

# NIH Public Access Author Manuscript

Nature. Author manuscript; available in PMC 2014 July 15

Published in final edited form as:

Nature. 2008 December 11; 456(7223): 745–749. doi:10.1038/nature07525.

# Brain metabolic state dictates the polarity of astrocyte control over the cerebrovasculature

Grant R. J. Gordon<sup>1</sup>, Hyun Beom Choi<sup>1</sup>, Graham C. R. Ellis-Davies<sup>2</sup>, and Brian A. MacVicar<sup>1,\*</sup>

<sup>1</sup>Brain Research Centre, Department of Psychiatry, University of British Columbia, BC, Canada

<sup>2</sup>Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA

# Abstract

Calcium signaling in astrocytes couples changes in brain activity to regional alterations in cerebral blood flow (CBF) by eliciting vasoconstriction or vasodilation of adjacent arterioles<sup>1-7</sup>. However, the mechanism for how these disparate astrocyte influences provide appropriate changes in cerebral vascular tone within a cellular environment that has dynamic metabolic requirements remains unclear. The regulation of CBF has recently been shown to be tightly coupled to the lactate/pyruvate ratio and thus the NADH/NAD<sup>+</sup> ratio in animals<sup>8</sup> and humans<sup>9,10</sup>. We tested the impact of metabolic changes on the regulation of cerebral blood vessel diameter by astrocytes, by manipulating tissue oxygenation which changes dynamically with brain activity<sup>11-14</sup>. Using twophoton Ca<sup>2+</sup> imaging and uncaging as well as intrinsic nicotinamide adenine dinucleotide (NADH) imaging of single cells as a measure of redox state, we show that the ability of astrocytes to induce vasodilations over vasoconstrictions critically relies on the metabolic state of the tissue. When O<sub>2</sub> availability is lowered and astrocyte  $[Ca^{2+}]_i$  is elevated, astrocyte glycolysis and lactate release are maximized. Extracellular lactate contributes to prostaglandin E<sub>2</sub> (PGE<sub>2</sub>) accumulation by hindering its transporter-mediated uptake, subsequently causing vasodilation. These data reveal the role of metabolic substrates in regulating CBF and provide a mechanism for differential astrocyte control over cerebrovascular diameter during different states of brain activation.

> We first examined whether changing PO<sub>2</sub> consistently determined whether vasoconstrictions or vasodilations were evoked by astrocyte Ca<sup>2+</sup> transients. The mGluR agonist t-ACPD (100  $\mu$ M) potently increased [Ca<sup>2+</sup>]<sub>i</sub> (240.0 ± 19.1 %, n = 14, *P* < 0.01, Fig. 1 a) in astrocytes<sup>1,4,5</sup> and differential responses were observed in the adjacent cerebral blood vessels whereby vasodilation (107.0 ± 0.8 % (100% = control diameter), *P* < 0.01, n = 23, Fig. 1 a, d) occurred in low O<sub>2</sub> but in high O<sub>2</sub> arterioles constricted<sup>1</sup> (85.4 ± 4.0 %, *P* < 0.01, n = 10, Fig. 1 d). We next used two-photon photolysis of the Ca<sup>2+</sup> cage DMNPE-4<sup>15</sup> to examine the

<sup>&</sup>lt;sup>\*</sup>Correspondence T: 604-822-7797, F: 604-822-7299, bmacvicar@brain.ubc.ca.

Author Contributions G.R.J.G. and B.A.M. designed the imaging experiments and wrote the manuscript. G.R.J.G. performed the imaging experiments and analysis and took slice PO2 measurements. H.B.C., G.R.J.G. and B.A.M. designed the lactate and PGE2 experiments. H.B.C. and B.A.M. designed the immunohistochemistry experiments. H.B.C. performed the lactate and PGE2 measurements and analysis and the immunohistochemistry. G.C.R.E-D designed and synthesized the calcium cage. All authors helped edit the manuscript.

