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Herpes Simplex Virus 1 Protein Kinase US3 Hyperphosphorylates
p65/RelA and Dampens NF-kB Activation

Kezhen Wang, Liwen Ni, Shuai Wang, Chunfu Zheng

Soochow University, Institutes of Biology and Medical Sciences, Suzhou, China

ABSTRACT

Nuclear factor kB (NF-kB) plays important roles in innate immune responses by regulating the expression of a large number of
target genes involved in the immune and inflammatory response, apoptosis, cell proliferation, differentiation, and survival. To
survive in the host cells, viruses have evolved multiple strategies to evade and subvert the host immune response. Herpes simplex
virus 1 (HSV-1) bears a large DNA genome, with the capacity to encode many different viral proteins to counteract the host im-
mune responses. In the present study, we demonstrated that HSV-1 protein kinase US3 significantly inhibited NF-kB activation
and decreased the expression of inflammatory chemokine interleukin-8 (IL-8). US3 was also shown to hyperphosphorylate p65
at serine 75 and block its nuclear translocation. Two US3 mutants, K220M and D305A, still interacted with p65; however, they
could not hyperphosphorylate p65, indicating that the kinase activity of US3 was indispensable for the function. The attenuation
of NF-kB activation by HSV-1 US3 protein kinase may represent a critical adaptation to enable virus persistence within the host.

IMPORTANCE

This study demonstrated that HSV-1 protein kinase US3 significantly inhibited NF-kB activation and decreased the expression
of inflammatory chemokine interleukin-8 (IL-8). US3 hyperphosphorylated p65 at serine 75 to inhibit NF-kB activation. The
kinase activity of US3 was indispensable for its hyperphosphorylation of p65 and abrogation of the nuclear translocation of p65.

The present study elaborated a novel mechanism of HSV-1 US3 to evade the host innate immunity.

H erpes simplex virus 1 (HSV-1), a member of the Alphaherpes-
virinae subfamily, is a large, enveloped virus, with a linear,
double-stranded (ds) DNA genome of about 152 kb. All members
of the Alphaherpesvirinae subfamily encode a serine/threonine ki-
nase called US3 that is not found in the other subfamilies (1).
Although US3 is not essential for viral replication in cell culture,
increasing evidence indicates that it is vital for viral fitness (1-5).
Many biological functions have been directly ascribed to US3,
including prevention of virus-induced apoptosis (6-11), nuclear
egress, virion maturation (12-16), rearrangements of the cyto-
skeleton, promoting cell-to-cell spread of virus infection (17, 18),
inhibiting histone deacetylation by phosphorylation of histone
deacetylase 1 (HDAC-1) and HDAC-2, which otherwise silence
gene expression (19-21), disrupting promyelocytic leukemia pro-
tein nuclear bodies (PML-NBs) (22), downregulating major his-
tocompatibility complex class I (MHC-I) surface expression, and
evasion of the host immune response (23). US3 is also reported to
masquerade as cellular kinase Akt to phosphorylate tuberous scle-
rosis complex 2 (TSC2), leading to constitutive activation of
mammalian target of rapamycin complex 1 (mTORC1) and en-
hancement of viral gene expression (24, 25).

In vitro studies suggested that HSV-1 US3 plays an important
role in resistance to interferon (IFN). US3-deficient HSV-1 was
more sensitive to alpha IFN (IFN-a) and induced stronger activa-
tion of IFN regulatory factor 3 (IRF3) (26, 27). Our recent work
also demonstrated that US3 hyperphosphorylated IRF3 and in-
hibited IFN-B production (28). Liang et al. demonstrated that
US3 protein kinase phosphorylated the a subunit of the IFN-vy
receptor and subsequently led to inhibition of IFN-y-induced
IFN-stimulated gene (ISG) expression (29). Recently, US3 protein
kinase was proven to be necessary and sufficient to suppress ex-
tracellular signal-regulated kinase (ERK) activity and subvert host
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mitogen-activated protein kinase (MAPK) signaling pathways
(30). Furthermore, HSV-1 US3 cooperates with glycoprotein B to
rapidly inhibit CD1d antigen presentation and natural killer T-cell
activation (23). Unfortunately, the molecular mechanisms behind
most of the functions of US3 are still poorly understood.

