distribution
of admixture tracts would be found as a geometric mixture
of exponential random variables and consequently exponen-
tially distributed with scale [T(1 2 m)]21. However, the sec-
ond condition is not true. There are two reasons for this. First,
as shown by Theorem 3 the ancestry-copying process is not

Figure 2 The correlation of the lengths of consecutive
admixture tracts for the WF with 2N = 1000 (red), PBT
(green), and coalescent (blue) models. In all cases the ad-
mixture fraction is m = 0.95. Admixture tract lengths were
transformed into the unit interval by their empirical quan-
tiles, so uncorrelated lengths would produce an entirely
white square. The simulations were run with a population
size of 2N = 2000.
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Markov. An individual has a finite number of ancestors and
recombination can bring together recombination fragments
inherited from the same ancestor. As a result, the lengths of
migrant tracts are correlated when T is small. Another factor
that contributes to this correlation is the variance in the num-
ber of migrant ancestors an individual has. For instance, an
individual with one migrant grandparent will have admixture
tracts that tend to be shorter than those for an individual with
three migrant grandparents. The effect of this is illustrated in
Figure 1 for T= 5. In addition, when T is large, the number of
genetic ancestors will be significantly smaller than 2T. It might
be useful to think of this effect forward in time as an effect of
inbreeding, in which admixture tracts introduced into the pop-
ulation are broken up by recombination but also joined again by
inbreeding. As a result, many fragments in the population seg-
regating after time T will likely be descendants of a relatively
few number of larger fragments. The location of smaller frag-
ments will therefore be correlated in the genome, correspond-
ing to the location of the initial admixture fragments, and back
recombination has a higher probability than under the iid as-
sumption. This effect is illustrated in Figure 1 for T = 2000.

Baird et al. (2003) also simulated and commented on the
clustering of tracts in the genome. A single tract spanning a
larger region may survive the first generations and then be
broken up into smaller fragments in different individuals in
the same region of the genome. Martin and Hospital (2011)
also examined the problem of correlated tract lengths, but in
the context of recombinant inbred lines, and similarly con-
cluded that tract lengths are not independent.

As a consequence of the correlation in tract lengths along
the chromosome, admixture tracts are not accurately mod-
eled as a geometric mixture of iid recombination fragments.
This effect is illustrated in Figure 2. The strongest deviations
occur when T is large or when the admixture proportion is
large. The length distribution of admixture fragments when
the admixture proportion is m corresponds to the distribution
of distances between fragments when the admixture propor-
tion equals 1 2 m. In terms of HMM modeling, deviations
from exponential distribution of either admixture fragments,
or distances between admixture fragments, will violate the
model assumptions.

Related results have previously been obtained relating
to the theory of junctions. Chapman and Thompson (2002)
examined an assumption of independent Poisson-distributed
junctions among individuals and independence of junctions
within individuals. They noted that this assumption tends to
underestimate the true variance when T/N . 1. Although
the assumptions in their study are different from ours—in
particular we consider descent from multiple migrant indi-
viduals and the possibility of recombination between tracts
from these individuals—the conclusion reached by Chapman
and Thompson (2002) is essentially similar to the one reached
here: tracts are not exponentially distributed when T is large
relative to N. Martin and Hospital (2011) examined this prob-
lem further in the context of recombinant inbred lines and
similarly concluded that tract lengths are not exponential.

The interplay of the nonindependence and nonexponen-
tiality of the admixture tract distribution can be illustrated

Figure 3 Admixture tract-length distributions for the MWF
and SMC (both blue), SMC9 (green), coalescent (red) models
compared to the distribution under the WF model (thick
black). Note that the y-axis is shown on a logarithmic scale.
The simulations were run with a population size of 2N =
2 3 103. For T = 5, the former three models give exponen-
tial distributions and do not match the WF distribution. For
T = 2000 the coalescent and WF distributions are the same.
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by looking at the distribution of admixture proportions, the
proportion of a window that is inherited from migrant
ancestors. This is presented in Figure 4, using a window size
of 1 cM, in an admixture scenario in which the pattern of
admixture tracts is expected to have fixed in the population.
The PBT, MWF, and SMC models do not account for the
effect of inbreeding, so they predict that admixture tracts
will become ever smaller as T becomes larger. As a result,
they predict degenerate admixture proportions, i.e., an atom
onm. Consequently, these models were not included in Figure 4.
The coalescent, SMC9, and WF models do take inbreeding into
account, and consequently predict nondegenerate limiting dis-
tributions for the admixture proportion.