effect of low O<sub>2</sub> levels on the impact of directly evoked astrocyte Ca<sup>2+</sup> signals on adjacent blood vessels. Uncaging DMNPE-4 triggered Ca<sup>2+</sup> waves that spread to multiple endfeet circumscribing arterioles (Fig. 1 b, c). In contrast to previous results in high PO<sub>2</sub> where  $Ca^{2+}$ transients in astrocyte endfeet always caused constriction<sup>1</sup>, in low O<sub>2</sub> endfeet Ca<sup>2+</sup> (232.2  $\pm$ 8.5 %, n = 17, P < 0.01) caused arteriole dilations (107.4 ± 1.0 %, P < 0.01, n = 17, Fig. 1 b, c, d) that were repeatable (Fig. 1 b). The  $Ca^{2+}$  change preceded the enlargement of lumen diameter (Fig. 1 b, c). These data suggest PO<sub>2</sub> dictates the polarity of the change in arteriole diameter caused by either mGluR activity or an elevation in endfoot Ca<sup>2+</sup> and that the dilation process can be initiated solely by astrocyte activation (see Supplemental Fig. 1 for PO<sub>2</sub> measurements). Ca<sup>2+</sup> activates cPLA<sub>2</sub> triggering arachidonic acid (AA) formation that is either converted to 20-HETE<sup>1</sup> in (SMCs) causing vasoconstriction or is converted to the vasodilator PGE<sub>2</sub> in astrocytes via cyclooxygenase (COX) enzymes<sup>4,7</sup>. We confirmed COX expression in astrocytes and their endfeet (Supplemental Fig. 2). The COX inhibitor indomethacin (100  $\mu$ M) blocked vasodilations caused by t-ACPD (98.4 ± 0.8 %, P > 0.05, n = 9, Fig. 1 d) and by caged Ca<sup>2+</sup> photolysis (101.0  $\pm$  0.5 %, P > 0.05, n = 6, Fig. 1 d) in low O<sub>2</sub>. Application of the COX product PGE<sub>2</sub> (1  $\mu$ M) elicited vasodilation (109.4 ± 2.7 %, P < 0.05, n = 4, Fig. 1 d), confirming COX activation and the generation of PGE<sub>2</sub> is an important signaling molecule in astrocyte-mediated vasodilations in low  $O_2^{4,7}$ .

Next we examined how changing tissue PO<sub>2</sub> could modify whether astrocyte Ca<sup>2+</sup> transients induce constrictions versus dilations. We examined the possibility that a lower PO<sub>2</sub> elevates anaerobic metabolism, increasing external lactate which subsequently enhances external PGE<sub>2</sub> concentrations. Once produced, PGE<sub>2</sub> passively diffuses into the extracellular space<sup>16</sup> and its action on smooth muscle cells is terminated when prostaglandin transporters (PGTs) take up PGE<sub>2</sub> by an exchange of intracellular lactate<sup>17</sup>. Due to the influence of a lactate concentration gradient on PGT efficacy, we tested the hypothesis that higher levels of extracellular lactate reduce the ability of PGT to uptake PGE<sub>2</sub><sup>17</sup> from the extracellular space, thereby increasing PGE<sub>2</sub> concentrations resulting in vasodilation. Such a role for lactate is consistent with the observations that extracellular lactate levels increase immediately during brain activity<sup>18</sup> and that lactate is known to enhance activity dependent increases in blood flow<sup>8</sup>. We found using immuohistochemistry that PGT is widely expressed in brain grey matter in both astrocyte endfeet (Fig. 2 a), and neurons (Fig. 2 b), indicating dendrites as well as endfeet take up prostaglandins. Consistent with a positive correlation between external lactate and PGE<sub>2</sub>, we found that low  $O_2$  enhanced lactate release from brain slices (low:  $114.2 \pm 9.1 \mu$ M, n = 6; high:  $41.9 \pm 5.6 \mu$ M, n = 6, P < 0.01, Fig. 2 c). Also, significantly greater levels of PGE<sub>2</sub> were observed in low O<sub>2</sub> when PGE<sub>2</sub> production was triggered by mGluR activation, (low:  $136.1 \pm 10.2$  pg/ml, n = 6; high:  $91.9 \pm 12.6$  pg/ml, n = 4, P < 0.01, Fig. 2 d). Furthermore, addition of lactate (1 mM) enhanced the PGE<sub>2</sub> level (control:  $40.5 \pm 3.3 \text{ pg/ml}$ ; + lactate:  $58.0 \pm 3.1 \text{ pg/ml}$ , n = 5, P < 0.01) and increased arteriole diameter (107.5  $\pm$  1.0 %, P < 0.01, n = 15, Fig. 2 e, f, g). Dilations induced by lactate were blocked by indomethacin (100.4  $\pm$  0.4 %, P > 0.05, n = 11, Fig. 2 g) indicating they were mediated by PGE<sub>2</sub>. These data indicate that in low O<sub>2</sub> the higher level of extracellular lactate raises external levels of PGE2. This is consistent with lactate reducing PGE<sub>2</sub> uptake through PGT.

