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Abstract

In female mammals, the postpartum period involves dramatic shifts in many socioemotional

behaviors. This includes a suppression of anxiety-related behaviors that requires recent physical

contact with offspring. Factors contributing to differences among females in their susceptibility to

the anxiety-modulating effect of offspring contact are unknown, but could include their innate

anxiety and brain monoaminergic activity. Anxiety behavior was assessed in a large group of

nulliparous female rats and the least-anxious and most-anxious tertiles were mated. Anxiety was

assessed again postpartum after females were permitted or prevented from contacting their

offspring 4 h before testing. Levels of dopamine β-hydroxylase (DBH, norepinephrine

synthesizing enzyme) and tryptophan hydroxylase- 2 (TPH2, serotonin synthesizing enzyme) were

measured in the brainstem and dorsal raphe, respectively. It was found that anxiety-related

behavior in the two groups did not differ when dams were permitted contact with offspring before

testing. Removal of the offspring before testing, however, differentially affected anxiety based on

dams’ innate anxiety. Specifically, dams reverted back to their pre-mating levels of anxiety such

that offspring removal slightly increased anxiety in the most-anxious females but greatly lowered

anxiety in the least-anxious females. This reduction in anxiety in the least-anxious females after

litter removal was associated with lower brainstem DBH. There was no relationship between

females’ anxiety and dorsal raphe TPH2. Thus, a primary effect of recent contact with offspring

on anxiety-related behavior in postpartum rats is to shift females away from their innate anxiety to

a more moderate level of responding. This effect is particularly true for females with the lowest
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anxiety, may be mediated by central noradrenergic systems, and has implications for their ability

to attend to their offspring.
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INTRODUCTION

The onset and maintenance of motherhood is a time of tremendous neurobehavioral flux for

female mammals (Numan et al., 2006; Lonstein et al., 2013; Sisk et al., 2013). This flux

involves salient changes in how females process social stimuli, most obviously resulting in

heightened positive responses to neonates, as well as changes in the new mother’s emotional

state that help or hinder these positive responses. While the early postpartum period has

been characterized for some women as a time of particular susceptibility to anxiety and

other types of emotional dysregulation, the majority of women and other female animals

studied show stable or even improved emotional regulation during the postpartum period

(Neumann, 2003; Heron et al., 2004; Ross and McLean, 2006; Lonstein, 2007). Indeed,

most studies find that anxiety-related behavior in early postpartum laboratory rodents is

lower than what is found in females that have not given birth (see Lonstein, 2007 for

review). In rats, this reduction depends on recent suckling or non-suckling physical contact

with offspring, and dams’ anxiety-related behavior rises to levels found in nulliparous

females if the litter is removed even for a few hours before testing (Lonstein, 2005; Figueira

et al., 2008; Smith and Lonstein, 2008; Miller and Lonstein, 2011). A similar anxiolytic

effect of recent suckling or non-suckling contact with infants has been found in human

mothers (Heinrichs et al., 2001).

Studies on this topic in laboratory rats have provided valuable information about what can

be expected for the anxiety-related behaviors of most postpartum females in response to

infant contact. However, postpartum female rats may be heterogeneous in how their anxiety

is affected by physical contact with neonates. This is suggested by the fact noted above that

women are differentially susceptible to anxiety dysregulation during the postpartum period,

with one of the best predictors of their postpartum anxiety being their history of anxiety

before giving birth (Engle et al., 1990; Hundley et al., 1998; O’Connor et al., 2002; Heron et

al., 2004; Britton, 2008; Grant et al., 2008). Such innate or “trait” anxiety could also

contribute to heterogeneity in the anxiety-related behavior of postpartum laboratory rats, and

there is a burgeoning body of research demonstrating the stability of emotional traits

(including anxiety) in individual non-human animals across the lifespan (Burtt, 1967; Lister,

1987; Clarke and Boinski, 1995; Leibsch et al., 1998; Henniger et al., 2000; Gosling, 2001;

Landgraf and Wigger, 2002; Cavigelli et al., 2007; Uher et al., 2008; Quinn et al., 2011;

Curley et al., 2012; Cavigelli et al., 2013). Furthermore, in both rodents and humans,

differences among individuals in anxiety or the experimental instillation of anxious states

has been observed to affect somatosensory functioning (Jorum, 1988; van Meeteren et al.,

1997; Kain et al., 2000; Rhudy and Meagher, 2000; Geerse et al., 2006; Devall et al., 2009;

Aron et al., 2012; Corral-Frias et al., 2013). If the same is true for postpartum rats, mothers
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with the highest anxiety could be the most sensitive to, and benefit the most from, tactile

inputs provided by the litter. One could alternatively conjecture that if maternal tactile

sensitivity is too high, interacting with pups could be aversive and not reduce anxiety.