For both values of m, the distribution predicted by the
WF and coalescent models has a larger variance than that
predicted by SMC9, while having the same mean. For small
values of m, this is because admixture tracts are likely to be
clustered and have either zero or a larger number of tracts
than predicted by SMC9. For large values of m, this higher
variance is better explained by the fat tails of the admixture
tract-length distribution.

Coalescent with recombination

The coalescent provides an approximation to the WF model
that is in general excellent, but may be less so when con-
sidering the dynamics shortly before the time of sampling
(Wakeley et al. 2012). In the present context this means
that the coalescent approximates the WF model well when
T is large, but not necessarily so for small values of T. The

correlation that arises due to inbreeding is well modeled by
the ARG, but the correlation due to a small number of ances-
tors in the pedigree in the very recent ancestry is not. This is
shown in Figure 1. For small values of T, the coalescent does
not accurately capture the correlation structure. As a conse-
quence, the distribution of admixture tract lengths is not well
modeled when T is small (Figure 2), particularly for large
migration fractions (m = 0.9). In an admixed population,
the distribution of tracts originating from the population con-
tributing most of the genetic material are far from exponen-
tially distributed. However, the effect rapidly diminishes as
T increases.

Markovian models

The MWF, SMC, and SMC9 models all generate admixture
tracts with exponentially distributed lengths. In these models,
admixture tracts follow a geometric mixture of iid exponen-
tial random variables. In each of these Markovian models, the
ancestry of a recombination segment depends only on the
ancestry of the recombination segment to its left. As a result,
the number of recombination segments that make up an ad-
mixture tract will be a geometric random variable. The geo-
metric mixture of iid exponential random variables results in
another exponential. Under the MWF model, each recombi-
nation segment is inherited from a distinct ancestor in genera-
tion T. Each of these ancestors is from the admixing population
with probability m, so admixture tract lengths are exponentially
distributed with scale [T(1 2 m)]21, as previously discussed. In
the SMC, the recombined lineage cannot coalesce back to the

Figure 4 Admixture tract-length distributions for the PBT
model (green) and the WF model (thick black). The simu-
lations were run with a population size of 2N = 2 3 103.
Note that the y-axis is shown on a logarithmic scale. For
T = 5, the PBT model matches the WF model closely, while
for T = 2000, it does not and has an exponential distribu-
tion instead.
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current marginal tree, so as in the Markovian WF model, each
recombination segment will be descended from a distinct ances-
tor and admixture tracts lengths will again be exponentially
distributed with scale [T(12m)]21. In SMC9, back coalescences
to the current marginal tree are possible and occur with proba-
bility 122N

�
12 e2T=2N

��
T. In this event, the recombination

segment is migrant if and only if the previous segment was.
Therefore, the probability that the segment on the right of
a recombination point is migrant, given that the segment on
the left was, is�

12
2N
T
�
12 e2T=2N�	

þ
�
2N
T
�
12 e2T=2N�	m ¼ 12

2N
T

ð12mÞ�12 e2T=2N�;
so admixture tract lengths will have an Exp

�
2N
�
12m

��
12 e2T=2N

�

distribution. When 2N � T, this is approxi-

mately the same distribution given by the other two models,
but for fixed 2N and as T / N, SMC9 makes the more
accurate prediction that the average tract length goes to
the nonzero value of [2N(1 2 m)]21.

These models may fail to give accurate predictions for
both small and large values of T. These are two separate
effects. When T is small they give inaccurate predictions
for the same reasons as the coalescent. In particular, they
do not accurately model the correlation due to a fixed num-
ber of ancestors in the pedigree and the possibility of back
recombination. For this reason, tract-length distributions do
not fit well, especially for large values of m.