It is well documented that the transcription factor NF-kB plays
important roles in the innate immune responses. Viral infection
induces the activation of NF-kB, which mediates cytokine and
chemokine production and regulation of apoptotic processes.
Moreover, NF-kB regulates a large variety of genes involved in
numerous physiological processes, including inflammation, im-
mune cell development, cell survival, differentiation, prolifera-
tion, cellular stress responses, cell adhesion, and homoeostasis of
the adaptive immune system (31-36). The NF-kB protein family
comprises five members, including ReLA (p65) NF-kB1 (p50 and
its precursor p105), NF-kB2 (p52 and its precursor p100), and
ReLB and c-ReL, which share a structurally conserved N-terminal
Rel homology domain (RHD) that is important for protein
dimerization, DNA binding, interaction with inhibitor of NF-kB
(IkB), and nuclear translocation (32, 37). Activation of NF-kB is a
complex process induced by a variety of stimuli, including micro-
bial and viral products, cytokines, DNA damage, oxidative stress,

Received 18 November 2013 Accepted 22 April 2014

Published ahead of print 7 May 2014

Editor: L. Hutt-Fletcher

Address correspondence to Chunfu Zheng, zheng.alan@hotmail.com.
KW.and L.N. contributed equally to this work.

Copyright © 2014, American Society for Microbiology. All Rights Reserved.
doi:10.1128/JV1.03394-13

jviasm.org 7941


http://dx.doi.org/10.1128/JVI.03394-13
http://jvi.asm.org

Wang et al.

and radiation (38). Most NF-«kB dimers are inactively sequestered
in the cytoplasm because of their association with IkB proteins,
the most common of which is IkBa. Upon stimulation, IkB pro-
teins are phosphorylated to degradation by the IkB kinase (IKK)
complex, which contains two catalytic subunits, IKKa and IKKf,
as well as a regulatory subunit, IKKy (NF-kB essential modulator
[NEMOY]) (39, 40). This leads to liberation of the NF-kB p65/p50
heterodimers, their nuclear translocation, and NF-«kB-dependent
gene transcription. Numerous upstream signaling cascades con-
verge on the IKK complex, which is therefore the central mediator
of canonical NF-kB activation. The activation of NF-«B can in-
duce the expression of IFN-f, MHC-I, and several inflammatory
cytokines (for a review, see reference 41). And that is believed to
protect hosts from viral pathogens. Hence, a wide variety of vi-
ruses counteract NF-kB activation with various strategies to evade
the immune responses. Furthermore, viruses may modulate
NF-kB signaling to enhance viral replication and prevent virus-
induced apoptosis (42, 43). In most cases, these viruses encode
proteins that disrupt or modulate immune responses by targeting
specific aspects of the NF-kB signaling pathway.

Intensive studies have shown that viral genes carried by Ep-
stein-Barr virus (EBV) (44-46), cytomegalovirus (47, 48), and
varicella-zoster virus (VZV) (49) regulate the NF-«kB pathway in a
cell type-dependent manner. HSV-1 also encodes proteins to dis-
turb the NF-«B pathway (50-53). ICP27, an immediate early gene
product of HSV-1, has been shown to antagonize NF-«B signaling
(54). VHS, a tegument protein which is carried in the virion and
delivered into CD8™" dendritic cells (DCs), blocks the early-repli-
cation-independent activation of NF-kB during HSV-1 infection
(55). The HSV-encoded late gene product y,34.5 protein inhibits
activation of NF-kB in CD8" DCs (56). The large genome of
HSV-1 therefore enables the encoding of numerous proteins that
modulate host innate immune responses. In the present study, we
demonstrated that HSV-1 US3 dramatically downregulated
NF-kB activation. US3 blocked tumor necrosis factor alpha
(TNF-a)-induced nuclear translocation of p65 and decreased ex-
pression of inflammatory chemokines.