The neurochemicals underlying postpartum anxiety in general or its modulation by offspring

contact are not very well understood. Research on this topic has traditionally focused on

ovarian hormones (e.g., estradiol, progesterone) and peptides (e.g., oxytocin, prolactin)

(Neumann, 2003; Lonstein, 2007), but classic neurotransmitter systems that modulate

anxiety in nulliparous animals, such as norepinephrine and serotonin, are also involved.

Noradrenergic neurons located in the locus coeruleus, ventrolateral medulla, and elsewhere

in the brainstem have reciprocal connections with many areas of the limbic system and

hypothalamus that are involved in emotion regulation (McKeller and Loewy, 1982; Woulfe

et al., 1990). Elevated activity of these noradrenergic pathways is associated with anxiety in

both laboratory rats (Tanaka et al., 2000; Neophytou et al., 2001; Dazzi et al., 2002; Fendt et

al., 2005; Debiec and LeDoux, 2006) and humans (Sullivan et al., 1999; Tanaka et al., 2000;

Ravindran and Stein, 2010; Kalk et al., 2011). Compared to nulliparous rats, postpartum rats

have lower noradrenergic activity in some areas of the forebrain involved in the behavioral

and physiological responses to anxiogenic stimuli (Toufexis and Walker, 1996; Windle et

al., 1997; Toufexis et al., 1998; Douglas, 2005) and this may partly be mediated by

brainstem noradrenergic neurons that are sensitive to tactile cues from pups (Li et al., 1999).

The serotonin-synthesizing neurons in the brain are mostly located in the midbrain dorsal

raphe nucleus and are also interconnected to many neural structures underlying anxiety and

other emotional behaviors (Feldman et al., 1987; Chen et al., 1992; Hensler et al., 1994;

Dinan, 1996; Ziegler and Herman, 2002; Lechin et al., 2006). The relationship between

serotonin and anxiety in rodents is equivocal, though, as experimental manipulations of

central serotonin systems have been seen to either increase or decrease anxiety-related

behavior (Briley et al., 1990; Critchley et al., 1992; Kalueff et al., 2007; Olivier et al., 2008;

Mosienko et al., 2012). Even so, peripartum plasticity of serotonergic cells in the dorsal

raphe may render this system particularly influential for how postpartum state and physical

interaction with pups affect maternal anxiety (Klink et al., 2002; Robichaud and Debonnel,

2005; Holschbach and Lonstein, 2013).

In the present experiment, we examined if mother laboratory rats differ in how contact with

pups influences their anxiety-related behavior, based on whether the mothers were

characterized as having a low-anxiety or a high-anxiety profile before giving birth. We then

assessed the relationships between their anxiety-related behavior and brainstem expression

of dopamine β-hydroxylase (DBH, the rate-limiting enzyme for norepinephrine synthesis),

which is very highly correlated with levels of brain norepinephrine (Coyle and Axelrod,

1972; Hartman et al., 1972), and midbrain dorsal raphe expression of tryptophan

hydroxylase-2 (TPH2, the rate-limiting enzyme for serotonin synthesis), which is highly

correlated with brain serotonin content (Walther et al., 2003; Donner and Handa, 2009). We

hypothesized that, unlike randomly selected postpartum laboratory rats that mostly show

reduced anxiety in response to recent contact with the litter (Lonstein, 2005; Figueira et al.,

2008; Smith and Lonstein, 2008; Miller and Lonstein, 2011), mother rats with the highest

anxiety would be the most sensitive to the anxiolytic effect of physical contact with pups

whereas mothers with the lowest anxiety would not be affected at all due to a floor effect.
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Considering the relationship between noradrenergic activity and anxiety in non-postpartum

mammals, we predicted an inverse relationship between brainstem levels of DBH and dams’

anxiety-related behavior, while determining the relationship between dams’ anxiety and

dorsal raphe levels of TPH2 was more exploratory.

EXPERIMENTAL PROCEDURES

Subjects

Subjects were adult female Long–Evans rats, descended from rats purchased from Harlan

Laboratories (Indianapolis, IN) that were born and raised in our colony and housed as

described previously (Smith and Lonstein, 2008). Beginning at 65 days of age, subjects’

estrous cycles were monitored daily by vaginal smear and pre-mating anxiety testing

occurred on a day of diestrus (details below). Diestrus was chosen because it is characterized

by low circulating ovarian hormone titers that are similar to lactational diestrus (Tsukamura

and Maeda, 2001). Between 90 and 100 days of age, estrous cycles were again monitored

daily with a vaginal impedance meter (Fine Science Tools, Foster City, CA, USA) and on a

day of proestrus the females were housed with sexually experienced males from our colony

for 2 days. After mating, females were housed with another pregnant female until being

singly housed 5–7 days before expected parturition. Litters were culled to contain four males

and four females within 24 h after birth. All work was conducted in accordance with the

National Institutes of Health Guide for Care and Use of Laboratory Animals and the

Institutional Animal Care and Use Committee at Michigan State University.