For large values of T they fail because they do not accu-
rately model the effect of inbreeding. The MWF model and
the SMC give identical predictions (Figure 3). When T is
large, they underestimate the length of admixture tracts
for small values of m. For large values of m they underesti-
mate the variance in tract length. In either case, the fit of
tract-length distribution to that expected under the WF
model, or the coalescent, is poor. In the coalescent and WF
models, nonadjacent segments may be descendants of the

same ancestor, an event that occurs with higher probability
as T increases. The overall effect of this is that the Markovian
models are too likely to assign more distinct ancestors to
a given length of chromosome, which increases the probabil-
ity that some section was inherited from a nonmigrant ances-
tor. The error for the SMC9 is less than that of the SMC and
Markovian Wright–Fisher model (Figure 3).

Perfect binary tree

In the Methods, we derived a genealogical model that can be
used to study tract-length distributions when T is small. This
process captures the correlation structure and admixture
tract-length distribution of the full WF model for small T
(Figure 2 and Figure 4), something that the other approxi-
mative models explored here fail to do. However, the model
does not accurately describe the dynamics when T is large,
as it assumes that all ancestors from generation T are dis-
tinct. For T . log2N, this is not possible, and some ancestors
must necessarily be the same.

This is consistent with the result of Baird et al. (2003),
which found that, asymptotically for large T, the probability
that an individual inherits multiple blocks from one ancestor
goes to zero. In this limit, where every recombination seg-
ment is inherited from a distinct ancestor, admixture tracts
lengths will be idd exponential, as in the case of the Markov
models.

Admixture tracts as distances between junctions

We further compare our results with the results of Baird
et al. (2003) to illustrate the effect of considering multiple
ancestors of an individual and the effect of assumptions re-
garding crossover interference. Baird et al. (2003) consider
the distribution of the lengths of genetic material inherited
from one individual, in a branching-process model with
complete interference, i.e., assuming at most one recombi-
nation event on a chromosome each generation. They found
that the density, in z, for this distribution is given by

�
12z

�T21�2T þ T
�
T2 1

��
y2 z=12 z


�
1þ yT

;

Figure 5 Distributions of the fraction of 1-cM windows
that are parts of admixture tracts, for two values of m.
Parameters for the two simulations were otherwise the
same, with N = 5 3 103 and T = 2 3 104. The distribution
under the SMC9 model is in green and the distribution
under the coalescent and Wright–Fisher models is in blue.
Note that the left graph is plotted on a log scale.
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where y is the recombination probability and T is the num-
ber of generations. When m is small, e.g., 0.01, most admix-
ture tracts will be inherited from just one migrant ancestor.
In this scenario, the Baird distribution is comparable to the
admixture tract-length distribution (Figure 7). When T = 5,
the Baird distribution differs from the WF and PBT models
because it uses a different model of interference. Under its
assumption of complete interference, no tract can span more
than a map distance of y, whereas the other two models have
no such maximum. In the bottom row, where T= 2000, both
the Baird distribution and the PBT model fail to account
for the back coalescence of different fragments and conse-
quently predict tracts that are shorter than under the WF
model. However, there are no effects with regard to their
different assumptions about recombination interference. For
T= 100, when the effects of back coalescence are negligible,
all three models predict the same distribution, despite their
different assumptions.

When m is not small, the Baird distribution fits less well
(shown in the right column of Figure 7). This is mainly
because each admixture tract is now more likely to be com-
posed of genetic material inherited from multiple migrant
ancestors.

Likelihood ratio test of the number of admixture pulses

To determine the effect of wrongly assuming iid exponential
tract lengths for inferences for real data, we implemented
a likelihood ratio test and tested the null hypothesis of one
admixture pulse, against the alternative of two admixture
pulses, on data simulated under the null hypothesis. The
false-positive rate, defined as a fraction of these log-likelihood
ratios that exceeded the critical value (obtained using simu-
lations), was plotted as a function of T and is shown in Figure 6.
Note that there is a strong excess of false positives, particularly
when T is large or small. The false-positive rate is less for in-
termediate values. This is explained by the observations from
the previous sections, showing that the assumption of iid expo-
nential tract lengths is particularly poor when T is very small
(due to finite number of ancestors in the pedigree) or larger
than N (due to inbreeding).

Discussion

We have found that under many scenarios, the Wright–
Fisher model produces admixture tracts whose lengths are
not well approximated as independent, exponential random
variables. There are two major effects that are important to
distinguish: the effect of a finite number of ancestors in the
pedigree for small values of T and the effect of inbreeding
for large values of T. Both of these effects cause deviations
from the idd exponential assumption.

