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Abstract

Sulforaphane is a dietary isothiocyanate found in cruciferous vegetables showing antileukemic activity. With the purpose of
extending the potential clinical impact of sulforaphane in the oncological field, we investigated the antileukemic effect of
sulforaphane on blasts from patients affected by different types of leukemia and, taking into account the intrinsically
hypoxic nature of bone marrow, on a leukemia cell line (REH) maintained in hypoxic conditions. In particular, we tested
sulforaphane on patients with chronic lymphocytic leukemia, acute myeloid leukemia, T-cell acute lymphoblastic leukemia,
B-cell acute lymphoblastic leukemia, and blastic NK cell leukemia. Sulforaphane caused a dose-dependent induction of
apoptosis in blasts from patients diagnosed with acute lymphoblastic or myeloid leukemia. Moreover, it was able to cause
apoptosis and to inhibit proliferation in hypoxic conditions on REH cells. As to its cytotoxic mechanism, we found that
sulforaphane creates an oxidative cellular environment that induces DNA damage and Bax and p53 gene activation, which
in turn helps trigger apoptosis. On the whole, our results raise hopes that sulforaphane might set the stage for a novel
therapeutic principle complementing our growing armature against malignancies and advocate the exploration of
sulforaphane in a broader population of leukemic patients.
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Introduction

Sulforaphane (SR) is a dietary isothiocyanate found in

cruciferous vegetables able to provide protection against multistep

carcinogenesis [1]. Epidemiological studies evidenced an inverse

correlation between the consumption of a diet rich in cruciferous

vegetables (i.e., broccoli and cabbage) and the incidence of breast,

lung, prostate, colon, and bladder cancer [2–7], largely attributed

to the activity of isothiocyanates derived from the metabolism of

glucosinolates that accumulate in cruciferous vegetables [8]. SR is

a highly reactive and hydrophobic compound that can alter many

cellular processes. Inhibition of cell proliferation, increased

apoptosis, anti-inflammatory and antioxidant activities, induction

of phase-II detoxification enzymes, inhibition of cyclooxygenase 2,

and various other mechanisms have been proposed to explain the

anticancer effects of SR [9].

SR induces apoptosis in several cancer cell lines, such as T-cell

leukemia, breast, colon, and prostate cancer, by targeting different

molecules, such as caspases, PARP, p21, p53 and Bax [10–14]. SR

also blocks cell cycle through the modulation of G1/S and G2/M

phases and alters the levels of cyclin A, cyclin B1, cyclin D1,

p21cip1/waf1, and KLF4 [12,15–19]. The antileukemic effect of

SR was demonstrated in many different cell lines and, recently,

also in blasts from pediatric patients with acute lymphoblastic

leukemia (ALL) [20].

Leukemias are malignant neoplasms involving cells originally

derived from hematopoietic precursor cells that include many

diverse and biologically distinct subgroups. All leukemias start in the

bone marrow, that is diffusely replaced by abnormally proliferating

neoplastic cells. The neoplastic cells may spill out of the bone

marrow and reach the blood, where they may be present in large

numbers, resulting in the clinical presentations of the disease.

Generally, the leukaemias can be divided into acute myeloid

leukemia (AML) and related disorders, B-lymphoblastic leukemias,

T-lymphoblastic leukemias, leukemias of ambiguous lineage [21].

Although leukemia is the most common malignancy among

children and adolescents, the majority of cases of leukemia occur

in older people [22].

The treatment of leukemia still largely revolves around

chemotherapy to induce a complete remission and to consolidate

this with further cycles of chemotherapy. For example, the

standard therapy of AML is based on the association of an

anthracycline and ARA-C and the efficacy of such therapy still is

unsatisfactory, since the rate of complete remission ranges 30–

60%, depending on age, and the survival rate has not changed

significantly in years [23].
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Several new therapeutic approaches are under investigation,

alone or in combination with conventional chemotherapy. Despite

the development of multiple new agents, the development of

chemoresistance frequently hampers the successful treatment of

acute and chronic leukemias either at the initial presentation or

(more frequently) following primary or subsequent relapses [24],

and relapse continues to be the most common cause of death [25].

Those therapeutic issues can also be imputable to tumor

microenvironment, which is characterized not only by marked

gradients in drug concentration, but also by regions of hypoxia,

which can influence tumor cell sensitivity to drug treatment.

