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ABSTRACT

The immediate-early protein ICP0 from herpes simplex virus 1 (HSV-1) plays pleiotropic roles in promoting viral lytic replica-
tion and reactivation from latency. Most of the known actions of ICP0 occur in the nucleus and are thought to involve the E3
ubiquitin ligase activity of its RING finger domain, which targets proteins for degradation via the proteasome. Although ICP0
translocates to the cytoplasm as the infection progresses, little is known about its activities in this location. Here, we show that
cytoplasmic ICP0 has two distinct functions. In primary cell cultures and in an intravaginal mouse model, cytoplasmic ICP0
promotes viral replication in the absence of an intact RING finger domain. Additionally, ICP0 blocks the activation of interferon
regulatory factor 3 (IRF3), a key transcription factor of the innate antiviral response, in a mechanism that requires the RING
finger domain but not the proteasome. To our knowledge, this is the first observation of a proteasome-independent function of
the RING finger domain of ICP0. Collectively, these results underscore the importance of cytoplasm-localized ICP0 and the di-
verse nature of its activities.

IMPORTANCE

Despite ICP0 being a well-studied viral protein, the significance of its cytoplasmic localization has been largely overlooked. This
is, in part, because common experimental manipulations result in the restriction of ICP0 to the nucleus. By overcoming this con-
straint, we both further characterize the ability of cytoplasmic ICP0 to inhibit antiviral signaling and show that ICP0 at this site
has unexpected activities in promoting viral replication. This demonstrates the importance of considering location when analyz-
ing protein function and adds a new perspective to our understanding of this multifaceted protein.

Herpes simplex virus 1 (HSV-1) is an enveloped, double-
stranded DNA virus that is highly prevalent in human popu-

lations. One of the first proteins expressed during HSV-1 infection
is infected-cell protein 0 (ICP0). A multifunctional protein, ICP0
is involved in regulating viral gene expression, promoting reacti-
vation from latency, and optimizing the cellular environment to
maximize replication (1). For the most part, the mechanisms used
by ICP0 to achieve these varied tasks remain unclear. At present,
almost all of the assorted actions of ICP0 are thought to require
the E3 ubiquitin ligase activity of its RING finger domain, which
has been implicated in the proteasome-dependent degradation of
multiple cellular proteins (2–4). ICP0 has a nuclear localization
signal (NLS) that initially causes it to translocate to the nucleus
(5), and much of the work on ICP0 has focused on its roles in this
location. However, as the infection progresses, ICP0 moves to the
cytoplasm (6–10), and there are accumulating data suggesting that
it also has important functions in this compartment (11, 12).

The innate immune response to virus infection is classically
described as involving the production of type I interferon (IFN).
Detection of conserved viral components by various pattern rec-
ognition receptors, including the Toll-like receptors (TLRs) and
the retinoic-acid-inducible gene I (RIG-I)-like receptors (RLRs),
results in the activation of a number of transcription factors, such
as IFN-regulatory factor 3 (IRF3) and nuclear factor kappa B (NF-
�B), leading to the production of IFN (13). Autocrine and para-
crine signaling activated by IFN culminates in the expression of
IFN-stimulated genes (ISGs), the products of which work collec-
tively to limit viral replication and spread (14). Accordingly, vi-

ruses have evolved a tremendous diversity of strategies to evade
the IFN response (15). For example, ICP0 decreases IRF3 activa-
tion and ISG expression (16–20). Initial work suggested this func-
tion required both the RING finger domain and the activity of the
proteasome (18, 19), yet during a wild-type (WT) HSV-1 infec-
tion, IRF3 pathway components are not degraded (12, 18), al-
though some model systems remain contradictory in this regard
(20–22). Recently, it has been found that when ICP0 is restricted
to the nucleus during infection, by mutation or treatment with
proteasome inhibitors, it loses its ability to block IRF3 signaling,
while cytoplasmic ICP0 efficiently inhibits the antiviral response,
even in the absence of a functional proteasome (12). Similarly,
ectopic expression of wild-type ICP0, which causes its retention in
the nucleus, fails to prevent IRF3-mediated ISG induction (12,
23). Currently, the function of cytoplasmic ICP0 in opposing IRF3
activation remains unknown.

Given that the proteasome is not required for cytoplasmic
ICP0 to impede antiviral signaling, we were interested in deter-
mining whether the RING finger itself is involved in this process.
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Typically, the E3 ubiquitin ligase activity of the RING finger is
associated with proteasome-mediated degradation. However,
there is mounting evidence to suggest that ubiquitin tagging does
not act solely to target a protein for destruction but instead is
involved in a variety of proteasome-independent signaling func-
tions (reviewed in references 24 to 29). To investigate the role of
the RING domain in the context of cytoplasmic ICP0, we gener-
ated a virus in which ICP0 is restricted to the cytoplasm and lacks
the RING finger. Intriguingly, we found that despite the ability of
cytoplasmic ICP0 to block ISG production in the absence of a
functional proteasome, the RING finger is essential for ICP0 to
inhibit the antiviral response. Unexpectedly, we also observed that
cytoplasmic ICP0 has an important activity in promoting viral
replication both in cell culture and in mice, even in the absence of
the RING finger domain. These observations highlight two un-
known aspects of ICP0: the RING finger can act in a proteasome-
independent manner, and ICP0 has RING finger-independent
functions in the cytoplasm.