MATERIALS AND METHODS

Cells, viruses, and antibodies. HEK293T cells and Vero cells were grown
in Dulbecco’s modified Eagle medium (DMEM; Gibco-BRL) supple-
mented with 10% fetal bovine serum (FBS) and 100 U/ml of penicillin and
streptomycin. HeLa cells were maintained in Eagle’s minimum essential
medium (MEM; Gibco-BRL) supplemented with 10% FBS.

The wild-type (WT) HSV-1 F strain and its derivative HSV-1-US3-
Flag, US3-Del-HSV-1, K220M-HSV-1, and D305A-HSV-1 recombinant
viruses were propagated in Vero cells and titrated as described previously
(28, 57).

The protease inhibitor mixture cocktail was purchased from CST
(Boston, MA). Mouse anti-Myc (isotype IgG1), anti-hemagglutinin (HA)
(isotype IgG2b), and anti-Flag (isotype IgG2b) monoclonal antibodies
(MAbs) were purchased from ABmart (Shanghai, China). Mouse mono-
clonal IgG1 and IgG2b isotype control antibodies were purchased from
eBioscience Inc. (San Diego, CA). Rabbit polyclonal anti-US3 was pur-
chased from GL Biochem Ltd. (Shanghai, China). Rabbit polyclonal anti-
IkBa and rabbit polyclonal anti-p65 were purchased from Proteintech
(Wuhan, China), and mouse anti--actin MAb was purchased from Santa
Cruz Biotechnology (Santa Cruz, CA). Human recombinant TNF-«
(rTNF-a) was purchased from Biovision (San Francisco, CA).

Plasmid construction. All enzymes, except for T4 DNA ligase (New
England BioLabs, MA), used for cloning procedures were purchased from
TaKaRa (Dalian, China). To construct US3-Flag, the US3 open reading
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frame (ORF) of HSV-1 F strain (GenBank accession no. GU734771.1) was
amplified from plasmid US3-EYFP as previously described (58) and
cloned into the BglIl and EcoRI sites of the pPCMV-Flag vector (Beyotime,
Shanghai, China). Other plasmids were constructed similarly. Flag-NTK
was amplified from the gift plasmid pcDNA3-NIK (59). Commercial re-
porter plasmids include NF-kB-Luc (Stratagene, La Jolla, CA) and RL-TK
plasmid (Promega). Gift plasmids include the following: pCMV-p65-Flag
(60), pFlag-IKKp (61), pHA-IKKa (62), and pXP2-p-IL-8-Luc (63).

Transfection and DLR assays. HEK293T cells were plated on 24-well
dishes (Corning, NY) in DMEM (Gibco-BRL, MD) with 10% FBS at a
density of 1 X 10° cells per well overnight before transfection as previously
described (64). Cells were then cotransfected with 500 ng expression plas-
mid, 500 ng NF-«kB-Luc, and 50 ng of RL-TK (internal control) to nor-
malize transfection efficiency, as indicated by standard calcium phosphate
precipitation (65, 66). Twenty-four hours posttransfection, cells were
mock treated or treated with recombinant human TNF-« (10 ng/ml) or
interleukin-13 (IL-18) (10 ng/ml) for 6 h, and then dual-luciferase re-
porter (DLR) assays were performed as previously described (64) with a
luciferase assay kit (Promega, Madison, WI). All reporter assays were
completed at least in triplicate, and the results were shown as average
values = standard deviations (SD) from one representative experiment.

RNA isolation and semiquantitative RT-PCR. Total RNA was ex-
tracted from HEK293T cells with TRIzol (Invitrogen, CA) according to
the manufacturer’s manual. Samples were digested with DNase I and sub-
jected to reverse transcription. The cDNA was used as a template for
semiquantitative PCR to investigate the expression pattern of human IL-8
and GAPDH (glyceraldehyde-3-phosphate dehydrogenase). The detailed
protocols have been previously described (64).