Taking into account the intrinsically hypoxic nature of bone

marrow, hypoxia is also an important environmental factor in

leukemia [26].

Thus, leukemias remain a formidable therapeutic challenge that

requires the identification and the development of novel agents for

the treatment of this disease.

Based on these considerations and with the aim to extend the

potential clinical impact of SR in the oncological field, we

investigated whether purified SR is effective against hematological

malignancies. To this end, we explored the antileukemic effect of

SR on blasts from patients affected by different types of leukemia.

In particular, we tested SR on patients with chronic lymphocytic

leukemia (CLL), AML, T-cell ALL (T-ALL), B-cell ALL (B-ALL),

and blastic NK cell leukemia (BNKAL). Since SR activity was

marked on samples from acute leukemias, we next analyzed the

proapoptotic activity of SR in two acute leukemia cell lines. To

better understand whether the level of oxygen is relevant for the

therapeutic efficacy of SR, we treated a leukemia cell line with SR

in hypoxic conditions and analyzed the formation of ROS and the

induction of apoptosis.

Materials and Methods

Chemicals
Ethidium bromide, NaOH, 29,79-dichlorofluorescein-diacetate

(DCFH-DA), chloroform, phenol, NaH2PO4 were purchased from

Sigma (USA). Synthetic DL- SR was dissolved in dimethyl

sulfoxide (DMSO) to generate a 40 mM stock concentration and

stored at 220uC. Cells were treated with different concentrations

of SR (0.0–30.0 mM), selected on the basis of previous studies

performed on leukemia cells [15].

Leukemic cell lines
REH (acute lymphocytic leukemia) and HL-60 (acute promy-

elocytic leukemia) cell lines were bought from ATCC-LGC, grown

in suspension and propagated in RPMI 1640 supplemented with

10% (REH) or 20% (HL-60) heat-inactivated bovine serum, 1%

antibiotics (all obtained from Sigma). To maintain exponential

growth, the cultures were divided every third day by dilution to a

concentration of 16105 cells/mL. Cells were treated with different

concentrations of SR for different times at 37uC in both normoxic

(20% O2) and hypoxic conditions.

Hypoxic conditions
Leukemic cells were cultivated in an INVIVO2 200 hypoxia

workstation (Ruskinn Technology LTD, England) at ,1% O2.

Treatments and all cell manipulations were performed in the

workstation, thus ensuring a full maintenance of hypoxia for the

entire duration of the experiments.

Ethics statement
The described study was approved (Comitato Etico e Sper-

imentazione del Farmaco dell’Azienda Ospedaliero-Universitaria

Pisana) and written informed consent was obtained from the

patients. All clinical investigation was conducted according to the

principles expressed in the Declaration of Helsinki.

Hematologic patients
Patients include cases of CLL (n = 2), AML (n = 8), B-cell ALL

(n = 1), T-cell ALL (n = 2), BNKAL (n = 1). The general charac-

teristics of patients are shown in Table 1. Diagnosis of leukemia

was established according to the 2008 WHO classification [21]

and by the combination of morphological, immunological,

cytogenetic and molecular methods, which were applied to

peripheral blood samples. The immunological assays were made

by fluorochrome-conjugated monoclonal antibodies and analysis

Table 1. Clinical features of patients.

Patients Age Sex Diagnosis Timing Previous therapy

1 67 F CLL Stable disease None

2 76 F CLL Stable disease None

3 38 M AML Studied at diagnosis None

4 39 M AML Non-responder 3+7a

5 31 F AML Non-responder 3+7

6 19 F AML Studied at diagnosis None

7 30 F AML Studied at diagnosis None

8 60 F AML Relapse 3+7, allogeneic HSCTb

9 47 F AML Studied at diagnosis None

10 24 M T-ALL Studied at diagnosis None

11 24 F T-ALL Studied at diagnosis None

12 48 M B-ALL Studied at diagnosis None

13 55 F AML Studied at diagnosis None

14 31 F BNKAL Studied at diagnosis None

aa combination drug protocol used as induction chemotherapy and consisting of three days of anthracyclines and seven days of cytarabine;
ballogeneic HSCT: transplantation of allogeneic hematopoietic stem cells.
doi:10.1371/journal.pone.0101991.t001
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by a three-laser (488, 633, 405 nm)-equipped flow cytometer