Anxiety-related behavior testing

Behavior testing occurred between 1400 and 1600 h. To avoid complications such as

habituation to the testing apparatus or changes in the neurobiological underpinning of

behavior sometimes associated with repeated testing in the same behavioral paradigm (File,

1990; Bourin and Hascoët, 2003), pre-mating anxiety was assessed for 10 min with a light–

dark box and postpartum anxiety was assessed for 10 min with an elevated plus maze using

methods previously described in detail (Lonstein, 2005; Miller et al., 2011; Smith et al.,

2012). Both paradigms are based on rats’ innate aversion to bright light and open spaces,

such that lower anxiety is associated with more time spent in the light chamber of the light–

dark box and a greater percentage of time spent in the open arms of the elevated plus maze.

The behaviors displayed by cycling female laboratory rats tested in both paradigms are

highly correlated (Henniger et al., 2000) and the behaviors displayed in these paradigms are

more highly correlated with each other than between either paradigm and the similarly

popular open field (Ramos et al., 2008). A mirror was suspended near the ceiling above each

apparatus and the images in the mirror were recorded for later scoring with a computerized

data-acquisition system. Apparatuses were cleaned with 70% ethanol and allowed to dry

between subjects. The duration of time spent in the light chamber of the light–dark box, and

the percentage of time spent in and frequency of entries into the open arms of the elevated

plus maze, were used as the primary measures of anxiety-related behavior with high

durations or percentages of time indicative of low anxiety (Pellow et al., 1985; Costall et al.,

1989). The frequency of entries made into closed arms of the elevated plus maze was used

as an indicator of general locomotor activity (e.g., Cruz et al., 1994; Ramos et al., 2008).
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Similar to our previous reports (Lonstein, 2005; Figueira et al., 2008; Miller et al., 2011),

other behavioral variables were measured in these paradigms, but were found here to not

have significant relationships with each other or with the neurochemical measures and are

not reported.

Sixty cycling nulliparous female rats were screened for anxiety behavior and the 20 least-

anxious and 20 most-anxious (based on a tertile split of the duration of time spent in the

light chamber of the light–dark box) were mated at least 3 days after testing. This tertile split

produced very divergent groups, with the least-anxious females spending 79.2±9.7 s in the

light chamber (range 35–163 s) and the most-anxious females spending 2.6±0.4 s in the light

chamber (range 1–7 s) (t(34) = 17.97, P < 0.0001). On postpartum day 7, these least- and

most-anxious females were randomly assigned to one of two groups to assess their

sensitivity to offspring contact. Half of the 20 least-anxious and half of the 20 most-anxious

mothers had their offspring removed 4 h before testing, which increases anxiety-related

behavior in groups of randomly selected postpartum rats from our colony (Lonstein, 2005;

Smith and Lonstein, 2008; Miller et al., 2011). The remaining half of the subjects in each

group remained with their pups, but had their cage lids briefly lifted 4 h before testing to

control for the mild cage disturbance during offspring removal in the separated group.

Analysis of brainstem DBH and midbrain TPH2

Sacrifice and brain processing—Immediately after elevated plus-maze testing, dams

were narcotized by being placed for ~2 min in a cage prefilled with CO2. After decapitation,

brains were removed from the skull, flash frozen in isopentane, and stored at −80 °C until

further processing. Brainstems were isolated to obtain the noradrenergic cell groups,

corresponding to plates 57–72 from Swanson’s atlas of the rat brain (1998). For

homogenization, the brainstem was placed in a solution of 1 mL of RIPA, 10 μL Na3 VO4,

10μL PMSF, and 10 μL protease inhibitor (SC-24948, all Santa Cruz Biotechnology, Santa

Cruz, CA, USA) and homogenized on ice with pulses of a sonic dismembrator (Fisher

Scientific, Pittsburgh, PA, USA) for 20 s at 100% amplitude. Midbrains were cut coronally

into 500-μm thick sections using a cryostat (Leica CM1950, Nussloch, Germany) and three

sections including the dorsal raphe (plates 44–50 from Swanson, 1998) was obtained from

each brain. The dorsal raphe was collected using a 1-mm-diameter brain punch (Stoelting

CO, Wood Dale, IL, USA) and the samples were then placed in a microcentrifuge tube

containing a solution of 50 μL RIPA buffer, 0.5 μL NAOtn, 0.5 μL PMSF, and 1 μL protease

inhibitor then homogenized by pulsed sonication for 10 s at 20% amplitude. The sonication

wand was cleaned with 100% ethanol and dried between samples. Homogenates were

centrifuged at 4 °C at 15,000 rpm for 20 min. The supernatants (cell lysates) were collected,

placed in clean microcentrifuge tubes, and stored at −80 °C. Protein concentrations in

lysates were determined using a Pierce BCA Protein Assay kit (#23227, Thermo Scientific,

Rockford, IL, USA) and Bio-Rad iMark microplate reader (Hercules, CA, USA).