MATERIALS AND METHODS
Reagents. MG132 (Sigma) or an equal volume of the vehicle control di-
methyl sulfoxide (DMSO) was added to the culture medium 30 min prior
to infection at a concentration of 5 �M and was maintained in the me-
dium at this concentration throughout the experiment. Poly(I·C) (GE
Healthcare) was added directly to the culture medium at a concentration
of 100 �g/ml.

Cells and viruses. Human embryonic lung (HEL) fibroblasts and
U2OS and Vero cells were purchased from the American Type Culture
Collection (ATCC) and grown in Dulbecco’s modified Eagle’s medium
(DMEM) supplemented with 10% (HEL and U2OS) or 5% (Vero) fetal
bovine serum, 2 mM L-glutamine, 100 U/ml penicillin, and 100 mg/ml
streptomycin. The virus strains used in this study are described in Table 1.
17 syn and D8/FXE-R were propagated on Vero cells, while all ICP0 mu-
tants were grown on U2OS cells in the presence of 3 mM hexamethylene
bisacetamide (HMBA) and purified on a 36% sucrose cushion. Viral in-
fections were performed for 1 h in serum-free medium at 37°C and at a
multiplicity of infection (MOI) of 10, unless otherwise stated.

Construction of recombinant D8/FXE and D8/FXE-R viruses. To
create ICP0 containing the D8 and FXE lesions, a XhoI-KpnI fragment
from p110-FXE (9), which contains the FXE lesion, was inserted into
XhoI-KpnI-cut p110-D8 (9). The resulting plasmid, p110-D8/FXE, was
sequenced to verify the presence of the D8 and FXE lesions. The D8/FXE
virus was constructed using homologous recombination following
cotransfection of U2OS cells with infectious DNA from 17 syn and the
linearized p110-D8/FXE plasmid. Plaques were screened on Vero cells,
which are semipermissive only for ICP0-deficient viruses, and small
plaques were isolated for further characterization. Viruses containing D8/
FXE ICP0 were plaque purified three times, and the presence of the D8
and FXE lesions was confirmed by Western blot analysis and sequencing.
The D8/FXE-R revertant was generated by homologous recombination in
U2OS cells of infectious DNA from D8/FXE with the p110 plasmid and
screened on Vero cells for large plaques. Plaque purification and confir-
mation were done as with D8/FXE.

Preparation of cell extracts. For RIPA extracts, cells were washed
twice in ice-cold phosphate-buffered saline (PBS) and then scraped into
RIPA buffer (50 mM Tris-HCl, pH 7.4, 100 mM NaCl, 5 mM EDTA, 50
mM sodium fluoride, 40 mM �-glycerophosphate, 1% Triton X-100,
0.1% SDS, 1% sodium deoxycholate, 1 mM sodium orthovanadate, 1 mM
phenylmethylsulfonyl fluoride, 2 mM dithiothreitol, and 1� protease in-
hibitor cocktail [Sigma]), passed through a 25-gauge needle 5 times, and
then centrifuged at 14,000 rpm for 20 min at 4°C. For cytoplasmic ex-
tracts, cells were washed once with ice-cold 1� PBS and once with ice-
cold 0.2� PBS and then scraped into cytoplasmic buffer (10 mM HEPES,
pH 7.3, 10 mM potassium chloride, 1.5 mM magnesium chloride, 50 mM
sodium fluoride, 1 mM sodium orthovanadate, 1 mM phenylmethylsul-
fonyl fluoride, 2 mM dithiothreitol, and 1� protease inhibitor cocktail
[Sigma]). The lysates were incubated on ice for 10 min, and then Triton
X-100 was added to a final concentration of 1%, and samples were spun at
12,000 � g for 3 min. Extracts were quantified via Bradford assay (Bio-
Rad Laboratories).

Western blotting. Twenty-five micrograms of the indicated extracts
were separated via electrophoresis on 10% denaturing polyacrylamide
gels, transferred onto polyvinylidene difluoride (Millipore) membranes,
and blocked in 5% skim milk. Blots were probed with the following pri-
mary antibodies, as indicated, at 1:1,000: anti-ICP0 (Virusys Corpora-
tion), anti-actin (Santa Cruz SC-1616), anti-ISG-56 (provided by G. Sen,
Cleveland Clinic), and anti-USP7 (R2B2; provided by L. Frappier, Uni-
versity of Toronto). Secondary antibodies conjugated to horseradish per-
oxidase were used at 1:5,000, and the signal was visualized via chemilumi-
nescence.

Immunoprecipitation. Anti-ICP0 antibody (5 �g) was incubated
with 30 �l of Protein G Plus agarose (Thermo Scientific) for 1 h at 4°C.
Beads were washed three times with immunoprecipitation buffer (50 mM
Tris, pH 8.0, 150 mM NaCl, and 1% NP-40) and incubated with 500 �g of
cytoplasmic extract for an additional 4 h. The beads were washed 5 times
and boiled in sample buffer containing SDS and �-mercaptoethanol.