We next examined the role of glycolysis in lactate production by imaging the intrinsic fluorescence of the metabolic electron carrier NADH in astrocytes. Two-photon excitation of NADH provides a sensitive, subcellular measure of both oxidative metabolism (punctate NADH fluorescence from mitochondria) and glycolytic metabolism (diffuse NADH fluorescence from the cytosol)<sup>19</sup>. We observed, as previously reported, that astrocytes (stained with SR-101<sup>20</sup>) showed bright intracellularly diffuse NADH fluorescence in the soma and endfeet (Fig. 2 h, i). Stimulating glycolysis with low O<sub>2</sub> increased the astrocyte NADH signal (124.6 ± 1.4 %, n = 7, *P* < 0.01, Fig. 2 i, j) and inhibiting glycolysis with iodoacetate (IA, 200  $\mu$ M) reduced basal NADH fluorescence (87.8 ± 2.0 %, n = 5, *P* < 0.05,

iodoacetate (IA, 200  $\mu$ M) reduced basal NADH fluorescence (87.8 ± 2.0 %, n = 5, *P* < 0.05, Fig. 2 k). Furthermore, inhibiting lactate dehydrogenase (LDH) (which converts pyruvate and NADH to lactate and NAD+; see Fig. 4 e diagram) with oxamate (2.5 mM) increased the NADH signal (119.3 ± 2.0 %, n = 6, *P* < 0.01, Fig. 2 l). These data support the conclusion that NADH is generated to a significant extent in astrocytes as a consequence of glycolytic metabolism—likely originating from glycogen breakdown<sup>21</sup>—which can be augmented by reducing O<sub>2</sub>.

Recent two-photon NADH imaging demonstrated an increase in astrocyte glycolysis subsequent to the onset of neuronal activity<sup>19</sup>. We hypothesized that mGluR activation further enhances glycolysis in astrocytes in low O<sub>2</sub>, promoting greater extracellular lactate levels that cause vasodilation. Consistent with this idea, t-ACPD enhanced extracellular lactate, which was greatest in low O<sub>2</sub> (low:  $186.7 \pm 11.2 \mu$ M, n = 6; high:  $98.6 \pm 10.2 \mu$ M, n = 7, *P* < 0.01, Fig. 3 f). The astrocytes were a site of increased glycolysis because t-ACPD triggered an increase in cytosolic NADH ( $128.7 \pm 4.1 \%$ , n = 7, *P* < 0.01, Fig. 3 a, b, c, d, e) coincident with lumen widening ( $108.5 \pm 0.7 \%$ , n = 5 of 7, *P* < 0.01, Fig. 3 b, c). In contrast, peak NADH signals from perivascular neurons were not as great and were qualitatively different, showing distinct punctate mitochondrial fluorescence (Supplemental Fig. 3). These data signify a change in anaerobic metabolism may be important for astrocyte-mediated vasomotion in low O<sub>2</sub>.

Recent functional imaging data from human subjects reveals a relationship between a rise in the lactate/pyruvate and thus NADH/NAD<sup>+</sup> ratios and an increase in CBF<sup>9</sup>, but how this enhanced glycolytic state is a critical step translating information on the level of brain activity into vasodilation of arterioles is not known. Our data demonstrate that lactate, astrocyte NADH and PGE2 are maximally increased in low O2 when mGluRs are activated and that exogenous lactate can mediate prostaglandin dependent vasodilation. Therefore, we tested the hypothesis that glycolysis and thus lactate production is essential for prostaglandin dependent astrocyte-mediated vasodilations. We used two separate pharmacological treatments to limit the lactate released by mGluR activity in low O<sub>2</sub>. First, in the presence of IA to block the source of lactate, t-ACPD instead decreased astrocyte NADH ( $81 \pm 0.4$  %, n = 5, P < 0.01, Fig. 3 g) and failed to dilate vessels (97.8 ± 0.2 %, n = 5, P > 0.05, Fig. 3 i). Second, in the presence of oxamate to curtail lactate formation, t-ACPD still increased astrocyte NADH (113.8  $\pm$  3.1 %, n = 6, P < 0.05, Fig. 3 h)—an expected outcome as oxamate acts downstream of NADH production (see Fig. 4 c diagram)-yet vasodilations no longer occurred (99.0  $\pm$  0.1 %, n = 6, P > 0.05, Fig. 3 i). We then confirmed the lack of vasomotion observed during these treatments was associated with a significant reduction in