Western blotting—All incubations occurred at room temperature with agitation unless

otherwise noted. Samples (10 μg of total protein, DBH; 1 μg of total protein, TPH2) were

denatured at 95 °C for 5 min and run on 10% Tris–Glycine NB NuSep precast gels (NuSep,

Bogart, GA, USA). The gels were then transferred to polyvinylidene difluoride membranes
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(iBlot gel transfer PVDF, Invitrogen #iB4010, Grand Island, NY, USA), washed three times

for 10 min each in Tris-buffered saline (TBS) with 0.05% Tween-20 (TBS-T) and blocked

in TBS-T with 5% nonfat dry milk for 1 h. Membranes were then incubated in the

appropriate primary antiserum (DBH: 1:1000, #AB1585, Lot: 2159603, Millipore, Billerica,

MA, USA; TPH2: 1:500, #ABN60, Lot: 2069370, Millipore, Billerica, MA, USA) in TBS-T

with 5% non-fat dry milk overnight at 4 °C. Membranes were washed three times for 10 min

each in TBS-T, then incubated in a peroxidase-conjugated antirabbit IgG secondary

antiserum with 5% milk (1:2000, #7074, Lot: 24, Cell Signaling Technology, St. Louis, MO,

USA) for 1 h, and rinsed in TBS three times for 10 min each. Immunoreactive bands were

detected with an enhanced chemiluminescence kit (Western Blotting Luminol Reagent,

#SC-2048; Santa Cruz Biotechnology, Santa Cruz, CA, USA) and membranes were

immediately exposed to film (Blue Sensitive X-ray film, Laboratory Products Sales,

Rochester, NY, USA), developed, and fixed using a Kodak X-OMAT 1000A Processor

(Kodak, Rochester, NY, USA).

Membranes were stripped and probed for glyceraldehyde 3-phosphate dehydrogenase

(GAPDH) as the “housekeeping” protein to control for any differences in total protein

among lanes. Membranes were rinsed twice for 10 min in TBS-T and incubated in stripping

buffer (Restore Plus Western blot, #46430, Thermo Scientific, Rockford, IL, USA) for 15

min at 37 °C. Membranes were then washed four times for 10 min each in TBS-T, blocked

again for 1 h in TBS-T with 5% nonfat dry milk and incubated overnight at 4 °C with a

mouse polyclonal antiserum raised against GAPDH (1:500; MAB374; Lot: 2145925,

Millipore, Billerica, MA, USA), rinsed with TBS-T three times, then incubated for 1 h with

peroxidase-conjugated rabbit antimouse secondary antiserum (1:80,000; #A9044, Lot:

010M4797, Sigma–Aldrich, St. Louis, MO, USA). The remaining procedures were as

described above for DBH and TPH2 blotting. Control blots included using bovine adrenal

medulla (#ab140410, lot: APN113621-1, Abcam, Cambridge, MA, USA) run alongside

subjects’ brainstem samples, which revealed the expected single band at ~67 kDa for DBH,

and preabsorption of the TPH2 primary antiserum with 1 mg/ml TPH2 peptide (#EBP11011,

Lot: 21 Abcore, Ramona, CA, USA) run in parallel with non-preabsorbed dorsal raphe

samples, which eliminated TPH2-immunoreactive bands.

Following developing, films were placed on a light box (Model BL1824 # 24762, Hall-

Productions Co., Grover Beach, CA, USA) and images of the immunoreactive bands were

captured using a digital camera (Roper Scientific Photometrics, Tucson, AZ, USA). ImageJ

(National Institutes of Health, Bethesda, MD, USA) was used to determine the integrated

density of the immunoreactive bands. The values for the DBH and TPH2 integrated

densities were standardized using the subjects’ corresponding GAPDH integrated density

measurements.

Statistical analyses

Non-normal data were log-transformed before parametric analyses. Two-way analysis of

variance (ANOVA) was used to compare the anxiety-related behavior and brain amine

content of the least- and most-anxious females that were either permitted or denied contact

with offspring before testing. Significant interactions were further analyzed with simple
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main effects analyses. Two subjects from the low-anxious group did not get pregnant and

were not tested on the elevated plus maze. Two subjects (one from the least-anxious group

and one from the most-anxious group) were revealed on a quantile–quantile plot as

significant outliers for their behavior in the elevated plus maze and were removed from the

analyses of those data. Spearman correlations were used to examine the relationships among

females’ pre-mating anxiety, postpartum anxiety, and brain amine expression. Statistical

significance was indicated by p ≤ 0.05.