(FacsCanto II, Becton Dickinson, USA). A six-color method was

applied; therefore the following fluorochrome combination was

used: fluorescein isothiocyanate, phycoerythrin, peridinin chloro-

phyll protein complex, phycoerythrin-cyanine 7, allophycocyanin,

allophycocyanin-cyanine 7. Diagnosis of acute leukemia was

established by means of a wide panel of monoclonal antibodies,

which included: CD45, CD13, CD33, CD34, CD117, HLA-DR,

CD4, CD14, CD64, CD38, MPO, CD11b, CD16, CD15, CD56,

CD7, CD19, CD3, CD2, CD5, CD4, CD8, CD10, CD20, CD58,

TdT (from Becton Dickinson) and rabbit polyclonal F(ab9)2

antibodies directed to cyIgM and surface immunoglobulin K and

lambda chains (from Dako, USA). CLL samples were subjected to

an antibody panel which included CD45, CD3, CD4, CD8,

CD16-56, CD5, CD19, CD20, CD23, CD22, CD79b, CD200,

CD38, CD25, CD11c, surface immunoglobulin K and lambda

chains. Patients were studied at the time of diagnosis; one patient

was studied during his first relapse and two patients in a phase of

resistant disease.

Preparation of leukemic cells
Peripheral blood samples of patients were collected in tubes

containing preservative-free heparin. Leukemic cells were ob-

tained by Ficoll-Histopaque density gradient centrifugation. 3 mL

of Histopaque 1.077 g mL21 were placed into a 10 mL plastic

centrifuge tube, overlaid with 3 mL anticoagulated blood diluted

1:1 with phosphate-buffered saline (PBS), and centrifuged at

4006g for 30 min at room temperature. Interphase mononuclear

cells banded at the interface between the plasma and the

Histopaque were recovered, washed twice with PBS and then

resuspended in RPMI 1640 medium (Sigma) containing 15%

heat-inactivated bovine serum. The samples always contained .

95% blasts.

Flow cytometry
All flow cytometric analyses were performed by using the

easyCyte 5HT flow cytometer (Millipore Guava Technologies,

USA).

Detection of apoptosis
After 24, 48 or 72 h of treatment with different concentrations

of SR, aliquots of 2.06104 cells were stained with 100 mL of

Guava Nexin Reagent containing ANNEXIN-V-phycoerythrin

and 7-amino-actinomycin D. During apoptosis, the cells react to

annexin V once chromatin condenses but before the plasma

membrane loses its ability to exclude 7-amino-actinomycin D.

Hence, by staining cells with a combination of phycoerythrin

annexin V and 7-amino-actinomycin D it is possible to detect non

apoptotic live cells, early apoptotic cells and late apoptotic or

necrotic cells. Cells were incubated for 20 min at room

temperature in the dark and then analyzed by flow cytometry.

Fast halo assay (FHA)
The assay has been carried out as previously described [27,28].

Briefly, after the treatments, the cells were resuspended at

4.06104/mL in ice-cold PBS containing 5 mM EDTA: 25 mL of

this cell suspension was diluted with an equal volume of 2% low

melting agarose in PBS and immediately sandwiched between an

agarose-coated slide and a coverslip. After complete gelling on ice,

the coverslips were removed and the slides were immersed in

NaOH 300 mM for 15 min at room temperature. Ethidium

bromide (10 mg/mL) was directly added to NaOH during the last

5 min of incubation. The slides were then washed and destained

for 5 min in distilled water. The ethidium bromide-labelled DNA

was visualized using a Leica DMLB/DFC300F fluorescence

microscope (Leica Microsystems, Germany) equipped with an

Olympus Colorview IIIU CCD camera (Olympus Italia Srl, Italy)

and the resulting images were digitally recorded on a PC and

processed with an image analysis software (Scion Image, Scion

Corporation, USA). The amount of fragmented DNA diffusing out

of the nuclear cage, i.e. the extent of strand scission, was quantified

by calculating the nuclear diffusion factor (NSF), which represents

the ratio between the total area of the halo and nucleus and that of

the nucleus. To allow the detection and recognition of DNA

double strand breaks (DSBs) FHA was carried out at non-

denaturing pH conditions as follows: the slides were submersed in

a lysis solution (0.15 M NaOH, 0.1 M NaH2PO4, 1 mM EDTA,

Figure 1. Fraction of apoptotic cells induced by SR on mononuclear cells isolated from CLL patients. Cells were treated with 0 to 30 mM
SR for 24 or 48 h.
doi:10.1371/journal.pone.0101991.g001
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Figure 2. Fraction of apoptotic cells induced by SR on mononuclear cells isolated from AML patients. Cells were treated with 0 to 30 mM
SR for 6, 24, 48 or 72 h.
doi:10.1371/journal.pone.0101991.g002
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Triton 6100 1% v/v, pH 10.1) for 10 min, incubated for further