lactate and PGE<sub>2</sub> release when mGluRs were activated (Lactate release in t-ACPD: 180.2 ± 11.9  $\mu$ M, n = 6; + IA: 88.2 ± 8.8  $\mu$ M, n = 6, *P* < 0.01; + Oxamate: 89.1 ± 6.6  $\mu$ M, n = 6, *P* < 0.01, Fig. 3 j)(PGE<sub>2</sub> release in t-ACPD: 154.0 ± 10.1 pg/ml, n = 4; + IA: 115.4 ± 10.6 pg/ml, n = 6, *P* < 0.01; + Oxamate: 94.6 ± 7.6 pg/ml, n = 6, *P* < 0.01, Fig. 3 k). Finally, because PGE<sub>2</sub> is the final effector molecule on SMCs (downstream of astrocyte glycolysis), we could rescue vasodilation by applying PGE<sub>2</sub> in the presence of either oxamate (109.2 ± 2.2 %, *P* < 005, n = 5, Fig. 3 i) or IA (109.0 ± 1.3 %, *P* < 0.01, n = 5, Fig. 3 i). These data demonstrate that inhibition of glycolysis or LDH limits extracellular lactate and PGE<sub>2</sub> accumulation in response to t-ACPD in low O<sub>2</sub>, preventing astrocyte mediated vasodilations.

As a final test of our hypothesis we pharmacologically targeted PGTs to manipulate extracellular levels of PGE2 and examined the effects on vasomotion. First, blockade of PGTs with U46619<sup>22</sup> or TGBz T34<sup>16</sup> resulted in elevated levels of PGE<sub>2</sub> when mGluRs were activated in low O<sub>2</sub> (tACPD: 227.5 ± 7.2 %, tACPD + U46619: 435.6 ± 16.9, P < 0.01 to tACPD alone, n = 5; tACPD + T34: 816.4 ± 6.0, P < 0.01 to tACPD alone, n = 4, Fig. 4 a) and did not interfere with low O<sub>2</sub> astrocyte-mediated dilations (U46619: 110.4  $\pm$  0.3 %, P < 0.01, n = 5; T34: 109.1  $\pm$  1.3 %, P < 0.01, n = 7, Fig. 4 b). Second, we hypothesized that adding exogenous lactate in high O2 would enable astrocyte-mediated vasomotion to change polarity by attenuating PGE<sub>2</sub> uptake. However, because there is nothing preventing the initiation of vasoconstriction in high O<sub>2</sub> from the action of AA in SMCs, we blocked constriction at the level of SMCs by adding adenosine<sup>23</sup>. Extracellular adenosine is elevated in a reduced oxygen environment<sup>24</sup> and is an additional modulator of vasoconstriction<sup>23</sup>. In the presence of adenosine (100  $\mu$ M), uncaging Ca<sup>2+</sup> within astrocytes in high O<sub>2</sub> produced no vasomotion (99.6  $\pm$  0.9 %, P > 0.05, n = 4, Supplemental Fig. 4). However, when lactate  $(100 \ \mu\text{M} - 1 \ \text{mM})$  was included to mitigate PGE<sub>2</sub> clearance in addition to adenosine, Ca<sup>2+</sup> uncaging now resulted in dilation (107.5  $\pm$  1.4 %, P < 0.01, n = 9, Fig. 4 b, c), despite equivalent endfeet Ca<sup>2+</sup> signals compared to adenosine alone (adenosine:  $F/F_0 = 160.4 \pm$ 6.1; adenosine + lactate:  $F/F_0 = 159.6 \pm 5.1$ , P > 0.05, Supplemental Fig. 4). From this, we hypothesized that PGT blockade would have a similar result by raising the extracellular PGE<sub>2</sub> level. Indeed, in high O<sub>2</sub> we found that in the same vessel, the first uncaging event caused constriction ( $87.4 \pm 1.8$  %, P < 0.01, Fig. 4 b, d) but the second uncaging event during PGT inhibition with T34 caused dilation ( $108.7 \pm 1.4$  %, P < 0.05, n = 5, Fig. 4 b, d). These data indicate that the ability of astrocytes to induce dilation over constriction critically relies on reduced efficacy of PGE2 uptake under conditions where lactate release is enhanced.