RESULTS

Effects of offspring contact on postpartum anxiety

As expected, when collapsed across separation group the females assigned to the most-

anxious group (based on their pre-mating behavior in the light–dark box) later spent a lower

percentage of time in the open arms of the elevated plus maze when tested postpartum

compared to the least-anxious group of females (F(1, 34) = 4.16, P < 0.05). Although our

laboratory previously found that removing offspring four hours before testing increases

anxiety in unselected postpartum rats from our colony (Lonstein, 2005; Figueira et al., 2008;

Smith and Lonstein, 2008; Miller et al., 2011), there was no main effect of offspring contact

on the percentage of time spent in the open arms of the elevated plus maze by the selected

dams used in this study (F(1, 34) = 0.34, P = 0.56). However, there was a significant

interaction between anxiety group and offspring contact on the percentage of time spent in

the open arms (F(1, 34) = 6.35, P = 0.02), which was mostly driven by an anxiogenic effect

of offspring contact in the least-anxious mothers (F(1, 15) = 6.50, P = 0.02, Fig. 1).

Importantly, offspring presence did not significantly affect the percentage of time that the

most-anxious mothers spent in the open arms of elevated plus maze (F(1, 17) = 0.86, P =

0.37).

There was a small but significant main effect of offspring contact on the percentage of

entries made into the open arms of the elevated plus maze (F(1, 34) = 5.67, P = 0.02), with

females denied offspring contact making more entries into open arms compared to females

permitted contact before testing (11±2 vs. 7±1 entries; F(34) = 6.28, P = 0.02). There was

no significant main effect of anxiety group (F(1, 34) = 0.56, P = 0.46), and no significant

interaction between anxiety group and offspring contact (F(1, 34) = 0.14, P = 0.71), on the

percentage of entries that were made in the open arms of the elevated plus maze.

There was no significant main effect of offspring contact on the frequency of entries made

into the closed arms of the elevated plus maze (10±1 vs. 10±1; F(1, 31) = 0.03, P = 0.87),

but there was a marginally significant main effect of anxiety group on this measure (least-

anxious vs. most-anxious females, 11±1 and 9±1 entries, respectively; F(1, 31) = 3.31, P =

0.08) as well as a marginally significant interaction between anxiety group and offspring

contact (F(1, 31) = 3.25, P = 0.08).

Correlations between pre-mating anxiety and postpartum anxiety

Females’ pre-mating anxiety behavior (i.e., the duration of time spent in the light chamber of

the light–dark box) was significantly positively correlated with their postpartum anxiety in
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the elevated plus maze (i.e., the percentage of time spent in the open arms) (r(34) = 0.35, P

< 0.05; Fig. 2A). Consistent with the results described above, the strength of this

relationship was influenced by offspring contact because while pre-mating anxiety was a

particularly strong predictor of postpartum anxiety in the females denied offspring contact 4

h before testing (r(15) = 0.64, P < 0.01; Fig. 2B), pre-mating anxiety was not significantly

associated with postpartum anxiety behavior in females that were permitted contact with

offspring until testing (r(19) = −0.01, P = 0.97; Fig. 2C).

Pre-mating anxiety was not significantly associated with the percentage of entries made into

the open arms of the elevated plus maze (r(34) = 0.26, P = 0.13). This was true for females

that had offspring removed before testing (r(15) = 0.32, P < 0.23), and also for females that

remained with offspring until testing (r(19) = 0.21, P < 0.39).

Relationships among anxiety, offspring contact and brain amine content

There were no significant main effects of anxiety group (F(1, 33) = 0.28, P = 0.60) or

offspring presence (F(1, 33) = 1.74, P = 0.20) on brainstem DBH expression. Similar to the

elevated plus-maze results, there was a significant interaction between these factors (F(1, 33

= 4.66, P = 0.04; Fig. 3), such that offspring presence before testing was associated with

higher DBH expression in the brainstem of least-anxious females (F(1,15) = 9.59, P < 0.01)

but there was no difference between the two groups of most-anxious females (F(1,17) =

0.27, P = 0.61). There were no significant correlations between the duration of time females

spent in the light chamber of the light–dark box before mating (r(34) = 0.15, P = 0.39), or

the percentage of time they spent in the open arms of the elevated plus maze postpartum

(r(33) = 0.09, P = 0.60), and brainstem DBH expression. This was also true when examined

within each anxiety group and within each offspring-contact group.

