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Abstract

In this paper, we introduce the Hosoya-Spectral indices and the Hosoya information content of a graph. The first measure
combines structural information captured by partial Hosoya polynomials and graph spectra. The latter is a graph entropy
measure which is based on blocks consisting of vertices with the same partial Hosoya polynomial. We evaluate the
discrimination power of these quantities by interpreting numerical results.
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Introduction

Structural differentiation entails the classification of graphs

according to structural features captured by quantitative measures,

see, e.g., [1–5]. One way to demonstrate a classification procedure

is to apply a measure (or index) to a special class of graphs and

show that the measure discriminates between non-isomorphic

graphs with high probability. A prominent example is the Balaban

J index [6–8] which is highly discriminating on chemical graphs.

However, this index has limitations as shown by Dehmer et al. [2]

by means of a statistical analysis of the performance of the J and

other indices on an exhaustively generated set of graphs without

structural constraints, see [2]. This analysis shows that the

discrimination power (also called uniqueness [2]) of graph

measures depends on the underlying class of graphs [2].

This paper is an investigation of the discriminating power of

structural indices based on the zeros of partial Hosoya polynomials

and graph spectra. Also, we introduce and evaluate the Hosoya
information content of a graph. To position this investigation we

begin with a survey of literature dealing with eigenvalues and

entropy-based measures of graphs. Classical results in the theory of

graph spectra are due to Cvetković et al. [9]. The main concern of

this theory is to explore structural properties of graphs and

complex networks captured by graph spectra [10]. More recent

results have been presented and surveyed by Chung [11] and

Cioaba
^

[12]. Interdisciplinary applications of graph spectra, e.g.,

the analysis of biological networks and web graphs can be found in

[10,13]. Various graph measures incorporating eigenvalues have

been discussed by Randić et al. [14] and Dehmer et al. [15]. One

example of a measure is defined as the sum of the moduli of non-

zero eigenvalues of the adjacency matrix of a graph; another is given by

graph entropies based on the eigenvalues of matrices associated with a

graph [14–16]. Yet another well-known measure is the Estrada index

[17–20] which has been explored in bioinformatics, mathematical

chemistry and applied mathematics. A more recent review of this

quantity is due to Gutman et al. [21]. Variants of this measures using

other matrices have been discussed by Li et al. [22]. A related measure

is the so-called energy of a graph is an important quantity defined in

relation to the eigenvalues of matrices associated with a graph, see [23–

25]. Extremal properties of graph energy have been studied by [23–

25]. A recent book on graph energy summarizing classical and new

results is [26]. Inequalities for eigenvalue-based graph measures have

been discussed in [12]. Elphick and Wocjan [27] analyzed a novel

spectral measure for determining network irregularity [27].

Graph entropy measures have been explored extensively in

various disciplines. Rashevsky and Mowshowitz did seminal work

when developing the first graph entropy measures based on vertex

orbits [28,29]. Körner introduced a graph entropy measure that

has been used in information theory [30]. Bonchev et al.

developed the magnitude-based information indices and various

others based on graph invariants such as vertex degrees and

distances in graphs [31–34]. Also, Bonchev et al. [1] proposed an

information index for graphs which is based on the Hosoya graph

decomposition. However, this information index (using Hosoya

index Z [35] to define the probabilities of the induced partition) is

quite different from the one we introduce here in section ‘Hosoya-

based Indices’. Many other graph entropy measures can be found

in [36–38]. To study results towards the Hosoya polynomial, we

refer to [39,40].
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In an earlier paper [3], we explored the discrimination power of

measures (see section ‘Hosoya-based Indices’) that are based on the

moduli of the zeros of the partial Hosoya polynomial. The main

contribution of this paper is to define the Hosoya-Spectral indices
combining structural information captured by partial Hosoya

polynomials with graph spectra. Also, we examine the discrimination

power of these indices and of the Hosoya information content of a

graph. We discuss and compare the numerical results with the earlier

ones produced in [3]. Further we elaborate on the usage of these

measures as highly discriminating graph invariants.