Here we show that when the glycolytic state of the brain is enhanced by lower  $O_2$  levels, astrocyte-mediated vasoconstrictions convert to vasodilations because the elevated extracellular lactate causes PGE<sub>2</sub> accumulation which is maximized during mGluR activation. Flow through blood vessels is proportional to vessel radius to the 4<sup>th</sup> power; therefore a ~9 % change in arteriole diameter reported here equates to a ~45 % increase in CBF. This change is consistent with astrocyte-mediated vasodilations observed *in vivo*<sup>7</sup> and can more than account for regional CBF changes measured by PET<sup>25</sup> and with two-photon microscopy<sup>26</sup> when the brain is physiologically activated. These data add an important and

until now unrecognized mechanism in the bidirectional control of cerebral vessels by astrocytes. Previous studies implicated different populations of GABA neurons<sup>27</sup> and tissue nitric oxide levels<sup>2</sup>. The metabolic control of these antagonistic pathways by astrocytes implies that brain blood flow would reach a homeostatic level depending on metabolic activity. Under quiescent periods when  $O_2$  is not being rapidly consumed, astrocyte Ca<sup>2+</sup> signals induce constrictor tone, keeping CBF at an appropriate level. At the onset of neural activity there is a drop in PO<sub>2</sub> and rise in extracellular lactate which promotes astrocyte mediated dilation. Manipulating this homeostatic balance may be a therapeutic avenue for treating the inappropriate declines in CBF that occurs in some dementias and after stroke.

## Methods Summary

#### **Brain Slices and Imaging**

Hippocampal and neocortical slices were prepared from juvenile (p 16-21), male, Sprague-Dawley rats. Care and use of animals was approved by the University of British Columbia Animal Care and Use Committee. ACSF bubbled with 95 %  $O_2$ , 5 %  $CO_2$  (standard for brain slice experimentation), was defined as a high  $O_2$  treatment and ACSF bubbled with 20 %  $O_2$ , 5 %  $CO_2$ , balanced  $N_2$ , was defined as a low  $O_2$  treatment. For astrocyte dye loading, slices were transferred to a 3 ml ACSF well containing the  $Ca^{2+}$  cage DMNPE-4/AM and/or the  $Ca^{2+}$  indicator rhod-2/AM dissolved in DMSO (final DMSO concentration 0.2 %) for 1.5 hours. A two-photon laser-scanning microscope (Zeiss LSM510-Axioskop-2 fitted with a 40X-W/0.80 numerical aperture objective lens) directly coupled to a Chameleon Ultra tunable ultrafast laser (~100-fs pulses and 76MHz, Coherent) provided excitation of rhod-2 intrinsic NADH fluorescence and was used for uncaging using two photon photolysis. Arterioles were identified with IR-DIC optics and vessel diameter changes were imaged by acquiring the transmitted laser light. Quantification of lumen diameter, NADH and  $Ca^{2+}$ changes were performed with Zeiss LSM (version 3.2) software and ImageJ.

## Lactate and PGE<sub>2</sub> Measurements

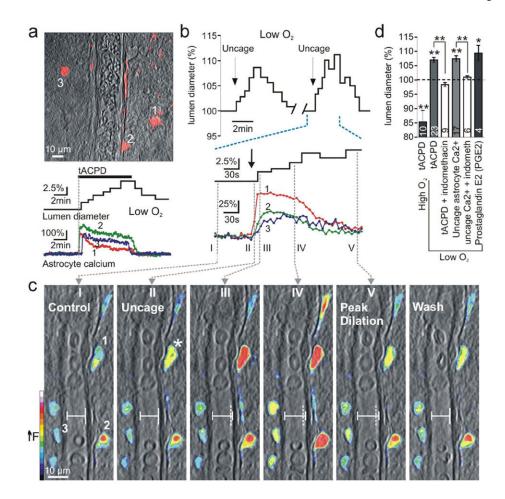
The assay used for measuring  $PGE_2$  release was Specific Parameter  $PGE_2$  ELISA kits (R&D systems). Extracellular lactate levels were measured using a Lactate Assay Kit (Biomedical Research Service Centre, SUNY Buffalo).

Full Methods and associated references can be found below in the supplemental materials section.

# Supplementary Material

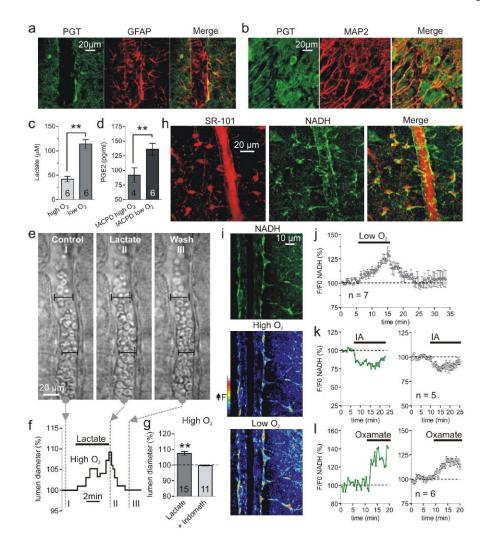
Refer to Web version on PubMed Central for supplementary material.