Immunofluorescence. HEL cells were seeded onto coverslips and in-
fected at 50% confluence. At the indicated times, the cells were fixed with
10% formalin (Sigma); permeabilized with 0.1% Triton X-100; and
blocked with 3% goat serum, 3% bovine serum albumin (BSA), and
0.02% Tween 20. The cells were incubated with 1:250 anti-ICP0 and then
1:250 anti-mouse Alexa Fluor 488-conjugated secondary antibody (Invit-
rogen), and nuclei were stained with 1:10,000 Hoechst 33258 dye. All
images were captured with a Leica DM-IRE2 inverted microscope and
analyzed using Openlab software (Improvision).

Plaque assays. HEL cells were infected at the indicated MOIs and
grown in 1 ml medium for 24 h, and the cells were scraped into the
medium and freeze-thawed three times. Serial dilutions of the resulting
samples were used to infect U2OS cells in the presence of HMBA and 2%
human serum, and after 3 days, the cells were fixed with methanol and
stained with Giemsa (Sigma), and the plaques were counted.

Quantitative reverse transcription (RT)-PCR. Six hours after infec-
tion with the indicated viruses, total RNA from HEL cells was harvested
using TRIzol reagent (Invitrogen); 2.5 �g of RNA was DNase treated
(DNA-free kit; Ambion), and then, 150 ng of each sample was reverse
transcribed using 200 ng of a random 6-mer primer and 200 U of Super-
Script II reverse transcriptase (Invitrogen). Samples were then analyzed in

TABLE 1 ICP0 mutants used in this study

Virus Mutation Phenotype Reference

17 syn None Wild type 112
D8 Deletion of amino acids 475–548 (NLS) ICP0 restricted to cytoplasm 30
FXE Deletion of amino acids 106–150 (RING) ICP0 lacks a functional RING finger and is mainly nuclear 30
D8/FXE Deletion of amino acids 106–150 (RING) and 475–548 (NLS) ICP0 restricted to cytoplasm; lack of a functional RING finger This work
D8/FXE-R D8 and FXE mutations are repaired to wild-type sequence Wild type This work
dl1403 2-kb deletion in ICP0 ICP0 null 111
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triplicate with universal PCR master mix and gene-specific TaqMan prim-
ers (Life Technologies): Hs01911452_s1 for IFIT1 and Hs99999905_m1
for glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Gene expres-
sion was normalized to GAPDH via the ��CT method and expressed as a
fold change relative to the internal control, poly(I·C).

Mice and HSV-1 infection. Female C57BL/6 mice, 6 to 8 weeks of age,
were purchased from Charles River Laboratory (Montreal, Quebec, Can-
ada). The mice were housed under biosafety level 2 conditions in the
Central Animal Facility at McMaster University. All mice were housed in
level B rooms that followed a 12-h day and 12-h night schedule and were
maintained under standard temperature-controlled conditions. All ani-
mal experiments were approved by the Animal Research Ethics Board
(AREB) of McMaster University. To prepare mice for intravaginal infec-
tion, female mice were injected with 50 �l of 50-mg/ml Depo-Provera
hormone (Pfizer Canada Inc., Kirkland, Quebec, Canada) subcutane-
ously 4 days prior to HSV-1 infection. To infect the mice, they were anes-
thetized by injectable anesthetic (150 �l of ketamine-xylazine [0.75 ml:
0.25 ml]) given intraperitoneally and infected intravaginally with 105 PFU
of the indicated viruses in 10 �l of PBS. The mice were kept on their backs
under the influence of anesthesia for 1 h to allow infection. The infected
mice were followed daily for genital pathology and survival. Genital pa-
thology was scored daily as follows: 0, no apparent infection changes; 1,
redness of the external vagina; 2, severe redness and swelling of the exter-
nal vagina; 3, severe redness and swelling of the external vagina and sur-
rounding tissues and hair loss; 4, genital ulceration with severe redness,
swelling, and hair loss of genital and surrounding tissues; 5, severe genital
ulceration extending to surrounding tissue or any sign of hind-limb pa-
ralysis. To examine viral shedding and cytokines in the vaginal mucosa,
vaginal lavage fluids were collected on days 1 to 5 postinfection by pi-
petting 2 doses of 30 �l of PBS into and out of the vagina six to eight times.
Virus in the vaginal washes was quantified via plaque assay as described
above.

ELISA. To measure IFN-� concentrations in the vaginal lumen of
infected mice, vaginal lavage fluids from several mice were pooled and
assayed for IFN-� production with the DuoSet ELISA (enzyme-linked
immunosorbent assay) kit, according to the manufacturer’s protocol
(R&D Systems, Minneapolis, MN). The plates were read using the Sap-
phire ELISA plate reader at 450-nm wavelength.

Statistical analysis. Analysis was performed using GraphPad Prism.
Where necessary, values were first transformed via logarithmic transfor-

mation to equalize variance or arcsine-square-root transformation for
proportions.