Methods and Results

Hosoya-Based Indices
In this section, we reproduce the graph indices based on partial

Hosoya polynomials, see [3]. As outlined in [3], the partial Hosoya

polynomial of a vertex vi in the graph G~(V ,E) is given by

[41,42]

Hvi (G,z) : ~
X
v[V
v=vi

zd(vi ,v), ð1Þ

where d(vi,v) is the distance (i.e., length of a shortest path) between

the vertices vi and v. Solving the equation

Hvi (G,z)~0, ð2Þ

yields the complex zeros z
vi
1 ,z

vi
2 , . . . ,z

vi
ki

which are not equal to

zero. We infer kivDV D by applying the well-known fundamental

theorem of Algebra [43,44] stating that a complex polynomial

f (z) : ~akzkzak{1zk{1za1zza0,ak=0,ak[CD , ð3Þ

with degree deg (f )~k has k complex zeros.

Also in [3], Dehmer et al. introduced the following indices:

M1(G) : ~(Dzv1
1 DzDzv1

2 Dz � � �zDzv1
k1

D)z(Dzv2
1 DzDzv2

2 Dz � � �zDzv2
k2

D)

z � � �z(Dz
vDV D
1 DzDz

vDV D
2 Dz � � �zDz

vDV D
kDV D

D),
ð4Þ

M2(G) : ~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dzv1

1 DzDzv1
2 Dz � � �zDzv1

k1
D

q
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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1 DzDzv2
2 Dz � � �zDzv2

k2
D

q

z � � �z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dz
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1 DzDz
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2 Dz � � �zDz

vDV D
kDV D D

r
,

ð5Þ

and

M3(G) : ~(Dzv1
1 DzDzv1

2 Dz � � �zDzv1
k1

D) log (Dzv1
1 DzDzv1

2 Dz � � �zDzv1
k1

D)

z (Dzv2
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k2

D) log (Dzv2
1 DzDzv2
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kV

D) log (Dz
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ð6Þ

Here, M1 is the sum of the sums of the moduli of all partial

Hosoya polynomials Hv1 ,Hv2 , . . . ,H
vDV D . M2 is the sum of the

square roots of the sums of the moduli of all partial Hosoya

polynomials. M3 represents an entropy-like measure taking the

sums of the moduli of all partial Hosoya polynomials into account.

Spectra of graphs have been investigated extensively [9,12]. As

already mentioned, well-known spectral based indices are the

Estrada index [18–20] and various forms of graph energy due to

Gutman, see [23–25]. Since Hosoya polynomials and graph

spectra capture different aspects of graph structure, we propose to

combine the two in one index. So, let l1 � � � lDV D be the eigenvalues

of x(G) : ~ det (A{lE); A the adjacency matrix of G. The

Hosoya-Spectral indices HSi(G) are defined as follows:

HS1(G) : ~l1(jzv1
1 jzjz

v1
2 jz � � �zjz

v1
k1
j)

zl1(jzv2
1 jzjz

v2
2 jz � � �zjz
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k2
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vjV j
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vjV j
kjV j
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ð7Þ
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Inspired by studying information-theoretic complexity measures

[1,28,31–33,45], we define the Hosoya information content of a

graph G. Let Vi for 1ƒiƒk be the set of all vertices in G with the

i{th of k partial Hosoya polynomials of the vertices of G~(V ,E);
Vi is then the i-th block in a partition of V . The Hosoya
information content of G is defined by

Table 1. Exhaustively generated sets of non-isomorphic trees: DT10D~106, DT11D~235, DT12D~551, DT13D~1301.

T10 T11 T12 T13

Measure ndv S ndv S ndv S ndv S

HS1 0 1,000000 0 1,000000 0 1,000000 0 1,000000

HS2 0 1,000000 0 1,000000 0 1,000000 0 1,000000

HS3 0 1,000000 0 1,000000 0 1,000000 0 1,000000

IH 76 0,283018 201 0,144680 499 0,094373 1237 0,049192

doi:10.1371/journal.pone.0102459.t001
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IH (G) : ~{
Xk

i~1

DVi D
DV D

log
DVi D
DV D

� �
: ð10Þ

In the next section, we evaluate the discrimination power of this

new measure and the Hosoya-Spectral indices on exhaustively

generated graphs.