# Acknowledgments


We thank Drs. T. Murphy, Tony Phillips and Yu Tian Wang for reading an earlier version of the manuscript. T34 was a gift from the lab of Victor L. Schuster from the Departments of Medicine and Physiology and Biophysics, Albert Einstein College of Medicine. Supported by an operating Grant from the Canadian Institutes of Health Research. BAM is a Canada Research Chair and a Michael Smith Foundation for Health Research (MSFHR) Distinguished Scholar. GRJG is supported by fellowships from the Alberta Heritage Foundation for Medical

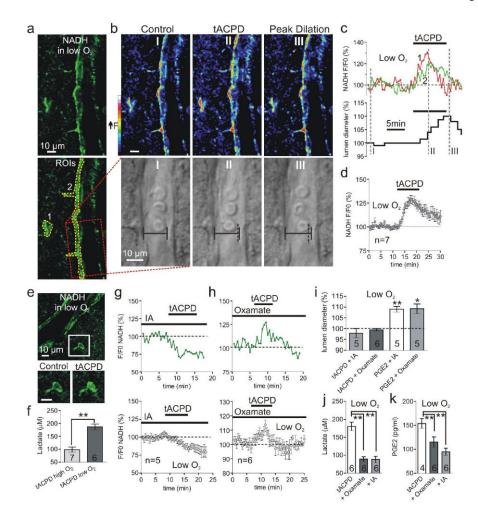
Research and MSFHR. HBC is supported by postdoctoral fellowships from Wilms Foundation and the Heart and Stroke Foundation of BC and the Yukon.

## References


- Mulligan SJ, MacVicar BA. Calcium transients in astrocyte endfeet cause cerebrovascular constrictions. Nature. 2004; 431(7005):195. [PubMed: 15356633]
- Metea MR, Newman EA. Glial cells dilate and constrict blood vessels: a mechanism of neurovascular coupling. J Neurosci. 2006; 26(11):2862. [PubMed: 16540563]
- Chuquet J, Hollender L, Nimchinsky EA. High-resolution in vivo imaging of the neurovascular unit during spreading depression. J Neurosci. 2007; 27(15):4036. [PubMed: 17428981]
- 4. Zonta M, Angulo MC, Gobbo S, et al. Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nature neuroscience. 2003; 6(1):43.
- Filosa JA, Bonev AD, Nelson MT. Calcium dynamics in cortical astrocytes and arterioles during neurovascular coupling. Circulation research. 2004; 95(10):e73. [PubMed: 15499024]
- 6. Filosa JA, Bonev AD, Straub SV, et al. Local potassium signaling couples neuronal activity to vasodilation in the brain. Nature neuroscience. 2006; 9(11):1397.
- 7. Takano T, Tian GF, Peng W, et al. Astrocyte-mediated control of cerebral blood flow. Nature neuroscience. 2006; 9(2):260.
- Ido Y, Chang K, Williamson JR. NADH augments blood flow in physiologically activated retina and visual cortex. Proceedings of the National Academy of Sciences of the United States of America. 2004; 101(2):653. [PubMed: 14704275]
- Mintun MA, Vlassenko AG, Rundle MM, et al. Increased lactate/pyruvate ratio augments blood flow in physiologically activated human brain. Proceedings of the National Academy of Sciences of the United States of America. 2004; 101(2):659. [PubMed: 14704276]
- Vlassenko AG, Rundle MM, Raichle ME, et al. Regulation of blood flow in activated human brain by cytosolic NADH/NAD+ ratio. Proceedings of the National Academy of Sciences of the United States of America. 2006; 103(6):1964. [PubMed: 16446430]
- Ances BM, Buerk DG, Greenberg JH, et al. Temporal dynamics of the partial pressure of brain tissue oxygen during functional forepaw stimulation in rats. Neuroscience letters. 2001; 306(1-2): 106. [PubMed: 11403969]
- Offenhauser N, Thomsen K, Caesar K, et al. Activity-induced tissue oxygenation changes in rat cerebellar cortex: interplay of postsynaptic activation and blood flow. The Journal of physiology. 2005; 565(Pt 1):279. [PubMed: 15774524]
- Vanzetta I, Grinvald A. Increased cortical oxidative metabolism due to sensory stimulation: implications for functional brain imaging. Science (New York, NY. 1999; 286(5444):1555.
- Devor A, Ulbert I, Dunn AK, et al. Coupling of the cortical hemodynamic response to cortical and thalamic neuronal activity. Proceedings of the National Academy of Sciences of the United States of America. 2005; 102(10):3822. [PubMed: 15734797]
- 15. Ellis-Davies GC. Caged compounds: photorelease technology for control of cellular chemistry and physiology. Nature methods. 2007; 4(8):619. [PubMed: 17664946]
- 16. Chi Y, Khersonsky SM, Chang YT, et al. Identification of a new class of prostaglandin transporter inhibitors and characterization of their biological effects on prostaglandin E2 transport. The Journal of pharmacology and experimental therapeutics. 2006; 316(3):1346. [PubMed: 16269530]
- Chan BS, Endo S, Kanai N, et al. Identification of lactate as a driving force for prostanoid transport by prostaglandin transporter PGT. Am J Physiol Renal Physiol. 2002; 282(6):F1097. [PubMed: 11997326]
- Hu Y, Wilson GS. A temporary local energy pool coupled to neuronal activity: fluctuations of extracellular lactate levels in rat brain monitored with rapid-response enzyme-based sensor. Journal of neurochemistry. 1997; 69(4):1484. [PubMed: 9326277]
- 19. Kasischke KA, Vishwasrao HD, Fisher PJ, et al. Neural activity triggers neuronal oxidative metabolism followed by astrocytic glycolysis. Science (New York, NY. 2004; 305(5680):99.
- 20. Nimmerjahn A, Kirchhoff F, Kerr JN, et al. Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo. Nature methods. 2004; 1(1):31. [PubMed: 15782150]