RESULTS

Generation of an HSV mutant expressing cytoplasmic ICP0
lacking the RING finger. To investigate the role of the RING fin-
ger in the cytoplasmic activity of ICP0, we generated an ICP0
construct containing both the FXE deletion (�106 to 150), which
removes the RING finger domain, and the D8 deletion (�475 to
548), which disrupts the NLS (30) (Fig. 1A). This construct was
introduced into the 17 syn genome via homologous recombina-
tion, and the presence of the expected mutations was verified via
DNA sequencing. Western blot analysis confirmed the size reduc-
tion of the ICP0 protein expressed by the double-mutant virus,
designated D8/FXE (Fig. 1B). To ensure that the presence of two
deletions did not result in gross protein misfolding, we confirmed
that the D8/FXE ICP0 was capable of binding to USP7, a well-
characterized interaction partner whose binding site in the C ter-
minus of ICP0 would not be directly impacted by FXE and D8
deletions (31–33) (Fig. 1C). As expected, the amount of ICP0
recovered in the cytoplasmic extracts differed among the viruses.
Due to its exclusive cytoplasmic localization, a greater quantity of
D8 ICP0 than of WT ICP0 was present, a portion of which was still
nuclear at this time. D8/FXE ICP0 was found at the highest level,
in accordance with its increased stability as a result of the loss of
the RING finger (see below). However, the amount of USP7 re-
covered in each coimmunoprecipitation (co-IP) was proportional
to the amount of ICP0 in the particular sample, demonstrating
that all forms of ICP0 interact with USP7 to comparable degrees.

We next investigated the localization of D8/FXE ICP0 via im-
munofluorescence microscopy (Fig. 2). Unlike the FXE mutant,
which was found predominantly in the nucleus, D8/FXE ICP0 was
found exclusively in the cytoplasm. This localization pattern was
confirmed in primary mouse fibroblasts and primary human gen-
ital epithelial cells (data not shown).

FIG 1 Generation of an HSV mutant expressing cytoplasmic ICP0 lacking the RING finger. (A) Schematic of the deletions in the icp0 gene found in the wild-type
and D8/FXE viruses. (B and C) HEL cells were infected with the indicated viruses at an MOI of 10 for 8 h. (B) Cells were harvested with RIPA extract and analyzed
for ICP0 size and expression relative to actin by Western blotting. (C) Cytoplasmic extracts were obtained, and samples were immunoprecipitated with an �ICP0
antibody. The eluant and input extracts were analyzed by Western blotting for ICP0 and USP7.
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Cytoplasmic ICP0 promotes virus replication in cell culture
in the absence of the RING finger. Since most of the known roles
of ICP0 are thought to occur in the nucleus and require an intact
RING finger domain, we expected the D8/FXE virus to be highly
attenuated. HEL fibroblast cells were infected with D8/FXE, the
single mutant D8 or FXE, the ICP0-null dl1403, and the wild-type
parent strain 17 syn at both high (10) and low (0.1) MOIs for 24 h.
The titer of the virus on U2OS cells in the presence of HMBA was
then determined. Remarkably, the D8/FXE virus, as well as the D8
virus, grew significantly better than either the dl1403 or the FXE
mutant at both high and low MOIs (Fig. 3A and C). Although
neither D8/FXE nor D8 replicated as well as 17 syn, both viruses
caused a productive infection at an MOI of 10, reaching titers
approximately 8-fold higher than that of dl1403, which produced
little more than the input virus. A similar pattern was observed
even at the low MOI of 0.1, indicating that cytoplasmic ICP0 is still
able to promote viral replication, even in the absence of a func-
tional RING finger domain. The particle-to-PFU ratios of D8,
D8/FXE, and dl1403 were comparable to, though higher than,
those of 17 syn, as expected (data not shown). Therefore, differ-
ences in particle numbers cannot explain these results. To confirm
that the increased growth of D8/FXE was not due to secondary site
mutations, we generated the revertant virus D8/FXE-R, in which
mutant ICP0 is replaced with WT ICP0. As expected, D8/FXE-R
replicated to titers similar to those of 17 syn at both high and low
MOIs (Fig. 3B and D).

To further characterize the point in the replication cycle af-
fected by cytoplasmic ICP0, the expression of the immediate-early
protein ICP4 was determined via immunofluorescence micros-
copy after infection with 17syn, D8, D8/FXE, or dl1403. The num-
ber of cells positive for ICP4 was determined relative to the total
number of cells in each field of view (Fig. 3E). The pattern of ICP4
expression mirrored the observations for viral replication, with
both D8 and D8/FXE showing a significantly greater number of
cells expressing ICP4 than dl1403.

In terms of both titer and ICP4 expression, D8/FXE showed a
slight but reproducible improvement in replication over D8. This
may be explained by ICP0 autoubiquitination and subsequent

degradation (34), which would be expected to occur in D8 but not
the RING-deficient D8/FXE. In support of this possibility, D8/
FXE ICP0 was found to accumulate to higher levels than D8, but
the addition of MG132 normalized the levels of the two cytoplas-
mic ICP0 mutants (Fig. 3F). Together, these data suggest that
cytoplasmic ICP0 stimulates the replication of HSV-1 in cell cul-
ture through a mechanism independent of the RING finger.