15 min in PBS (pH 7.4) containing 0.1 mg/mL RNase (bovine

pancreas Type 1A); ethidium bromide was directly added to this

solution during the last 5 min of incubation. The slides were then

washed and destained for 5 min in distilled water and analyzed as

described above.

ROS detection
DCFH-DA was used for ROS detection. DCFH-DA is cleaved

intracellularly by nonspecific esterases to form 29,79-dichlorodihy-

drofluorescein (DCFH), which is further oxidized by ROS to form

the highly fluorescent compound 29,79-dichlorodihydrofluorescein

(DCF). Briefly, 16106 cells were pre-treated with 15 or 30 mM SR

for 30, 60, 180 or 360 min. Then, samples were washed and

16106 cells were stained with 10 mM DCHF-DA. After 20 min of

incubation at 37uC, fluorescence intensity was monitored by flow

cytometry. Data were expressed as percentage of the control

(untreated cells).

Analysis of apoptotic proteins
After treatment with SR, 16106 cells were fixed and

permeabilized by 2% of paraformaldehyde in PBS 16 and 90%

of cold methanol. They were then incubated with Bax (1:100,

Santa Cruz Biotechnology, Santa Cruz, CA, USA), Bcl-2 (1:100,

Santa Cruz Biotechnology), p53 (1:100, Invitrogen), or isotype-

matched negative control (1:100, e-Bioscience, San Diego, CA,

USA) antibodies. The cells were washed and incubated with

fluorescein isothiocyanate-labeled secondary antibody (1:100,

Sigma). The cells were then analyzed to quantify fluorescein

isothiocyanate binding by flow cytometry. Mean fluorescence

intensity values were calculated. Non-specific binding was

excluded by gating around those cells which were labeled by the

fluorescein isothiocyanate-conjugate isotype control.

Analysis of cell cycle
Cell were treated with different concentrations of SR for 8, 24

and 48 h, and then fixed with ice-cold ethanol. Samples were then

Figure 3. Fraction of apoptotic cells induced by SR on mononuclear cells isolated from ALL and BNKAL patients. Cells were treated
with 0 to 30 mM SR for 6, 24 or 48 h.
doi:10.1371/journal.pone.0101991.g003
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stained with 200 mL of Guava Cell Cycle Reagent, containing

propidium iodide that allows evaluating cellular DNA content.

During the S phase of cell cycle, cells duplicate their content of

DNA that will be double in the G2/M phase compared to the G0/

G1 phase. Cells were incubated at room temperature for 30 min in

the dark, and analyzed via flow cytometry.

mRNA expression
After 6, 24 or 48 h of treatment in normoxic or in hypoxic

conditions, total RNA was isolated using miRVanaTM miRNA

Isolation kit (Life Technologies, CA, USA), according to

manufacturer’s instructions. Briefly, cells were treated with lysis

buffer, then subjected to acid - phenol: chloroform extraction.

Ethanol was added to samples and they were passed through a

filter cartridge containing a glass-fiber filter which immobilizes the

RNA. The filter was washed and RNA was eluted with a low ionic

strength solution. Total collected RNA was used for reversed

transcription by High Capacity cDNA Reverse Transcription kit

(Life Technologies). Briefly, 200 ng total RNA were added to

10 mL reaction kit mixture with RNase inhibitor according to

manufacturer’s instructions as well as the thermal cycler condi-

tions. The obtained cDNA was stored at 220uC. Quantification of

Bax, Bcl-2, TP53 and 18 S, as endogenous control, was performed

in triplicate by real-time PCR (ABI Prism 7900HT, Life

Technologies), using Universal Master Mix and TaqMan assays

Hs00180269_m1 (Bax), Hs00608023_m1 (Bcl-2),

Hs01034249_m1 (p53) and Hs99999901_s1 (18S) (Life Technol-

ogies). Each measurement was conducted in triplicate.