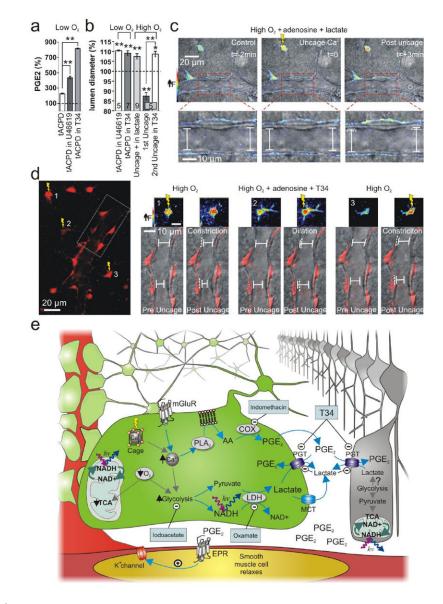
- 21. Brown AM, Ransom BR. Astrocyte glycogen and brain energy metabolism. Glia. 2007; 55(12): 1263. [PubMed: 17659525]
- Pucci ML, Endo S, Nomura T, et al. Coordinate control of prostaglandin E2 synthesis and uptake by hyperosmolarity in renal medullary interstitial cells. Am J Physiol Renal Physiol. 2006; 290(3):F641. [PubMed: 16263809]
- 23. Bryan, RM, Jr. Cerebral Blood Flow and Metabolism. Edvinson, L.; Krause, DN., editors. Lippincott Williams and Wilkins; Philadelphia: 2002. p. 311
- Frenguelli BG, Llaudet E, Dale N. High-resolution real-time recording with microelectrode biosensors reveals novel aspects of adenosine release during hypoxia in rat hippocampal slices. Journal of neurochemistry. 2003; 86(6):1506. [PubMed: 12950459]
- Fox PT, Raichle ME. Stimulus rate dependence of regional cerebral blood flow in human striate cortex, demonstrated by positron emission tomography. Journal of neurophysiology. 1984; 51(5): 1109. [PubMed: 6610024]
- 26. Chaigneau E, Tiret P, Lecoq J, et al. The relationship between blood flow and neuronal activity in the rodent olfactory bulb. J Neurosci. 2007; 27(24):6452. [PubMed: 17567806]
- 27. Cauli B, Tong XK, Rancillac A, et al. Cortical GABA interneurons in neurovascular coupling: relays for subcortical vasoactive pathways. J Neurosci. 2004; 24(41):8940. [PubMed: 15483113]