Cytoplasmic ICP0 cannot block antiviral signaling in the ab-
sence of the RING finger. We next investigated whether the in-
crease in viral replication observed with cytoplasmic mutants of
ICP0 could be explained by their ability to block antiviral signal-
ing. HEL cells were infected with various HSV-1 mutants in the
presence or absence of the proteasome inhibitor MG132, and an-
tiviral state induction was monitored by determining the accumu-
lation of ISG-56 message at 8 h postinfection via quantitative RT-
PCR (Fig. 4A). 17 syn efficiently blocked the accumulation of
ISG-56 message when the proteasome was active but lost the abil-
ity after treatment with MG132, while D8 blocked ISG-56 accu-
mulation even when the proteasome was inhibited, in accordance
with previous results (12). Intriguingly, D8/FXE was unable to
prevent ISG-56 accumulation, regardless of the status of the pro-
teasome, suggesting that cytoplasmic ICP0 requires the RING fin-
ger, but not the proteasome, for its ability to block antiviral sig-
naling. We confirmed that the inability of D8/FXE to impede
ISG-56 induction was due to the absence of the ICP0 RING finger
domain, as the repaired strain, D8/FXE-R, efficiently prevented
the activation of innate signaling (Fig. 4B). Similarly, examining
ISG-56 protein levels via Western blot analysis confirmed that D8
efficiently blocked the activation of the antiviral response, while
D8/FXE could not (Fig. 4C). Collectively, these data suggest that
cytoplasmic ICP0 plays distinct roles in viral replication and anti-
viral state inhibition.

Cytoplasmic ICP0 does not require the RING finger to pro-
mote virus replication in vivo. To determine whether the differ-
ences in viral replication observed in cell culture were reproduc-
ible in vivo, a mouse intravaginal model was used. Despite
increasing clinical data linking HSV-1 with genital infections, few
murine studies utilize HSV-1 in intravaginal inoculation. Thus, in

FIG 2 An ICP0 NLS mutant lacking the RING finger localizes to the cytoplasm. HEL cells were infected with the indicated viruses at an MOI of 10 for 8 h, and
immunofluorescence microscopy was performed to determine the subcellular location of ICP0. Nuclei were stained with Hoechst dye. Magnification, �400.
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preliminary studies, 17 syn and dl1403 were tested in parental
C57BL/6 (B6) and IRF3	/	 mice (Fig. 5). One day postinfection
(Fig. 5A), there was a trend toward increased viral titers in the
vaginal washes for both 17 syn and dl1403 in IRF3	/	 mice com-
pared to B6-infected mice, suggesting that IRF3 contributes to the
host response to vaginal HSV challenge. While this general trend
was maintained at day 2 postinfection (Fig. 5B), we found that
dl1403 was being cleared in both strains of mice. Of note, the
ICP0-null virus did not reach wild-type titers in IRF3-deficient
mice, indicating that ICP0 contributes important activities in ad-
dition to blocking IRF3.

From our in vitro data, we were particularly intrigued to ob-

serve that cytoplasmic ICP0 contributes to HSV replication in the
absence of a RING finger. Since D8/FXE cannot block the IRF3-
mediated antiviral response, while D8 can (Fig. 4), we chose to
assess its ability to support virus replication in vivo in mice defi-
cient for IRF3. Thus, we challenged IRF3-deficient mice with 17
syn, D8, D8/FXE, or dl1403, and viral titers in the vaginal washes
were determined 2 days postinfection (Fig. 6A). Similar to in vitro
findings, both D8 and D8/FXE replicated to significantly higher
titers than dl1403, with the enhanced stability of ICP0 in D8/FXE
likely responsible for the increase in titers over D8. Vaginal pathol-
ogy results correlated closely with viral titers (Fig. 6B), and a sim-
ilar pattern was also observed when levels of the cytokine IFN-�
were quantified in the vaginal washes (Fig. 6C). Collectively, these
data show that in vivo, as well as in cell culture, cytoplasmic ICP0
has a growth-promoting activity that is distinct from its ability to
block antiviral signaling and that does not require the RING
finger.

DISCUSSION

This study demonstrates that while ICP0 mediates significant
functions in the nucleus, its cytoplasmic roles also have a largely
unappreciated importance in viral replication. We show that ICP0
restricted to the cytoplasm can promote viral growth both in cell
culture and in mice and, surprisingly, that it can achieve this
equally well in the presence or absence of a functional RING finger
domain. We also demonstrate that the RING finger contributes to
blocking antiviral signaling in a proteasome-independent fashion.

Partial or complete restriction of ICP0 to the nucleus results

FIG 4 Cytoplasmic ICP0 requires the RING finger but not the proteasome to
block ISG expression. HEL cells were infected with the indicated viruses at an
MOI of 10. (A) Infections were performed in the presence or absence of the
proteasome inhibitor MG132, as indicated. (A and B) RNA was harvested after
6 h, and the expression of ISG-56 relative to GAPDH was determined using the
TaqMan system of quantitative RT-PCR. Values are reported relative to
poly(I·C) treated cells, whose fold change was set to 100. The data are the
averages of three independent experiments 
 SEM. Statistical analysis was
performed using one-way ANOVA and Tukey’s posttest. **, P � 0.01; ***, P �
0.001; ns, not significant. (C) Protein was harvested after 8 h and analyzed for
ISG-56 and actin expression by Western blotting.