Statistical analysis
All results are expressed as the mean 6 SEM of at least four

different experiments. Differences in mRNA expression are

reported as value 6 SEM and represent the relative expression

calculated through the 2-DDCt method [29]. One way ANOVA,

followed by Dunnett or Bonferroni as post test was used to

evaluate differences between treatments. GraphPad InStat version

5.0 (GraphPad Prism, San Diego, CA, USA) was used for all

statistical analyses. P,0.05 was considered significant.

Results

Firstly, we examined the effects of different concentrations of

SR on primary blasts collected from leukemic patients. Three

samples (patients n. 6, 7 and 8) were excluded because they had a

% of viable cells lower than 10% when untreated. SR seems not to

have any activity on samples from patients with CLL. Even high

concentrations (30 mM) and long times (48 h) of treatment only

slightly increased the % of apoptotic cells compared to the control

(42.3% vs. 32.4%, sample n. 1) (Fig. 1).

The pro-apoptotic effect of SR was recorded, however, in

samples from patients with AML, where the % of apoptotic cells

induced following treatment reached 49% (sample n. 5) (Fig. 2).

Both samples 3 (about 45% apoptosis increase vs. control at

30 mM after 48 h incubation) and 5 (about 40% apoptosis increase

vs. control at 30 mM after 48 h incubation) were highly sensitive to

SR treatment (Fig. 2). In contrast, samples 4 (about 28% apoptosis

increase vs. control at 30 mM after 48 h incubation), 13 (about

28% apoptosis increase vs. control at 30 mM after 24 h

incubation), and 9 (about 13% apoptosis increase vs. control at

15 and 30 mM after 24 h incubation) were less sensitive (Fig. 2). Of

note, the effect of SR was marked also on samples from non-

responder patients. In the sample n. 5, for example, the fraction of

apoptotic cells recorded after 48 h of treatment with 30 mM SR is

more than 5 times higher than that recorded in untreated cultures

(Fig. 2).

The activity of the isothiocyanate on samples from patients with

ALL did not differ between T- or B- cell leukemia. The most

marked effect was definitely observed on the sample from patient

suffering from T-ALL, where the % of apoptotic cells reached

55% (vs. 27% in the control cultures) (sample n. 10) (Fig. 3). The

effect on the other sample of T-ALL was milder (sample n. 11)

(about 20% apoptosis increase vs. control at 15 mM after 48 h

incubation) (Fig. 3). A 28% increase in the apoptotic effect was

reached in the B-ALL sample at 15 mM after 24 h incubation

(sample n. 12) (Fig. 3).

SR has not been shown to have any activity on the sample from

BNKAL (sample n. 14) (Fig. 3).

Figure 4. Induction of apoptosis by SR in normoxic and hypoxic conditions on REH cells. Cells were treated with 0 to 30 mM SR for 24 h.
The % of apoptotic cells recorded in the untreated cultures was subtracted from that observed in cultures treated with SR. Data are presented as
mean 6 SEM of at least four different experiments.
doi:10.1371/journal.pone.0101991.g004
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Figure 5. SR induces DNA damage in REH cells. Cells were treated with increasing concentrations of, or for increasing time intervals with, SR
and immediately assayed for DNA breakage with FHA. A) DNA single strand breakage induced by 3 h SR treatment in REH cells. B) DNA single strand
breakage induced by 30 mM SR in REH cells as a function of incubation time. Data are presented as mean 6 SEM of three different experiments. C)
and D) Representative, digitally pseudocolored (ICA look up table of the Image J software) micrographs of FHA-processed control (C) or 30 mM SR-
treated (D) REH cells are also shown: note the wide halos in D as compared to C. Also shown (panel A, inset) the extent of DNA double strand
breakage caused by SR (30 mM for 3 h) or etoposide (1 mg/mL for 3 h) in REH cells. Data are expressed as NSF (nuclear diffusion factor), which
represents the ratio between the total area of the halo and nucleus and that of the nucleus.
doi:10.1371/journal.pone.0101991.g005
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We next analyzed the proapoptotic activity of SR and initially

determined the induction of apoptosis after treating two acute

leukemia cell lines with different doses of SR for 24 h. In REH

cells, we observed a clear increase in the fraction of apoptotic cells

under all conditions (Fig. 4). Similar results were observed in HL-

60 cells, where we recorded a two-fold increase with respect to

controls after 48 h of treatment.

Genomic DNA breaks represent an important trigger of

apoptosis. Thus, we investigated the effect of SR on REH cells.