There were no significant main effects of anxiety group (F(1,35) = 1.53, P = 0.22) or

offspring presence (F(1,35) = 0.16, P = 0.69) on TPH2 expression in the dorsal raphe. There

was also no significant interaction between these factors on TPH2 expression in the dorsal

raphe (F(1,35) = 0.43, P = 0.51). We found no significant correlations between the duration

of time females spent in the light chamber of the light–dark box before mating (r(36) = 0.15,

P = 0.38) or the percentage of time mothers spent in the open arms of the elevated plus maze

and their TPH2 expression in the dorsal raphe (r(35) = 0.05, P = 0.76).

DISCUSSION

The endocrine consequences of pregnancy and parturition very strongly motivate female

mammals to interact with neonates, but these hormonal influences quickly wane, and

physical contact with offspring (either suckling or non-suckling) is instead necessary to

maintain the suite of behavioral changes that have occurred in the mother (Numan et al.,

2006; Lonstein and Morrell, 2007; Lonstein et al., 2013). For most animals studied, these

changes include a reduction in anxiety and other indicators of emotional reactivity (Fleming

and Luebke, 1981; Hard and Hansen, 1985; Neumann, 2003; Lonstein, 2007). This blunted

emotional reactivity in postpartum mothers requires recent physical interaction with the litter

(Lonstein, 2005; Figueira et al., 2008; Smith and Lonstein, 2008; Miller et al., 2011), and

can even be observed in nulliparous laboratory rats that are induced to express maternal
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behavior and interact with pups (Ferreira et al., 2002; Pereira et al., 2005; Agrati and

Zuluaga, 2008).

We herein found that this is not the case for all postpartum rats because, depending on their

innate anxiety, recent litter contact produced different effects on dams’ elevated plus-maze

behavior. Contrary to what we had hypothesized based on the relationship between anxiety

and tactile sensitivity (Jorum, 1988; van Meeteren et al., 1997; Kain et al., 2000; Rhudy and

Meagher, 2000; Geerse et al., 2006; Devall et al., 2009; Aron et al., 2012; Corral-Frias et al.,

2013), anxiety behavior in the most-anxious females was almost unaffected by the presence

of offspring before testing. Instead, the least-anxious females were the most affected by

offspring presence. In addition, the relationship between pre-mating and postpartum anxiety

was the strongest in the females that were denied contact with offspring before testing,

suggesting that one consequence of infant contact is to shift some mothers’ anxiety away

from their innate or trait levels of anxiety. While aspects of these findings may appear

inconsistent with some of our previous work demonstrating that the absence of offspring

increases anxiety in postpartum rats (Lonstein, 2005; Figueira et al., 2008; Smith and

Lonstein, 2008; Miller et al., 2011), the difference is very likely due to the fact that our

previous studies did not involve prescreening females for anxiety and subsequently testing

only the females lying at the extremes.

The striking decrease in anxiety-related behavior after the least-anxious females were

separated from their litters might suggest that heightened emotional reactivity when pups are

present is optimal for successful mothering in this population. This was also suggested by

the small but significantly higher number of open entries made by all dams that were

interacting with pups before testing compared to those that had pups removed. An increase

in anxiety in low-anxious dams while they interact with pups could help focus their maternal

attention to the needs of the young, possibly refining mother–offspring interactions and

enhancing the mother’s ability to protect the nest (Lonstein and Gammie, 2002; Bosch,

2011). Some support for this suggestion in laboratory rats comes from the findings that

mothers genetically selected for low anxiety or other emotional reactivity are less maternally

responsive than high-anxiety dams, particularly when tested under novel or stressful

conditions (Holland, 1965; Driscoll et al., 1979; Fuemm and Driscoll, 1981; Neumann et al.,

2005; Clinton et al., 2007; Kessler et al., 2011; Curley et al., 2012). Additionally, low

anxiety-related behavior in postpartum rhesus monkey mothers is associated with less

interest in and concern about the infant (Maestripieri, 1993a,b, 1998). A similar suggestion

has been made for women, such that individual differences in maternal psychological factors

are a critical influence on maternal behavior (Barrett and Fleming, 2011) and that unusually

low anxiety and inadequate arousal could contribute to inattentiveness to infant cues and a

lack of preoccupation about the needs of the infant (Pryce, 1992; Fleming et al., 1997;

Leckman et al., 1999, 2004; Stallings et al., 2001; Bosch, 2011).