Numerical Results
As in [3], we present the numerical values resulting from the

evaluation of the discrimination power of the Hosoya-Spectral

indices and the Hosoya information content. In order to do so, we

use the same graph classes in order to make direct comparisons

[3]; Ti,10ƒiƒ18 are the sets of all non-isomorphic trees with i

vertices. N9 is the set of all non-isomorphic graphs with 9 vertices,

see [2].

To evaluate the discrimination power quantitatively, we use the

same measures as in [3]: ndv stands for the number of non-

distinguishable graphs according to the values of the indices. From

this, we also compute S(I) : ~ DGD{ndv
DGD where I : G?R, see [46].

As in [3], the measures HSi are fully unique on T10, . . . ,T13,

see Table 1. We obtain the same result by applying the

Hosoya-Spectral indices to T14, . . . ,T17, see Table 2. See also

[3]. Moreover, the Hosoya-Spectral indices can discriminate the

tree class T18 uniquely (see Table 3). Note that the earlier defined

measures Mi (see Equation 4–6) [3] produced the first degener-

acies on the set T18.

The exhaustively generated graphs with 9 vertices (N9) warrants

special attention. In contrast to the previously introduced

measures Mi, Table 3 shows that the uniqueness of HSi is high.

More precisely, HS1 and HS2 can discriminate 99% of the graph

uniquely. The discrimination power of HS3 is approximately 95%.

This marks a considerable improvement compared with the

measures Mi evaluated in [3] on the same classes of graphs. The

improvement of the discrimination power of the new measures can

be explained by the fact that partial Hosoya polynomials and

graph spectra capture quite different aspects of graph structure. In

particular, the partial Hosoya polynomial captures local graph

properties related to distances in a graph, and the indices Mi take

account of the moduli of the zeros of these polynomials. By

contrast, the spectrum of a graph captures connectivity properties

linked to its adjacency matrix. The combination of these graph

properties in the measures HSi plausibly accounts for their

superior performance over the single property measures (Mi).

Evidently, the discrimination power of IH declines as the graph

classes grow in size, i.e., the greater the cardinality of the graph

class, the lower is index’s discrimination power (measured by ndv

and S), see Table 1–3. Even for small classes, the degeneracy is

high. For N9, the Hosoya information content IH cannot

discriminate at all and, hence, S~0. These results are not

surprising in view of the definition of Hosoya information content.

The blocks of the partitions consist of vertices with the same partial

Hosoya polynomial. Thus, the more cycles in a graph, the greater

the likelihood of obtaining large blocks of vertices with the same

partial Hosoya polynomial. The occurrence of such large blocks

results in high values for the quantity ndv (and low values for S).

Summary and Conclusions

In this paper, we defined the Hosoya-Spectral indices as well as

the Hosoya information content of a graph. The former measures

combine structural information captured by partial Hosoya

polynomials and graph spectra. It is evident that those two graph

features capture structural information differently and, hence, the

resulting measures may be more unique than the ones (Mi) used in

earlier work, see [3]. The numerical study reported here has

confirmed this conjecture for both trees and graphs. Finally, as

expected, the discrimination power of Hosoya information content

was found to be very low.

In future research, we plan to explore extremal properties of

both measures. In particular, Hosoya information content is

Table 2. Exhaustively generated sets of non-isomorphic trees: DT14D~3159, DT15D~7741, DT16D~19320, DT17D~48629.

T14 T15 T16 T17

Measure ndv S ndv S ndv S ndv S

HS1 0 1,000000 0 1,000000 0 1,000000 0 1,000000

HS2 0 1,000000 0 1,000000 0 1,000000 0 1,000000

HS3 0 1,000000 0 1,000000 0 1,000000 0 1,000000

IH 3067 0,029123 7637 0,013434 19178 0,007349 48629 0,003783

doi:10.1371/journal.pone.0102459.t002

Table 3. Exhaustively generated sets of non-isomorphic trees and graphs: DT18D~123757, DN9D~261080.

T18 N9

Measure ndv S ndv S

HS1 0 1,000000 24 0,999908

HS2 0 1,000000 18 0,999931

HS3 0 1,000000 12393 0,952723

IH 123512 0,001979 261080 0,000000

doi:10.1371/journal.pone.0102459.t003
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related to the orbit structure of a graph, and this calls for studying

the automorphism groups of certain classes of graphs.
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