Immunofluorescence assays. Immunofluorescence assays were per-
formed as described previously (67). In brief, HeLa cells were transfected
with the indicated plasmids for 24 h and then fixed in 4% paraformalde-
hyde, washed three times with phosphate-buffered saline (PBS), and per-
meabilized with 0.5% Triton X-100 in PBS for 10 min. The cells were
rinsed with PBS and then incubated with PBS containing 5% bovine se-
rum albumin (BSA) for 30 min at room temperature. Subsequently, cells
were incubated with rabbit anti-p65 pAb (diluted 1:50) or with mouse
anti-Flag MAD diluted (1:1,500) in PBS containing 0.5% BSA for 2 h at
37°C, followed by incubation with tetramethyl rhodamine isocyanate
(TRITC)-conjugated goat anti-rabbit IgG (Pierce) and fluorescein iso-
thiocyanate (FITC)-conjugated goat anti-mouse IgG (Sigma-Aldrich) in
PBS containing 0.5% BSA for 1 h at 37°C. After each incubation step, cells
were washed extensively with PBS. Samples were analyzed by fluorescence
microscopy (Zeiss, Germany).

Co-IP assays. Coimmunoprecipitation (co-IP) assays were performed
as previously described (57). Briefly, HEK293T cells (5 X 10°) were
cotransfected with 10 pg of US3-Flag expression plasmids. Transfected
cells were harvested at 24 h posttransfection and lysed on ice with 500 pl of
lysis buffer. The lysate was incubated with 0.5 g of the Flag antibodies
and 30 pl of a 1:1 slurry of protein A/G Plus-agarose (Santa Cruz, CA)
overnight at 4°C. The beads were washed four times with 1 ml of lysis
buffer containing 500 mM NaCl, and Western blotting (WB) analysis was
performed to detect endogenous p65 using p65 antibody. The co-IP assays
were repeated twice, and typical blots are shown in the figures.

RESULTS

HSV-1 US3 inhibits NF-kB activation. Given the importance of
NF-kB signal transduction pathways in regulating the expression
of functionally important immune molecules, we sought to deter-
mine whether US3 protein kinase modulated NF-«kB activity. Pro-
inflammatory cytokines induced by viral and bacterial infections
(e.g., TNF-a, IL-1, dsRNA, and lipopolysaccharide [LPS]) and
cellular stresses (e.g., phorbol esters and UV) activate the canon-
ical NF-kB signaling pathway (34, 68, 69). NF-kB-Luc and RL-TK
were cotransfected into HEK293T cells with or without US3-Flag.
DLR assays were performed with cells treated with TNF-a or IL-
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FIG 1 HSV-1 US3 inhibits TNF-a-induced NF-kB activation. (A) HEK293T cells were transfected with NF-kB-luc, together with RL-TK and pCMV-Flag
control vector or US3-Flag. Twenty-four hours posttransfection, cells were treated with TNF-a or IL-1p and incubated for an additional 6 h. NF-«kB-driven
luciferase activity was determined by a dual-luciferase assay. (B) An increased amount of US3-Flag expression plasmid as indicated was transfected, and DLR
assays were performed as described for panel A. The expression of US3 was analyzed by WB using anti-Flag and anti-B-actin monoclonal antibodies. The data
represent means plus standard deviations for three replicates. Statistical analysis was performed using Student’s ¢ test. ¥, P < 0.05; **, P < 0.01.

1B. As expected, ectopic expression of US3 significantly inhibited
both TNF-a- and IL-1B-induced NF-kB activation compared to
the control vector (Fig. 1A). Additionally, US3 inhibited TNF-a-
induced NF-kB promoter activity in a dose-dependent manner
(Fig. 1B). The expression of the US3 protein was confirmed by WB
analysis (Fig. 1B). Taken together, these results demonstrated that
US3 dramatically reduced NF-kB activation.