When using an HMM for ancestry deconvolution, theMarkov
model provides a prior on tract lengths. If there if signal re-
garding local ancestry in the data, then misspecification of this
prior may not matter a great deal. However, for parametric
population-genetic data analysis, i.e., estimating the number of
timing of admixture events, it may be desirable to consider
possible biases incurred due to assumptions regarding expo-
nential tract lengths. One way to verify inferences of multiple
admixture pulses would be to compare the simulated tract-
length distribution under the WF model to the data.

The magnitude and direction of the estimation bias will
depend on the model and the values of m and T. For small
values of T, Figure 3 shows that the Markov models under-
estimate the number of long tracts. Consequently, estimates
of T based on the number these longer tracts will be down-
wardly biased.

The biases can be avoided by using the Wright–Fisher,
instead of a Markov, model to construct a prior for the local
ancestry distribution. However, there are no known compu-
tationally efficient algorithms for integrating over this prior.
However, efficient inference under the perfect binary tree
model may be possible, because of the conditional indepen-
dence given by Equation 1. When T is small, this would be a
good approximation to inference under the Wright–Fisher
model. As the simulations show, when 20 , T � 2N, all of
the models produce approximately the same tract-length
distributions, so in this region of the parameter space, there
is minimal bias from using a Markov model.

The deviations from a Markov model explored here may
also affect methods that do not directly attempt to estimate

Figure 6 Probability of erroneously inferring two pulses of
admixture as a function of T, when using aMWFor SMC9 null
model. The red, green, and blue lines correspond tom = 0.5,
0.3, and 0.1, respectively. The left plot is for a likelihood-ratio
test with a = 0.05 and the right plot is with a = 0.002.
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admixture tract distributions. For example, ROLLOFF (Moorjani
et al. 2011) assumes that the probability that two sites a distance
r apart are linked after T generations is given by exp(2rT) and
uses this to make a prediction about the value of a correlation
coefficient. Under the PBT model, this probability is ((1 +
exp(22r))/2)T, and under the WF model, this probablity is
(12 1/N)T((1 + exp(22r))/2)T. For some values of N, r, and
T, these probabilities are approximately equal, but for others
they are not. This suggests that further analyses might be
warranted on the statistical properties of methods such as
ROLLOFF (Moorjani et al. 2011).

Throughout this article, we have assumed that admixture
occurred in a single generation. This is a highly restrictive
and, in most cases, unrealistic assumption. In real data
analysis, the effects of such assumptions should be carefully
considered. However, the basic conclusions regarding dis-
tributions of tract length as functions of T are still valid. Our

results can be extended to more complicated scenarios of
multiple admixture events, or continuous gene flow, by inte-
grating over admixture times as in Pool and Nielsen (2009).
For the PBT model, continuous gene flow, as well as overlap-
ping generations, results in pedigrees that are still binary trees,
but of uneven depth. Consequently, this same technique also
allows us to relax the assumption of nonoverlapping generations.

In our mathematical analysis and simulations, we have
assumed that recombination events occur according to a
Poisson process and have ignored the possibility of crossover
interference. For large values of T this approximation may
be quite accurate, but for small values of T, crossover in-
terference could potentially have a strong effect on the
results, as illustrated in Figure 7. However, the transition
rates of the ancestor-copying process are simple functions
of the mapping function induced by the model of crossover
interference. The binary tree process under other models
of crossover interference with known mapping functions
would typically still be mathematically tractable. Future
methods for ancestry deconvolution and parametric admix-
ture inference should seek to incorporate such mapping
functions in addition to the non-Markovian properties of
the ancestry process, which has been the main focus of topic
of this article.

The Python programs used for the simulations can be
obtained by contacting the author.

Acknowledgments

We thank members of the Nielsen and Slatkin labs for their
help and encouragement and Nick Barton and two anonymous
reviewers for their helpful comments. Funding was provided
by National Institutes of Health grant 2R01HG003229-09.

Literature Cited

Baird, S., N. H. Barton, and A. M. Etheridge, 2003 The distribu-
tion of surviving blocks of an ancestral genome. Theor. Popul.
Biol. 64(4): 451–471.