FIG 3 Cytoplasmic ICP0 promotes viral replication in the absence of the
RING finger domain in primary fibroblasts. (A to D) HEL cells were infected
with the indicated viruses at a high MOI of 10 (A and B) or a low MOI of 0.1 (C
and D) for 24 h. Cells and supernatant were harvested and sent through 3
freeze-thaw cycles, and the titer of U20S cells in the presence of HMBA was
determined. (E) HEL cells were infected with the indicated viruses at an MOI
of 10 for 12 h, and immunofluorescence microscopy was performed to deter-
mine the number of cells expressing ICP4 relative to the total number of cells,
as determined by staining nuclei with Hoechst dye. The data are the averages of
three independent experiments 
 standard errors of the mean (SEM). Statis-
tical analysis was performed using one-way analysis of variance (ANOVA) and
Tukey’s posttest (B and D) or Dunnett’s posttest (A and C) relative to dl1403.
*, P � 0.05; ***, P � 0.001; ns, not significant. (F) HEL cells were infected with
the indicated viruses at an MOI of 10 for 8 h in the presence of MG132 or the
carrier DMSO and then harvested via cytoplasmic extract. Western blot anal-
ysis was performed to determine the levels of ICP0 and actin.
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from a wide variety of experimental manipulations (6, 35–40),
including commonly used strategies, such as DNA transfection
prior to infection, the use of proteasome inhibitors, or ICP0 ex-
pression in the absence of other viral proteins. Thus, unintention-
ally, many studies have exclusively considered the roles of nuclear
ICP0. Similarly, as shown here (Fig. 2) and elsewhere (37), RING
finger mutations cause ICP0 to be largely restricted to the nucleus.
This may be explained by the previously suggested hypothesis that
ICP0 must complete its nuclear functions before it can translocate
to the cytoplasm (35), so that preventing ICP0 from performing
these activities by disrupting its RING finger results in its nuclear
retention. Our results are consistent with the vast amount of lit-
erature demonstrating that disrupting the RING finger of ICP0
results in a virus as attenuated as an ICP0-null strain (30, 41–45)
and suggest that ICP0 absolutely requires the RING finger to per-
form its functions specifically within the nucleus. However, most
studies using RING finger mutants conclude that ICP0 requires a
RING finger for all of its biological roles, without taking the effect
of ICP0 localization into consideration. By including the addi-
tional D8 deletion to remove the NLS and create D8/FXE, we have
overcome the nuclear restriction of FXE, allowing us to investigate
the activity of RING-deficient ICP0 in the cytoplasm. It is impor-
tant to note that although immunofluorescence studies cannot
conclusively demonstrate that a small amount of our ICP0 with
the NLS deleted is not reaching the nucleus, we have previously
shown that the D8 virus does not degrade nuclear PML (12). Since

it is well established that even a small amount of nuclear ICP0
leads to the loss of PML (43), it can be concluded that this muta-
tion prevents a biologically relevant amount of ICP0 from local-
izing to the nucleus. Additionally, since FXE is mainly nuclear and
yet is inactive, a small amount of D8/FXE reaching the nucleus
cannot explain our results.

How cytoplasmic ICP0 induces virus replication, particularly
in the absence of the RING finger domain, is currently unclear.
ICP0 has been found to bind to EF-1�, a cytoplasmic elongation
factor involved in translation (7), although little is known about
the significance of this interaction. Other potential cytoplasmic
activities identified for ICP0, such as the degradation of I�B� (46)
or the disruption of the cellular microtubule network (11), appear
to require RING-dependent ubiquitination. It has also been found
that ICP0 must be cytoplasmic in order to be packaged into the
viral tegument (47, 48), and capsids from viruses lacking tegu-
ment ICP0 have been found to have disrupted transport to the
nucleus (49). Therefore, the cytoplasmic localization of D8 and
D8/FXE may allow their packaging into the tegument, resulting in
more direct capsid transport and greater efficiency of replication.
Finally, ICP0 has been found to bind the cellular deubiquitinating
enzyme USP7 (31–33) and to transport it from the nucleus to the
cytoplasm in a RING-independent but NLS-dependent manner
(50). Conversely, USP7 translocation can occur after TLR stimu-
lation in the absence of ICP0 (50), and we observed that ICP0
restricted to the cytoplasm can still interact with USP7. Loss of
USP7 binding by ICP0 has been found by some groups to decrease
viral growth (51, 52), while others have found that such viruses
show increased gene expression, though decreased cell-to-cell
spread (53). While USP7 binding has been found to stabilize ICP0
(34), the exact function of this interaction in viral replication is
unknown.