The kinase activity of US3 is essential for the inhibition of
NF-kB activation. HSV-1 US3 is a viral Ser/Thr kinase. To deter-
mine whether the kinase activity of US3 is required for the inhibi-
tion of NF-«kB activation response, the kinase-dead (KD) US3
mutants K220M and D305A were generated. The expression plas-
mids were cotransfected into HEK293T cells to examine their abil-
ity to inhibit TNF-a-induced NF-kB reporter gene activities. In
agreement with Fig. 1, expression of wild-type US3 strongly
blocked TNF-a-mediated activation of NF-kB reporter. Expres-
sion of K220M or D305A, however, failed to repress the activation
of NF-kB (Fig. 2). These results suggested that the kinase activity
of US3 is essential for inhibiting NF-kB activation.

HSV-1 US3 impedes the production of NF-kB-regulated cy-
tokines IL-8. The activation of NF-kB leads to production of an-
tiviral cytokines and chemokines. To verify whether US3 down-
regulated NF-kB-regulated cytokines, IL-8-luciferase reporter
assays were performed with an IL-8 reporter plasmid. HEK293T
cells were transfected with IL-8-Luc and RL-TK in the presence or
absence of US3-Flag. Twenty-four hours posttransfection,
HEK293T cells were treated with TNF-c, and the luciferase activ-
ities in both p-IL-8-Luc-transfected cells were not affected by the
control vector; however, US3 significantly inhibited IL-8-lucifer-
ase activity (Fig. 3A). To further determine the role of US3 in the
inhibition of TNF-a-induced IL-8 production, IL-8 mRNA accu-
mulation was measured by RT-PCR. As expected, mRNA levels of
endogenous IL-8 were strongly upregulated by TNF-a stimula-
tion (Fig. 3B), whereas US3 significantly reduced the accumula-
tion of IL-8 mRNA. We also detected the accumulation of IL-8
mRNA under HSV-1 infection. As shown in Fig. 3C, the mRNA
level of IL-8 was strongly upregulated in US3-del-HSV-1-infected
cells compared with the wild-type HSV-1-infected cells. More-
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over, cells infected with US3 kinase mutant viruses K220M-
HSV-1and D305A-HSV-1 induced higher IL-8 mRNA levels than
that induced by WT HSV-1 infection. These results indicated that
HSV-1 US3 blocked the production of NF-kB-regulated innate
cytokines and the kinase activity of US3 is indispensable to prevent
the production of NF-«kB-regulated innate cytokines.

US3 inhibits NF-kB signaling pathway at the p65 level. To
further investigate at what level in the pathway US3 blocked
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FIG 2 The kinase activity of US3 is essential for its inhibition of NF-kB acti-
vation. Luciferase assays in HEK293T cells were performed as described for
Fig. 1A to measure the activation of the NF-kB promoter following TNF-a
stimulation in the presence of US3-Flag, K220M-Flag, or D305A-Flag. The
expression of US3 and its mutants was verified by WB using mouse anti-Flag
MAbs and anti-B-actin monoclonal antibodies. The data represent means plus
standard deviations for three replicates. Statistical analysis was performed us-
ing Student’s ¢ test. **, P < 0.01.
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FIG 3 HSV-1 US3 inhibits TNF-a-induced NF-kB cytokine expression. (A)
HEK293T cells were cotransfected with pCMV-Flag control vector or US3-
Flag expression plasmid along with pIL-8-Luc and RL-TK. Twenty-four hours
posttransfection, cells were treated with TNF-a for 6 h and luciferase activity
was measured. The expression of US3 was analyzed by WB using anti-Flag and
anti-B-actin monoclonal antibodies. (B) HEK293T cells were transfected with
pCMV-Flag control vector or US3-Flag. Twenty-four hours posttransfection,
cells were mock treated or stimulated with TNF-a for 6 h before RT-PCR was
performed using GAPDH and IL-8-primers. (C) HEK293T cells were mock
infected or infected with WT HSV-1, US3-Del-HSV-1, K220M-HSV-1,
D305A-HSV-1, and US3-repaired-HSV-1. Sixteen hours postinfection, cells
were mock treated or treated with TNF-a for 6 h, and then the total RNA was
analyzed by RT-PCR. The data represent means plus standard deviations for
three replicates. Statistical analysis was performed using Student’s t test. **,
P <0.01.