Ball, F., and V. T. Stefanov, 2005 Evaluation of identity-by-
descent probabilities for half-sibs on continuous genome. Math.
Biosci. 196(2): 215–225.

Baran, Y., B. Pasaniuc, S. Sankararaman, D. G. Torgerson, C. Gignoux
et al., 2012 Fast and accurate inference of local ancestry in
Latino populations. Bioinformatics 28(10): 1359–1367.

Barton, N. H., and B. O. Bengtsson, 1986 The barrier to genetic
exchange between hybridising populations. Heredity 57: 357.

Barton, N. H., and A. M. Etheridge, 2011 The relation between
reproductive value and genetic contribution. Genetics 188: 953–
973.

Bickeböller, H., and E. A. Thompson, 1996a Distribution of ge-
nome shared IBD by half-sibs: approximation by the Poisson
clumping heuristic. Theor. Popul. Biol. 50(1): 66–90.

Bickeböller, H., and E. A. Thompson, 1996b The probability distri-
bution of the amount of an individual’s genome surviving to the
following generation. Genetics 143: 1043–1049.

Brisbin, A., K. Bryc, J. Byrnes, F. Zakharia, L. Omberg et al.,
2012 PCAdmix: principal components-based assignment of
ancestry along each chromosome in individuals with admixed

Figure 7 Tract-length distributions for the Baird distribution (red), PBT
model (green), and the WF model (thick black). The WF simulations were
run with a population size of 2N = 2 3 103. Note that the y-axis is shown
on a logarithmic scale. When m is small and at intermediate time scales,
all three models agree.

Admixture Tract Lengths 963



ancestry from two or more populations. Hum. Biol. 84(4):
343–364.

Bryc, K., A. Auton, M. R. Nelson, J. R. Oksenberg, S. L. Hauser et al.,
2010 Genome-wide patterns of population structure and ad-
mixture in West Africans and African Americans. Proc. Natl.
Acad. Sci. USA 107(2): 786–791.

Cannings, C., 2003 The identity by descent process along the chro-
mosome. Hum. Hered. 56(1–3): 126–130.

Chapman, N. H., and E. A. Thompson, 2002 The effect of popu-
lation history on the lengths of ancestral chromosome segments.
Genetics 162: 449–458.

Dimitropoulou, P., and C. Cannings, 2003 RECSIM and INDSTATS:
probabilities of identity in general genealogies. Bioinformatics
19(6): 790–791.

Donnelly, K., 1983 P. The probability that related individuals
share some section of genome identical by descent. Theor. Popul.
Biol. 23(1): 34–63.

Falush, D., M. Stephens, and J. K. Pritchard, 2003 Inference of
population structure using multilocus genotype data: linked
loci and correlated allele frequencies. Genetics 164: 1567–
1587.

Fisher, R. A., 1949 The Theory of Inbreeding. Oliver & Boyd,
Edinburgh, Scotland.

Gravel, S., 2012 Population genetics models of local ancestry.
Genetics 191: 607–619.

Griffiths, R. C., and P. Marjoram, 1996 Ancestral inference from
samples of DNA sequences with recombination. J. Comput. Biol.
3(4): 479–502.

Guo, S.-W., 1994 Computation of identity-by-descent proportions
shared by two siblings. Am. J. Hum. Genet. 54(6): 1104.

Gutenkunst, R. N., R. D. Hernandez, S. H. Williamson, and C. D.
Bustamante, 2009 Inferring the joint demographic history of
multiple populations from multidimensional SNP frequency
data. PLoS Genet. 5(10): e1000695.

Henn, B. M., L. R. Botigué, S. Gravel, W. Wang, A. Brisbin et al.,
2012 Genomic ancestry of North Africans supports back-to-
Africa migrations. PLoS Genet. 8(1): e1002397.

Hey, J., 2010 Isolation with migration models for more than two
populations. Mol. Biol. Evol. 27(4): 905–920.

Hey, J., and R. Nielsen, 2004 Multilocus methods for estimating
population sizes, migration rates and divergence time, with ap-
plications to the divergence of Drosophila pseudoobscura and
D. persimilis. Genetics 167: 747–760.