A role for cytoplasmic ICP0 in promoting viral replication via
increased translation, capsid transport, or USP7 binding would be
a departure from the current paradigm in ICP0 biology, which
suggests that ICP0 stimulates virus replication by increasing the
probability that an incoming genome will launch a productive
infection (reviewed in reference 1). In the absence of ICP0, the
viral genome is more likely to remain in a quiescent state, sugges-
tive of latency, though in the infrequent cells where a productive
infection is launched, the replication cycle proceeds normally
(30). ICP0 is thought to overcome the intrinsic cellular resistance
provided by several constituents of specific subnuclear domains
known as ND10, including PML, which are degraded by ICP0
(54–56). ICP0 has also been suggested to act as a DNA template
remodeler (57), decreasing repressive and increasing active his-
tone modifications and counteracting the formation of hetero-
chromatin (58–61). The mechanism behind this activity is cur-
rently unclear (62) and may involve a variety of factors (63–67),
including the disruption of the coREST-REST repressor complex
(68, 69). However, it is difficult to understand how cytoplasmic
ICP0 could affect such nuclear components. Interestingly, our
results are supported by a recent study demonstrating that a virus
expressing a RING finger mutant of ICP0 that was retained exclu-
sively at ND10 domains was more highly attenuated than a virus
encoding a RING domain mutant with additional deletions allow-
ing it to disperse away from ND10, suggesting that RING-inde-
pendent functions of ICP0, in a location-dependent context, can
promote viral replication (70).

Although D8/FXE was as capable as D8 in promoting viral

FIG 5 IRF3 deficiency cannot compensate for the loss of ICP0 in a mouse
model of genital HSV infection. Wild-type B6 or irf3	/	 mice were intravagi-
nally infected with 1 � 105 PFU of the indicated viruses. Vaginal washes were
collected after 1 day (A) and 2 days (B), and the titer on U2OS cells was
determined in the presence of HMBA. Scatter plot and mean values are shown.
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replication, cytoplasmic ICP0 failed to block antiviral signaling in
the absence of the RING domain. The mechanism through which
ICP0 blocks IRF3 activation remains controversial. We have con-
sistently found that cytoplasmic ICP0 can prevent IRF3 signaling
in the absence of a functional proteasome (12), and others have
demonstrated that cytoplasmic bICP0 from the related bovine
herpesvirus 1 also inhibits IRF3 activation (71). In contrast, ICP0
is unable to block IRF3 activation within the nucleus (12, 23),
although it plays a role in inhibiting cellular responsiveness to IFN
(23), likely via its disruption of PML (72). However, it has been
alternatively reported in a Sendai virus coinfection model that
wild-type HSV-1 can both enhance IRF3 degradation and seques-
ter nuclear IRF3 away from its target genes in comparison to an
ICP0-null virus (21, 22). It has also been suggested that nuclear
ICP0 blocks IRF3 activation by degrading the nuclear DNA sensor
IFI16 in a RING- and proteasome-dependent manner (20). How-
ever, IFI16 may be more important in epigenetic regulation of
DNA expression as opposed to IFN production (67, 73). Impor-
tantly, under conditions allowing efficient viral replication, IFI16
has been found to be degraded during infection with an ICP0-null
virus (74). This suggests that ICP0 simply promotes the expres-
sion of an additional viral product that is directly responsible for
the loss of IFI16, though ICP0 does appear to block the recruit-
ment of IFI16 to the viral genome even without directing the deg-
radation of IFI16 (74).

At first glance, it is difficult to understand how the RING fin-
ger, with its ubiquitin ligase activity, could be required for the
ability of ICP0 to prevent antiviral signaling while the proteasome

itself is dispensable. This observation is consistent with our previ-
ous work demonstrating the requirement for the RING finger in
antiviral inhibition (18) and that no factor involved in IRF3 acti-
vation has been unequivocally identified as being degraded by
ICP0 during HSV-1 infection (12, 18), though some have been
suggested (20–22). In recent years, there has been a tremendous
increase in our understanding of the proteasome-independent ac-
tivities of ubiquitin modifications (reviewed in references 24 to 29
and 75). The traditional signal for proteasomal degradation con-
sists of ubiquitin moieties conjugated into chains via their lysine
residues at position 48 (Lys 48), yet ubiquitin can also be linked in
a variety of atypical manners via other lysine residues, and these
alternative chains have been associated with nondegradative sig-
naling roles. Atypical linkages result in chains that adopt a variety
of conformations, which can be recognized by different ubiquitin-
binding domains (UBDs), found in a wide diversity of proteins, in
a linkage-specific manner. Thus, ubiquitin modification can con-
trol protein-protein interactions and is therefore involved in cel-
lular processes ranging from receptor endocytosis to DNA repair.
Of particular interest is the fact that Lys 63 linkage, one of the best
characterized of these alternative chains, plays an extensive role in
antiviral signaling (76–80). For example, Lys 63-linked chains, but
not Lys 48-linked chains, are essential for the activation of IRF3
(76); Lys 63 chains are important in RLR activation (reviewed in
reference 81); and NF-�B activation is extensively regulated by
atypical ubiquitin modification of signal transduction proteins
(reviewed in reference 82).