NF-kB activity, we performed a dose-response assay with increas-
ing amounts of Flag-tagged US3 and the expression plasmids of
canonical NF-kB signaling pathway components, including
TRADD (TNF receptor type 1-associated death domain), TRAF2
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(TNF receptor-associated factor 2), TAK1 (TGF-B-activated ki-
nase 1), RIP1 (receptor-interacting serine/threonine protein ki-
nase 1), NIK (NF-kB-inducing kinase), IKKa, IKK{, and p65.
Expression of TRADD efficiently activated NF-kB-Luc reporter
production 78-fold (Fig. 4A). And all the other expression con-
structs resulted in a 10- to 200-fold induction of the NF-kB-Luc
reporter activity (Fig. 4B to H). NF-kB promoter activation driven
by all of the expression constructs was inhibited by US3 in a dose-
dependent manner (Fig. 4A to H). Collectively, these results sug-
gested that US3 protein probably acted at or downstream from the
level of p65 in the NF-kB signaling pathway.

US3 interacts with endogenous p65. In order to clarify the
molecular mechanism of US3 to suppress NF-kB activation, we
analyzed the potential interaction between p65 and US3. US3-
Myc and pCMV-p65-Flag expression plasmids were cotransfected
into HEK293T cells, and co-IP/WB analysis was performed with
anti-Myc and anti-Flag MAbs. The ectopic expression of p65 was
efficiently coimmunoprecipitated with US3 by anti-Myc MAbs
(Fig. 5A).

We further investigated the interaction between US3 and en-
dogenous p65; co-IP/WB analysis indicated that the endogenous
p65 protein was efficiently coimmunoprecipitated with US3 by
anti-Flag MAbs (Fig. 5B), and the interaction was independent of
TNF-a stimulation. Furthermore, HEK293T cells were infected
with HSV-1-US3-Flag to investigate the interaction between US3
and p65 in the context of viral infection with or without TNF-«
stimulation. As a result, endogenous p65 was coimmunoprecipi-
tated with US3, confirming the interaction between p65 and US3
(Fig. 5C, upper panel). We next infected the cells with wild-type
HSV-1, and co-IP/WB analysis was performed with anti-p65/US3
and anti-US3/p65. The endogenous p65 was coimmunoprecipi-
tated with US3 under viral infection (Fig. 5C, lower left panel).
Moreover, the reciprocal IP reinforced their interaction (Fig. 5C,
lower right panel).

Given that US3 kinase activity is important for the inhibition of
NE-kB response, the US3 kinase mutants K220M and D305A were
transfected into HEK293T cells separately. Co-IP/WB analysis in-
dicated that the endogenous p65 protein was also efficiently co-
immunoprecipitated with the two mutants (Fig. 5D). Thus, US3
interacted with endogenous p65, and kinase activity of US3 was
dispensable for the interaction.

US3 hyperphosphorylates p65 at the site of serine 75. Subse-
quently, we investigated whether p65 was a substrate of US3 pro-
tein kinase. To test this hypothesis, HEK293T cells were trans-
fected with pCMV-p65-Flag alone or with pCMV-US3-Flag,
pCMV-K220M-Flag, or pPCMV-D305A-Flag. As shown in Fig. 6A,
p65-Flag was shown as a slower-migrating form under the expres-
sion of US3-Flag but not K220M-Flag or D305A-Flag, indicating
that p65 was hyperphosphorylated by US3 and the kinase activity
of US3 was indispensable.