Our finding that offspring presence only slightly and non-significantly affected anxiety in

the most-anxious mothers was unexpected, because we predicted that these rat mothers

could benefit the most from an anxiolytic effect of interacting with young. It may be that

these most-anxious dams are less sensitive to tactile inputs from offspring compared to other

mothers, but this is inconsistent with the positive relationship between anxiety and tactile
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sensitivity that exists at least in humans (Jorum, 1988; van Meeteren et al., 1997; Kain et al.,

2000; Rhudy and Meagher, 2000; Geerse et al., 2006; Devall et al., 2009; Aron et al., 2012;

Corral-Frias et al., 2013). Furthermore, female rats that are the most effective retrievers and

more prone to display kyphosis (i.e., crouched nursing), two behaviors that depend on

sensitivity of the dam’s perioral region and ventrum to pup-related tactile inputs (Stern,

1996), are relatively more anxious rather than less anxious (Caldji et al., 1998; Bosch,

2011). A ceiling effect could instead have contributed to these results, such that high-anxiety

mothers are immune to factors such as litter removal that could potentially increase anxiety.

For instance, intracerebroventricular infusion of corticotropin-releasing factor cannot

increase anxiety in female rats that are already highly anxious (Klampfl et al., 2013). On the

other hand, anxiolytic drugs cannot further decrease anxiety in already low-anxious animals

(Wegener et al., 2012).

Our study revealed a significant positive correlation between females’ pre-mating and

postpartum anxiety-related behaviors. This relationship is reminiscent of the stability in

anxiety before and after giving birth in women (Engle et al., 1990; Heron et al., 2004;

Breitkopf et al., 2006; Bussel et al., 2006; Britton, 2008; Grant et al., 2008). Anxiety-related

behavior in nulliparous female laboratory rodents is stable across many months (Leibsch et

al., 1998; Henniger et al., 2000; Curley et al., 2012), suggesting the existence of an ongoing

“trait” anxiety (Gosling, 2001). It is unknown whether or not anxiety-related behavior in our

least-anxious and most-anxious rats continues to be predictable after the first week

postpartum, but this may be likely because there is a significant correlation between the

anxiety of randomly selected female mice tested during the first postpartum week and again

several days post-weaning (Rödel et al., 2012). Furthermore, mother rhesus monkeys show

stable anxiety across multiple births spanning years (Maestripieri, 2000). In the only other

study including an assessment of trait-dependent anxiety across reproductive states in

laboratory rats, Neumann et al. (2005) reported that female rats selectively bred for high- or

low-anxiety profiles maintained their trait anxiety after giving birth for the first time. Our

results extend these findings to rats that are not genetically selected for their emotional

behavior and these genetically heterogeneous rats may more closely represent the least-

anxious and most-anxious female rats found in most laboratory colonies. Studying such rats

can complement studies of genetically predisposed animals by addressing the substantial

non-genetic influences on anxiety (Hettema et al., 2001a,b; Clément et al., 2002; Francis et

al., 2003; Caldji et al., 2004; Priebe et al., 2005) and humans (Kendler et al., 1992; Legrand

et al., 1999; Hettema et al., 2001a,b; Lau et al., 2006).

While anxiety seems to be an inherent trait in female rats, it cannot be forgotten that

mother–infant interactions are necessarily dyadic, so the emotional reactivity of the mother

could be influenced by that of her offspring and vice versa (Britton, 2011). Emotional

reactivity in rat pups is reflected behaviorally by the rate they emit ultrasonic vocalizations

(Shair et al., 1997; Barron et al., 2000; Branchi et al., 2001; Brunelli, 2005; D’Amato et al.,

2005; Wöhr and Schwarting, 2008) and the presence of frequently vocalizing and

emotionally reactive pups may not be soothing for their mothers. In fact, pups of females

bred for low anxiety and high novelty-seeking are especially demanding of maternal

attention (Clinton et al., 2010) and a respite from their frequent solicitations may reduce

anxiety in their dams. Because the increased demand for maternal care by low-anxious pups
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is found even when they are cross-fostered to high-anxious dams (Clinton et al., 2010), a

future study could determine if the elevated plus-maze behavior of low- or high-anxiety rats

is differently affected by separation from the litter depending on the phenotype of the pups

they interact with before testing.

Based on the positive association most often found between central noradrenergic activity

and anxiety in nulliparous laboratory rodents (Charney, 1996; Tanaka et al., 2000; Cecchi et

al., 2002; Fendt et al., 2005; Schweimer et al., 2005), we hypothesized that high brainstem

DBH expression (which is highly correlated with elevated norepinephrine synthesis; Coyle

and Axelrod, 1972; Hartman et al., 1972) would be related to greater anxiety-related

behavior in dams. This hypothesis was supported, such that group differences in the DBH

expression generally reflected the group differences in dams’ anxiety-related behavior, with

DBH significantly reduced after litter removal in the least-anxious females but non-

significantly affected by offspring contact in the most-anxious females. It could have been

possible that brainstem DBH was affected by suckling for the dams permitted physical

contact with the litter before testing and sacrifice (Moyer et al., 1979; Crowley et al., 1987;