REH cells were exposed to SR (10, 20 and 30 mM) for 3 h, and

analyzed immediately for direct DNA strand scission using the

Figure 6. Effect of SR on ROS levels determined in normoxic (A) and hypoxic (B) conditions on REH cells. Cells were treated for 30–
360 min with SR to analyze the oxidation state of the cell by using DCFH-DA as fluorogenic probe. Results are expressed as DCF (29,79-
dichlorodihydrofluorescein) fluorescence (% of control) and are means 6 SEM of four independent experiments.
doi:10.1371/journal.pone.0101991.g006
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Figure 7. Effect of SR on p53, Bax and Bcl-2 protein expression determined in normoxic and hypoxic conditions on REH cells. Cells
were treated with 0 to 30 mM SR for 24 h. Data are presented as mean 6 SEM of at least four different experiments.
doi:10.1371/journal.pone.0101991.g007
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sensitive FHA. With this technique, DNA fragments resulting from

the cleavage of DNA itself diffuse out of the nuclear cage as an

inverse function of their size, thus producing a concentric halo

whose radius reflects the extent of DNA damage. Halo formation

was monitored at the single cell level with fluorescence micros-

copy, as seen in the representative micrographs shown in Fig. 5C–

D. The results obtained indicate that SR promotes the formation

of DNA breaks in a dose-dependent fashion (Fig. 5A). Formation

of DNA breaks as a function of treatment time with 30 mM SR is

linear over time (Fig. 5B).

We then explored the nature of SR-induced DNA lesions by

analyzing the nuclear DNA of treated cells at lower -non

denaturing conditions- lysis pH values, i.e. 9.3. Indeed, while

operating at pH 13.00 does not allow to distinguish DNA single

strand breaks (SSBs) from DSBs, at pH 9.3 nuclear DNA is not

hydrolyzed into the two chains and only the DNA fragments

resulting from double strand cleavage can be detected. Under

these latter conditions (i.e. pH 9.3), no difference in terms of DNA

fragmentation could be observed between treated (30 mM SFN for

3 h) and untreated REH cells (Fig. 5A, inset), thus suggesting that

the lesions caused by SFN observed at pH 13.00 are frank SSBs.

On the contrary, treatment of REH cells with etoposide (1 mg/ml

for 3 h), included as a representative inducer of DNA DSBs,

resulted in extensive DNA double strand breakage (Fig. 5A, inset).

As to the mechanism responsible for the induction of DNA

damage in SR-treated cells, we previously reported that SR

promotes the mitochondrial formation of ROS [30], which are the

ultimate species mediating DNA cleavage. We then investigated

the formation of ROS in REH cells. After 3 h of treatment with

SR 30 mM, we recorded a significant induction of ROS. Results

depicted in Fig. 6 indicate that SR caused the conversion of

DCFH into its fluorescent by-product, a process which reflects the

formation of ROS. Treatment of cells with SR greatly increased

the formation of ROS. The effect was evident after just 30 min of

treatment.

Chelation of iron ions blocks the Fenton reaction and thus the

production and the propagation of oxygen radicals - i.e. the species

responsible for DNA and cellular damages - within the cells [31].

The presence of the iron chelator o-phenanthroline prevented the

formation of DNA breaks and reduced DCFH oxidation (data not

shown). Thus, as to nuclear DNA, the data described so far

indicate that REH, according to previous data obtained in Jurkat

cells [30], are prone to the DNA damaging action caused by SR,

and that ROS are the species mediating this effect in both cell

lines.

In the second part of our work, we treated REH cells with

different concentration of SR in hypoxic conditions and analyzed

the formation of ROS and the induction of apoptosis.

Fig. 6 shows the formation of ROS in normoxic and hypoxic

treatment protocols. ROS formation was also observed in hypoxic

conditions. The trend is similar in both conditions, although the

formation of ROS is higher in normoxia (Fig. 6A). Of note, DNA

damage was observed also in hypoxic conditions after treatment

with SR (data not shown).

The proapoptotic effect of SR in hypoxia was lower than that

observed in normoxia (Fig. 4). As an example, after treatment with

SR 7.5 mM, we observed a four-fold increase with respect to

controls in normoxia and a two-fold increase in hypoxia. At the

highest concentration tested, we recorded a six-fold and about a

three-fold increase with respect to controls in normoxia and

hypoxia, respectively. After longer time of treatment (i.e. 48 h) in

hypoxic conditions, SR mainly induced necrotic events. As an

example, at SR 30 mM we recorded 30% of necrotic cells (vs. 10%

in the control) and 20% of apoptotic cells (vs. 15% in the control).