Hoggart, C. J., E. J. Parra, M. D. Shriver, C. Bonilla, R. A. Kittles
et al., 2003 Control of confounding of genetic associations in
stratified populations. Am. J. Hum. Genet. 72(6): 1492.

Hudson, R. R., 1983 Properties of a neutral allele model with in-
tragenic recombination. Theor. Popul. Biol. 23(2): 183–201.

Hudson, R. R., 2002 Generating samples under a Wright–Fisher
neutral model of genetic variation. Bioinformatics 18(2): 337–
338.

Li, N., and M. Stephens, 2003 Modeling linkage disequilibrium
and identifying recombination hotspots using single-nucleotide
polymorphism data. Genetics 165: 2213–2233.

Marjoram, P., and J. Wall, 2006 Fast “coalescent” simulation. BMC
Genet. 7(1): 16.

Martin, O. C., and F. Hospital, 2011 Distribution of parental ge-
nome blocks in recombinant inbred lines. Genetics 189: 645–654.

McVean, G. A., and N. J. Cardin, 2005 Approximating the coales-
cent with recombination. Philos. Trans. R. Soc. Lond. B Biol. Sci.
360(1459): 1387–1393.

Moorjani, P., N. Patterson, J. N. Hirschhorn, A. Keinan, L. Hao et al.,
2011 The history of African gene flow into Southern Euro-
peans, Levantines, and Jews. PLoS Genet. 7(4): e1001373.

Paşaniuc, B., S. Sankararaman, G. Kimmel, and E. Halperin,
2009 Inference of locus-specific ancestry in closely related pop-
ulations. Bioinformatics 25(12): i213–i221.

Pool, J. E., and R. Nielsen, 2009 Inference of historical changes in
migration rate from the lengths of migrant tracts. Genetics 181:
711–719.

Price, A. L., A. Tandon, N. Patterson, K. C. Barnes, N. Rafaels et al.,
2009 Sensitive detection of chromosomal segments of distinct
ancestry in admixed populations. PLoS Genet. 5(6): e1000519.

Reich, D., N. Patterson, P. L. De Jager, G. J. McDonald, A. Waliszewska
et al., 2005 A whole-genome admixture scan finds a candidate
locus for multiple sclerosis susceptibility. Nat. Genet. 37(10):
1113–1118.

Rodolphe, F., J. Martin, and E. Della-Chiesa, 2008 Theoretical
description of chromosome architecture after multiple back-
crossing. Theor. Popul. Biol. 73(2): 289–299.

Sankararaman, S., G. Kimmel, E. Halperin, and M. I. Jordan,
2008 On the inference of ancestries in admixed populations.
Genome Res. 18(4): 668–675.

Smith, M. W., N. Patterson, J. A. Lautenberger, A. L. Truelove, G. J.
McDonald et al., 2004 A high-density admixture map for dis-
ease gene discovery in African Americans. Am. J. Hum. Genet.
74(5): 1001–1013.

Stam, P., 1980 The distribution of the fraction of the genome
identical by descent in finite random mating populations. Genet.
Res. 35: 131–155.

Stefanov, V. T., 2000 Distribution of genome shared identical by
descent by two individuals in grandparent-type relationship.
Genetics 156: 1403–1410.

Sundquist, A., E. Fratkin, C. B. Do, and S. Batzoglou, 2008 Effect
of genetic divergence in identifying ancestral origin using HAPAA.
Genome Res. 18(4): 676–682.

Tang, H.,M. Coram, P.Wang, X. Zhu, andN. Risch, 2006 Reconstructing
genetic ancestry blocks in admixed individuals. Am. J. Hum. Genet.
79(1): 1–12.

Tang, H., S. Choudhry, R. Mei, M. Morgan, W. Rodriguez-Cintron
et al., 2007 Recent genetic selection in the ancestral admixture
of Puerto Ricans. Am. J. Hum. Genet. 81(3): 626–633.

Wakeley, J., L. King, B. S. Low, and S. Ramachandran, 2012 Gene
genealogies within a fixed pedigree, and the robustness of King-
man’s coalescent. Genetics 190: 1433–1445.

Walters, K., and C. Cannings, 2005 The probability density of the
total IBD length over a single autosome in unilineal relation-
ships. Theor. Popul. Biol. 68(1): 55–63.