Kendrick et al., 1992), but it is important to note there was no significant main effect of

offspring presence on maternal brainstem DBH expression. Forebrain sites that receive

noradrenergic input possibly mediating these offspring-associated changes in anxiety in the

least-anxious females are unknown, but a good candidate is the ventral bed nucleus of the

stria terminalis (BSTv). The BSTv contains the densest noradrenergic plexus in the forebrain

(Kilts and Anderson, 1986; Fendt et al., 2005) and is intimately associated with anxiety in

mammals (Davis et al., 2010). Although we have found that acute suppression or stimulation

of norepinephrine release in the BSTv has little effect on anxiety-related behavior in

randomly selected postpartum female rats (Smith et al., 2013), longer term manipulation of

noradrenergic activity in the BSTv (hours or days rather than minutes) could be found to

have consequences for their anxiety (Choi et al., 2008). In addition to affecting the BSTv,

high brainstem DBH synthesis in low-anxiety mothers while they interact with pups could

be associated with activation of forebrain-projecting noradrenergic cells of the locus

coeruleus that increase maternal arousal and attention to external sensory information

(Aston-Jones et al., 1999; Berridge and Waterhouse, 2003) or even brainstem adrenergic

cells that influence autonomic function (Madden and Sved, 2003).

As noted above, the relationship between central serotonergic activity and anxiety is

sometimes unclear (Briley et al., 1990; Critchley et al., 1992; Kalueff et al., 2007; Hovatta

and Barlow, 2008; Olivier et al., 2008; Huh et al., 2011; Mosienko et al., 2012).

Nonetheless, TPH2 expression in the dorsal raphe has repeatedly been reported to be

negatively correlated with anxiety-related behavior in nulliparous female and male

laboratory rodents (Gutknecht et al., 2007; Reuter et al., 2007; Beaulieu et al., 2008; Berger

et al., 2012). We did not find that this relationship extended to postpartum female rats.

Reproductive state has been seen to determine the relationship between brain serotonergic

activity and anxiety, including that serotonin-based anxiolytics that are effective in

nulliparous laboratory rats have no effect in early postpartum rats (Fernández-Guasti et al.,

1998; Picazo et al., 2000; Heikkinen et al., 2002). This may be due to alterations in

numerous aspects of central serotonergic functioning across reproductive states (Handley et
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al., 1977, 1980; Okatani et al., 1990; Schrocksnadel et al., 1996; Klink et al., 2002; Suda et

al., 2008).

CONCLUSION

Mother rats differing in their innate or “trait” levels of anxiety-related behavior are

differentially susceptible to the anxiolytic effects of physical contact with offspring. These

differences were associated with the capacity for norepinephrine synthesis, but not serotonin

synthesis, in the maternal brain. If these findings translate to humans, the present and

previous data collectively suggest that women with modest levels of anxiety would benefit

the most from enhanced physical contact with infants. Indeed, there is evidence that

“kangaroo care” promoting physical contact between mothers and infants reduces anxiety in

postpartum women (Shiau, 1998; Lee and Shin, 2007), which complements the larger

literature on the anxiety-reducing effects of touch outside the context of the mother–infant

dyad (Field et al., 1992; Field, 1998). For women with relatively low anxiety, however,

infant touch may have the opposite effect (i.e., raise anxiety), possibly by activating

noradrenergic pathways that beneficially increase vigilance and focus maternal attention.

Lastly, anxiety in the most anxious mothers may be less easily ameliorated or susceptible to

the potential anxiety-modulating effects of infant touch.
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Fig. 1.
Percentage of time (Mean ± SEM) spent in the open arms of an elevated plus maze by

postpartum female laboratory rats that displayed low or high anxiety-related behavior before

mating and had contact with offspring or not before postpartum anxiety testing. Data were

log-transformed for analysis but the untransformed data are shown. There was a significant

main effect of the anxiety group, and an interaction between the anxiety group and offspring

contact that was driven by the least-anxious females (both indicated by asterisks, P < 0.05).
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Fig. 2.
Correlations between the percentage of time postpartum female laboratory rats spent in the

open arms of an elevated plus maze and the time they had spent in the light chamber of the

light–dark box before mating. (A) All subjects, (B) subjects with no offspring contact for 4 h

before elevated plus-maze testing, (C) subjects with offspring contact until elevated plus-

maze testing. Data were log-transformed before analysis. Circles – offspring were present

before testing; triangles – offspring were not present before testing.

RAGAN and LONSTEIN Page 22

Neuroscience. Author manuscript; available in PMC 2015 January 03.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 3.
Optical density of dopamine beta-hydroxylase (DBH) in the brainstem of the least-anxious

and most-anxious postpartum female rats (Means ± SEM). Data were log-transformed for

analysis but the untransformed data are shown. There was a significant interaction between

the anxiety group and offspring contact, driven by the least-anxious females and indicated

by the asterisk, P < 0.05.
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