Figure 8. Effect of SR on p53, Bax and Bcl-2 mRNA relative expression calculated through the 2-DDCt method and determined in
normoxic and hypoxic conditions on REH cells. Cells were treated with 0 to 30 mM SR for 6, 24 or 48 h. Data are presented as mean 6 SEM of at
least four different experiments.
doi:10.1371/journal.pone.0101991.g008
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This trend was not observed in normoxic conditions, where at SR

30 mM the % of necrotic cells was 25% (vs. 8% in the control) and

44% of apoptotic cells (vs. 10% in the control).

Survival of cancer cells is influenced by the interactions between

pro- and anti-apoptotic proteins. We then analyzed the expression

at mRNA and protein levels of some genes involved in the

regulation of apoptosis. Following 48 h-treatment in normoxic

conditions, SR induced a significant up-regulation of p53 and Bax

protein expression (Fig. 7). However, the expression of the same

genes at mRNA level seems more complex. After treatment with

SR for 6, 24 or 48 h, we mainly observed an up-regulation of p53

expression (Fig. 8), while a down-regulation of Bax expression was

recorded after 6 and 24 h of treatment. After 48 h, SR up-

regulated Bax expression (Fig. 8). The expression of Bcl-2 was

down-regulated at both mRNA and protein expression level and

following 6, 24 or 48 h of exposure to SR (Figs. 7 and 8).

In hypoxic conditions, we observed a similar trend. However,

the effects on p53 and Bax mRNA expression and the ratio of

Bax/Bcl-2 proteins were less marked than in normoxia (Figs. 7 and

8).

The antileukemic effect of SR is strengthened by the inhibition

of cell proliferation (Fig. 9) in both normoxic and hypoxic

exposure to SR. In both conditions, the effect was recordable

starting from the lowest concentration tested. However, the

mechanism by which SR inhibits cell-cycle progression is different

in the two treatment protocols. In normoxia, a block in G2/M

phase was recorded, while an increase in G1 phase was observed in

hypoxia.

Discussion

The main goal of this study was to test the antileukemic

properties of SR in hematological cancers. We found that

synthesized SR caused a dose-dependent induction of apoptosis

in acute leukemia cell lines and primary lymphoblasts from

patients diagnosed with B-ALL, T-ALL, and AML.

Due to the possibility to easily obtain blast samples from

leukemic patients, SR was tested on an ex vivo leukemia model. Ex

vivo samples represent a quite good surrogate for determining the

cellular response of the patient to the treatment and predicting the

clinical outcome [32–34]. This can not be realized by using cell

lines, which markedly differ from blasts directly taken from

leukemic patients in terms of growth kinetics and pharmacological

determinants [35]. By the ex vivo model and in accordance with

previous data [20,30], we confirmed that SR controlled the

expansion of leukemic cells. However, our results show that SR

can not be defined generically an antileukemic, as apparently it

acts only on patients with particular types of leukemia. Indeed, we

did not record any activity of SR on samples from CLL patients.

CLL is generally described as a disease of failed apoptosis.

Apoptosis resistance may stem from a combination of microen-

vironmental survival signals as well as from intrinsic alterations in

the apoptotic machinery and deregulation of components of the

DNA-damage response and repair pathways within the CLL cell

[36]. Moreover, CD40 signaling has been recognized as a strong

antiapoptotic pathway mediating drug resistance in vitro. All CLL

cells express CD40, and in vitro resistance can be induced in 100%

of patients [37]. The strong dependence on cellular and cytokine

components of the microenvironment makes the ex vivo manipu-

lation of CLL cells complex and resulting in biased findings [38].

Taking into account the absence of a cellular model for different

types of CLL [39], further research might explore the effects of SR

on blasts from CLL patients through the partial re-creation in vitro

of the CLL microenvironment, including in particular leukemic

cell survival signals.

One of the greatest problems for anticancer chemotherapy is

chemoresistance, which is less frequent ab initio and has a major

clinical impact during relapse. SR was tested also on non-

responder patients. Although the number of patients was limited, it

is interesting to note that SR retains its activity on this type of

patients.