Wiuf, C., and J. Hein, 1999 Recombination as a point process along
sequences. Theor. Popul. Biol. 55(3): 248–259.

Communicating editor: N. H. Barton

964 M. Liang and R. Nielsen



Appendix

Most of these proofs are by induction on the length of the dyadic interval(s) in question. Toward this end, we couple the two
sides of Equation 1 by introducing independent ancestry-copying processes Sx and Dx and letting

Nx [
1
2
RxSx þ 1

2

�
12Rx

��
1þ Dx

�
: (A1)

By Equation 1, Nx is also an ancestry-copying process.

Proof of Theorem 1.

The theorem is trivially true in the case when this length is 1, i.e., A = I0,0.
Suppose that the theorem holds for dyadic intervals with length greater than or equal to 22j and let A be a dyadic

interval with size 22j21. Without loss of generality, assume that A4
�
0; 12
�
. Note that |2A| = 22j, so by the inductive

hypothesis, Sx1{Sx 2 2A} is conditionally independent of Sx1{Sx ; 2A} given 1{Sx 2 2A}. We use notation

Sx1fSx 2 2Ag’ Sx1fSx;2Ag��1fSx 2 2Ag
to denote this. Since Rx is independent of Sx, it follows that

Sx1fRx ¼ 1; Sx 2 2Ag’ Sx1fRx ¼ 1; Sx ; 2Ag��1fRx ¼ 1; Sx 2 2Ag:
Finally, since 1{Rx = 0} = 1{Rx = 1, Sx 2 2A} + 1{Rx = 1, Sx ; 2A} and Dx is independent of everything in the above
expression,

Sx1fRx ¼ 1; Sx 2 2Ag’ Sx1fRx ¼ 1; Sx;2Ag þ 1fRx ¼ 0gð1þ DxÞ��1fRx ¼ 1; Sx 2 2Ag:
By the definition of Nx, Nx 2 A⇔ Rx = 1, Sx 2 2A, so the theorem holds for dyadic intervals of length 22j21, and consequently
all dyadic intervals.

Proof of Theorem 2.

By Equation 1, the rate at which Nx leaves I1,0 or I1,1 is this same as the rate at which Rx switches from 1 to 0 or 0 to 1,
respectively. This latter rate is equal to one, so the theorem holds for j = 1.

Assume that the theorem holds for all dyadic intervals with length 22j. Let I be a dyadic interval with length 22j21. Note
that N 0 � s(R0, S0, D0) and without loss of generality, assume that I � [0, 1/2), so that

1
2
RxSx þ 1

2

�
12Rx

��
1þ Dx

� 2 I⇔Rx ¼ 1; Sx 2 2I:

We can use the law of total probability to find that

nI ¼ lim
xY0

12PI
�
Nx 2 IjN 0

�
x

(A2)

¼ lim
xY0

12E
�
P
�
Rx ¼ 1; Sx 2 2I

��R0 ¼ 1; S0 2 2I;R0;S0;D0
���N 0

�
x

(A3)

¼ lim
xY0

12E
�
PðRx ¼ 1jR0 ¼ 1

�
P
�
Sx 2 2I j S0 2 2I;S0

���N 0
�

x
(A4)

¼ lim
xY0

12
�
1
2 þ 1

2 e
22x�

E
�
P
�
Sx 2 2I j S0 2 2I;S0

���N 0
�

x
(A5)
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¼ lim
xY0

1
22

1
2 e

22x

x
þ lim

xY0

�
1
2
þ 1
2
e22x

�
12E

�
PðSx 2 2I j S0 2 2I;S0

���N 0
�

x
(A6)

¼ 1þ E

 
lim
xY0

�
1
2
þ 1
2
e22x

�
12P

�
Sx 2 2Ij S0 2 2I;S0

�
x

�����N 0

!
(A7)

¼ 1þ j; (A8)

where the interchange of limits follows from the dominated convergence theorem and the inductive hypothesis that the limit
n2I is equal to j.

Proof of Theorem 3.