Though the activity of the RING finger of ICP0 as a ubiquitin

FIG 6 Cytoplasmic ICP0 promotes viral replication in the absence of the RING finger domain in a mouse genital model of HSV infection. The indicated viruses
(1 � 105 PFU) were used to intravaginally infect irf3	/	 mice. (A) Vaginal washes were collected after 2 days, and the titer on U2OS cells was determined in the
presence of HMBA. Statistical analysis was performed using one-way ANOVA and Dunnett’s posttest relative to dl1403. **, P � 0.01; ***, P � 0.001. Scatter plot
and mean values are shown. (B) Vaginal pathology was monitored daily and scored on a 5-point scale. (C) Vaginal washes collected after 2 days were pooled, and
ELISA was used to measure IFN-� levels.
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ligase has been confirmed in vitro (2, 83), as well as in vivo (3), and
the RING domain has been implicated in the proteasome-depen-
dent degradation of a tremendous variety of targets (20, 46, 51, 66,
83–92), to our knowledge, the linkage type found in the ubiquitin
chains produced by ICP0 has never been determined. The loss of
ICP0-targeted proteins from the cell implicates Lys 48 linkages
and proteasomal degradation; however, the RING finger may also
generate alternatively linked chains involved in proteasome-inde-
pendent signaling roles, a possibility that we are currently investi-
gating. Alternatively, the RING finger may act in a ubiquitin-in-
dependent manner. Recently, it has been found that the cellular
retrovirus restriction factor TRIM-CypA is able to inhibit virus
infection by a mechanism that requires its RING domain but nei-
ther the proteasome nor ubiquitin conjugation (93). Finally, we
cannot rule out the possibility that HUL-1, the second region of
ICP0 with E3 ubiquitin ligase activity (94), plays a role in the
replication-promoting activities of D8/FXE in the absence of the
RING, though to date only one target of HUL-1 has been identi-
fied. We are currently investigating potential proteasome-inde-
pendent functions of the ICP0 RING finger domain.

While unable to control the antiviral response, D8/FXE grows
as well as D8 in cell culture. This observation is consistent with
previous studies demonstrating that the depletion of neither IRF3
nor STAT-1 in cultured cells could improve the replication of an
ICP0-null virus (95). In contrast, the type I IFN response is crucial
in controlling HSV replication in mouse models (96–100). Con-
versely, IRF3-deficient mice survive intravenous infection with
wild-type HSV-1 (101) and show no increased viral replication in
peripheral tissues (101–103), though augmented replication was
observed in the central nervous system (102, 103). While ICP0-
null mutants are attenuated in wild-type mice (96, 104, 105), vi-
ruses lacking ICP0 have not been studied in IRF3-deficient mice.
Here, we used IRF3	/	 mice to investigate the replication of our
ICP0 mutants, using an intravaginal model of infection, as HSV-1
is now responsible for at least 50% of new genital herpes episodes
in developed countries (reviewed in reference 106). We found that
while there was a trend toward higher titers in IRF3	/	 mice for
both 17 syn and dl1403, it was not statistically significant. It is
probable that this results from the compensatory role of IRF7 in
IRF3	/	 mice, as these mice continue to express IFN-� via IRF7 in
plasmacytoid dendritic cells and thus survive infection with wild-
type HSV-1, while IRF7	/	 mice lack IFN-� production and suc-
cumb (101). This is analogous to previous work demonstrating
that ICP0-null viruses show augmented replication in STAT1	/	

and IFNAR	/	 mice (96, 97) but remain attenuated in PML	/	

mice (96). Therefore, IRF3	/	 mice are useful for these studies,
allowing us to compare our two cytoplasmic ICP0 mutants with-
out the confounding effects of IRF3 activation, which D8 controls
and D8/FXE cannot. However, these mice are not so deficient as to
eliminate the requirement for ICP0 to achieve maximal viral rep-
lication.

Our observations in IRF3	/	 mice confirm the ability of cyto-
plasmic ICP0 to support virus growth in a RING-independent
manner. Virus growth is mirrored by the observed pathology in
these mice and further confirmed by measurement of levels of
IFN-�, a cytokine produced by NK cells that represents a char-
acteristic feature of the innate immune response to replicating
genital HSV (107–109). Consistent with our data, previous
work in lymphocyte-deficient rag2	/	 mice demonstrated that
an HSV-2 virus expressing an NLS mutant of ICP0 was lethal in

80% of mice compared to only 20% infected with a RING finger
mutant (110). Surprisingly, D8/FXE reaches titers even higher
than those of D8 and also induces higher levels of IFN-�. This
may be explained by the increased stability of RING finger
mutants (34, 41), as ICP0 undergoes RING-dependent auto-
ubiquitination. Indeed, we observed that ICP0 accumulates to
higher levels in D8/FXE than in D8.

In conclusion, our work demonstrates that cytoplasmic ICP0
has two independent activities: blocking ISG production in a
mechanism that involves the RING finger but not the proteasome
and promoting virus replication in a RING-independent manner.
These observations underscore the importance of cytoplasmic
ICP0 and suggest alternative functions for the RING finger do-
main, opening new avenues for the investigation of this multifac-
eted viral protein.
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