One of the more significant findings to emerge from this study is

that SR exerts proapoptotic and antiproliferative effects in hypoxic

conditions. Reduced oxygen tension affects cellular metabolism

and the microenvironment, including pH level. These and other

modulations caused by hypoxia can affect the response to

pharmacological treatment [40]. Therefore, with the aim of

gaining further mechanistic insight into the antileukemic activities

of SR as well as the effects of the local environment on the

outcome of treatment, we investigated the effects of SR in hypoxic

conditions, which better mimics the tumor microenvironment in

vivo. Our findings demonstrate that, despite hypoxic culture

conditions, the antileukemic activity of SR is relatively preserved.

We indeed recorded induction of apoptosis and production of

ROS after treatment of leukemia cells with SR in both normoxic

and hypoxic conditions. As to the mechanism through which SR

induces apoptosis, an important trigger is likely to reside in its

ability of damaging nuclear DNA. Indeed DNA damage is known

as an event causally linked to the apoptotic commitment of target

cells. The mechanism whereby DNA breaks are produced clearly

Figure 9. Cell-cycle distribution following 24 h culture in the
absence or presence of SR in normoxic (A) and hypoxic (B)
conditions on REH cells. Data are means 6 SEM of four independent
experiments.
doi:10.1371/journal.pone.0101991.g009
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involves the intracellular generation of ROS. Paradoxically,

exposure of cells to low oxygen (hypoxia) leads to an increase in

mitochondrial production of ROS, that are central upstream

regulators of many of the cellular responses to hypoxia. Low levels

of ROS are required for cellular processes such as proliferation

and differentiation, while additional amounts of ROS above a

certain threshold may cause cell-cycle arrest and/or apoptosis.

The equilibrium of ROS concentration will thus be reached at the

point where maximal signaling is permitted without causing

irreversible damage to cellular components. Indeed, irreversible

damage to cellular proteins, DNA, or lipids seems to be the case as

compounds that raise ROS levels can effectively kill a variety of

tumor cell lines [41]. Increasing ROS levels may indeed represent

a therapeutic strategy to increase killing of cancer cells.

Accordingly with those observations, in our experimental setting

SR creates an oxidative cellular environment that induces DNA

damage and Bax and p53 gene activation, which in turn helps

trigger apoptosis. Indeed, the % of apoptotic cells and the up-

regulation of p53 and Bax are particularly marked in normoxic

conditions, where the production of ROS is higher than in

hypoxia. However, the effect of SR on the mRNA expression of

p53 and Bax is different, particularly for Bax, for which a down-

regulation was observed after short times of treatment with SR.

The quantification of both of these expression levels is not an

exercise in redundancy. Indeed, analyses of mRNA and protein

levels are complementary and both are necessary for a complete

understanding of how the cell works. The different modulation of

a gene at mRNA and protein levels caused by a xenobiotic can be

due to different reasons, such as the poor definition of the

complicated and varied post-transcriptional mechanisms involved

in turning mRNA into protein, or the different half lives of

proteins [42]. The differential effect of SR at mRNA and protein

level seems not be imputable to an inhibition of proteasome.

Instead, SR appears to stimulate proteasome [43,44]. Alternately,

a further study could assess the modulation by SR of microRNAs

that moderate the p53 and Bax transcriptional program.

The results of this investigation show that SR is also able to

inhibit cell-cycle progression through a block in the G2/M phase

in normoxia and in the G1 phase in hypoxia. The G2/M block

induced by SR in normoxia was reported in many cell lines [1].

The differential effect in hypoxic conditions is not surprising. As a

matter of fact, cells subject to severe hypoxia will arrest in G1 or

early S phase and cells in late S, G2 or M phase will finish cell

division and arrest in G1, unless the hypoxia is severe [45].

As to the concentrations of SR used in this study, they could be

not achievable from food supply. However, after a single oral dose

of SR at 150 mmol/kg in rat, plasma concentrations of SR

equivalents increase to 15.2 mM [46]. Furthermore, the potential

development of SR in clinical practice could lead to the

application of a drug delivery system to improve drug absorption.

In conclusion, in vitro and ex vivo experiments performed in the

present study suggest that SR could represent an interesting

therapeutic approach for patients affected by acute proliferative

disorders and might set the stage for a novel therapeutic principle

complementing our growing armature against malignancies. Large

clinical trials will be necessary to confirm this attractive perspective

in vivo.
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