We show this by induction on the length of J. By Equation 1, the rate at which Nx enters J is the rate at which Rx switches
from 1 to 0 or 0 to 1, which is 1. For jJj ¼ 1

2, P(I, J) = Ø, so nI,J = 1 and the theorem holds.
To complete the proof by induction, we need a lemma:
Lemma 1. For a dyadic interval I,

P
�
Nx 2 Ij N 0;N0 2 I9;Nx 2 I9

� ¼ 1
2
þ
�
1fN0 2 Ig2

1
2

�
expð22xÞ:

Proof of Lemma 1. We prove both claims by induction on the length of the dyadic interval I. For I ¼ �0; 12�, by Equation 1, the
left-hand side reduces to PðRx ¼ 1jR0Þ, which is equal to the right-hand side. The case of I ¼ �12; 1� is analogous, so the
lemma is true for dyadic intervals of length 1

2.
Assume that the lemma holds for dyadic intervals of length 22j and let I be a dyadic interval with length 22j21. Without

loss of generality, assume that I � �0; 12�, so that by Equation 1,

Nx 2 I⇔Rx ¼ 1; Sx 2 2I:

Additionally, since I94
�
0; 12
�
, we also have that

Nx 2 I9⇔Rx ¼ 1; Sx 2 2I9:

Therefore,

P
�
Nx 2 Ij N 0;N0 2 I9;Nx 2 I9

� ¼ P
�
Rx ¼ 1; Sx 2 2I

��N 0; S0 2 2I;R0 ¼ 1; Sx 2 2I9;Rx ¼ 1
�

(A9)

¼ P
�
Sx 2 2I

��N 0; S0 2 2I; Sx 2 2I9;R0 ¼ 1
�

(A10)

¼ E
�
P
�
Sx 2 2I

��S0; S0 2 2I; Sx 2 2I9
���N 0;R0 ¼ 1

�
: (A11)

Since 2I has length 22j and Sx has the same distribution as Nx, the inductive hypothesis implies that

P
�
Sx 2 2I

��S0; S0 2 2I; Sx 2 2I9
�¼ 1

2
þ
�
1fS0 2 2Ig2 1

2

�
expð22xÞ:

Furthermore, since we are conditioning on R0 = 1, {S0 2 2I} = {N0 2 I} 2 N 0. As a result, the conditional expectation
evaluates to

P
�
Nx 2 I

��N 0;N0 2 I9;Nx 2 I9
�¼ 1

2
þ
�
1fN0 2 Ig21

2

�
expð22xÞ;

so the lemma holds for dyadic intervals of length 22j21 and, consequently, all dyadic intervals with length less than 1. h
Assume that the rate at which Nx transitions from any dyadic interval to a disjoint dyadic intervals of length 22j is as the
theorem states and let J be a dyadic interval with length 22j21. To each dyadic interval I, we associate the random variable
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TI ¼ supfx, 0 : Nx 2 Ig:
Note that max

�
TI;TI*

� ¼ TI9and fNTI92 I⇔TJ .TJ*g, so by the lemma,

P
�
Nx 2 Ij N TI9;Nx 2 I9

�¼ 1
2
þ
�
1
n
NTI92 I

o
2
1
2

�
exp
�
2
�
TI92 xÞ�

¼ 1
2
þ
�
1fTJ .TJ*g21

2

�
exp
�
2
�
TI92 x

��
:

Additionally, for TI , x , 0, Nx ; I, so by Theorem 1, the left-hand side also equals P(Nx 2 I|N 0, Nx 2 I9). So for J, a dyadic
interval of size 22j21,

nI; J ¼ lim
xY0

PI
�
Nx 2 Jj N 0

�
x

¼ lim
xY0

PI
�
Nx 2 J

��N 0;Nx 2 J9
�
PI
�
Nx 2 J9

��N 0
�

x

¼ lim
xY0

P
�
Nx 2 Jj N 0;Nx 2 J9

�
lim
xY0

PI
�
Nx 2 J9

��N 0
�

x

¼
�
1
2
þ
�
1
2
21fTJ .TJ*g

�
exp
�
22TJ9

�� Y
i2PðI;J9Þ

1
2
þ
�
1fTi .Ti*g2 1

2

�
expð22Ti9Þ

¼
Y

i2PðI; JÞ

1
2
þ
�
1fTi .Ti*g2 1

2

�
exp ð22Ti9Þ:
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