#### Fig. 1.

Lowering  $O_2$  converts astrocyte-mediated vasoconstrictions to vasodilations. (a) Top: astrocytes (red) loaded with  $Ca^{2+}$  indicator surround arteriole. Bottom: astrocyte  $Ca^{2+}$ signals occur coincident with dilation caused by the mGluR agonist t-ACPD in low  $O_2$ . (b) Top: uncaging astrocyte  $Ca^{2+}$  (indicated by arrow) causes vasodilation in low  $O_2$  and is repeatable. Bottom: expanded time scale shows the  $Ca^{2+}$  signal in endfoot 1 (shown in *c I*) precedes the lumen diameter increase. (c) Overlay of vessel and pseudo colored endfoot  $Ca^{2+}$  changes. Images *I-V* correspond to times in *b. I*: control state and regions of interest: endfeet 1-3. Image *II*: endfoot 1 shows first  $Ca^{2+}$  rise (star) before lumen diameter starts to increase. Vertical dotted line (*III-V*) indicates previous position of vessel wall. (d) Summary data.




#### Fig. 2.

Low  $O_2$  facilitates lactate and  $PGE_2$  release and enhances astrocyte glycolysis. (a and b) Immunohistochemistry showing the astrocyte marker GFAP and the neuron marker MAP2 colocalize with PGT labeling. (c) Lactate release is elevated in low  $O_2$ . (d) t-APCD increases PGE<sub>2</sub> release most in low  $O_2$ . (e and f) Lactate dilates an arteriole. Images *I-III* correspond to time points in *f*, which shows the lumen diameter increase. (g) Summary showing percent dilation by lactate and block by indomethacin. (h) Colocalization of the astrocyte maker SR-101 (left stack) and the NADH signal (middle stack) from perivascular glia somas and endfeet. (i) Top: arteriole NADH fluorescence from a single image plane showing astrocyte compartments, SMCs/endothelial cells and empty lumen of the blood vessel. Middle and Lower: pseudo colored image of NADH fluorescence in high and low  $O_2$ . (j) Summary of NADH changes in astrocyte compartments caused by low  $O_2$ . (k and l) Astrocyte NADH in response to glycolysis inhibition with iodoacetate (IA) (k) and LDH inhibition with Oxamate (l). Left: single experiment; right: summary.



#### Fig. 3.

Glycolysis and lactate release is critical for astrocyte-mediated dilations. (a) Arteriole and astrocyte NADH image in low  $O_2$ ; bottom shows ROIs for astrocyte compartments (1 and 2) and vessel (box). (b) Pseudo color NADH (top) and diameter (bottom) changes caused by t-ACPD at time points *I-III* in *c*. Vertical dotted line (*II* and *III*) indicates previous position of vessel wall. (c) Astrocyte NADH (top) and lumen diameter (bottom) in response to t-ACPD; same experiment as *a* and *b*. (d) Summary of NADH increase from mGluR activation in low  $O_2$ . (e) Top: NADH image of an arteriole and astrocyte. Lower: soma close-up showing t-ACPD causes a diffuse increase in NADH. (f) t-ACPD increases extracellular lactate most in low  $O_2$ . (g) t-ACPD decreases astrocyte NADH during glycolysis inhibition; top: single experiment; bottom: summary. (h) mGluR activation increases astrocyte NADH during LDH inhibition; top: single experiment; bottom: summary. (i) Summary showing t-ACPD fails to dilate vessels in oxamate or IA and PGE<sub>2</sub> rescues vasodilation in these compounds. (j and k) The increase in lactate (j) and PGE<sub>2</sub> (k) caused by t-ACPD is significantly less in oxamate and IA.



#### Fig. 4.

Raising PGE<sub>2</sub> levels by inhibiting PGT changes the polarity of astrocyte-mediating vasomotion. (a) PGE<sub>2</sub> levels were further elevated by mGluR activation in low O<sub>2</sub> when PGT was inhibited by U46619 or T34. (b) Summary data of vasomotion during PGT manipulation. (c) Uncaging  $Ca^{2+}$  in high O<sub>2</sub> causes vasodilation in exogenous lactate. Top panels show the astrocyte  $Ca^{2+}$  signal change (pseudo colour) from uncaging. Lower panels show close up of vessel lumen. (d) In high O<sub>2</sub>, astrocyte-mediated vasoconstriction is converted to vasodilation during PGT blockade. Left: astrocytes and endfeet circumscribing an arteriole.  $Ca^{2+}$  is uncaged in 3 astrocytes separated in time; box indicates the vessel region examined on the right. Right: vasomotions corresponding to the separate uncaging events. Small pseudo colour images show the  $Ca^{2+}$  signal change from uncaging in each astrocyte. Lower images of the vessel and endfeet (red) show that the vasomotion switches polarity when PGTs are blocked. (e) Diagram of the supported model.