US3 usually targets Ser or Thr residues within motifs contain-
ing Argor Lys. In order to identify the hyperphosphorylation sites
of p65 by US3, the plasmids expressing p65-Myc and US3-Flag
were cotransfected into HEK293T cells, and p65-Myc was immu-
noprecipitated by Myc MAD and subjected to SDS-PAGE analysis.
The hyperphosphorylated p65 was cut and subjected to mass spec-
trometry. As shown in Fig. 6B, two potential hyperphosphoryla-
tion sites (S75 and T78) of p65 were identified. Three p65 mutants
(ST/AA-Myc, S75A-Myc, and T78A-Myc) were then constructed
to identify the exact hyperphosphorylation amino acids. As shown
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FIG 4 US3 inhibits the NF-kB signaling pathway at the p65 level. HEK293T cells were cotransfected with NF-kB-Luc, RL-TK, and indicated amount of US3
expression plasmid along with TRADD (A), TRAF2 (B), TAK1 (C), RIP1 (D), NIK (E), IKKa (F), IKKB (G), or p65 (H) expression plasmids. Luciferase activity
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ttest. **, P < 0.01; *, P < 0.05.
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nonspecific mouse monoclonal antibody (IgG). WBs were probed with the indicated Ab. (B) HEK293T cells were transfected with US3-Flag. Twenty-four hours
posttransfection, cells were mock treated or treated with TNF-a and incubated for an additional 6 h, cells were harvested and lysed, and the samples were then
subjected to immunoprecipitation assays using anti-Flag MAb (IP with anti-Flag) or nonspecific mouse monoclonal antibody (IgG). WBs were probed with the
indicated Abs. (C) (Upper panel) HEK293T cells were infected with HSV-1-US3-Flag virus (multiplicity of infection [MOI], 10). Twenty-four hours postinfec-
tion, cells were mock treated or treated with TNF-a and incubated for 6 h. Immunoprecipitation assays were performed by anti-Flag (IP with anti-Flag) and WBs
with anti-p65. (Lower panel) HEK293T cells were infected with WT HSV-1 (MOI = 10). Twenty-four hours postinfection, immunoprecipitation assays were
performed by anti-US3 (IP with anti-US3) and WBs with anti-p65. The reciprocal IP was analyzed by anti-p65 (IP with anti-p65) and anti-US3. (D) HEK293T
cells were transfected with K220M-Flag and D305A-Flag expression plasmids separately. Twenty-four hours posttransfection, cell lysates were immunoprecipi-
tated with anti-Flag, or nonspecific mouse monoclonal antibody (IgG) WBs were probed with anti-p65.

US3 prevents nuclear translocation of p65. Nuclear translo-
cation of p65 is crucial for the transcription of NF-kB. We hypoth-
esized that hyperphosphorylation of p65 by US3 might abrogate
the nuclear trafficking of this NF-kB subunit. In order to address

in Fig. 6C, T78A-Myc was also hyperphosphorylated by US3-Flag
just like as p65-Myc, whereas ST/AA-Myc and S75A-Myc were
not. The data indicated that p65 was hyperphosphorylated by US3
at the site of serine 75.
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FIG 6 US3 hyperphosphorylates p65. (A) HEK293T cells were transfected with pCMV-p65-Flag alone or with pCMV-US3-Flag, pPCMV-K220M-Flag, and
pCMV-D305A-Flag separately. WBs were performed with anti-Flag and anti-B-actin monoclonal antibody. (B) Schematic diagram of the potential hyperphos-
phorylation sites (S75 and T78) of p65. (C) p65 and its three mutants (ST/AA-Myc, S75A-Myc, and T78A-Myc) were cotransfected with or without US3-Flag.

Thirty-six hours posttransfection, cell lysates were subjected to WB analysis.

this hypothesis, immunofluorescence was carried out to investi-
gate whether US3 prevented the nuclear translocation of p65.
HeLa cells were transfected with a US3-Flag plasmid or a control
vector and stimulated with TNF-a for 30 min, followed by immu-
nostaining of p65 and Flag-tagged US3. Although p65 predomi-
nantly located in the cytoplasm in mock-treated cells (Fig. 7, up-
per row), TNF-a treatment resulted in the nuclear translocation
of p65. Ectopic expression of US3 prevented the nuclear translo-
cation of p65 induced by TNF-« (Fig. 7). However, two mutants
of US3 kinase, K220M and D305A, did not block the nuclear
translocation of p65 induced by TNF-a (Fig. 7). These results
demonstrated that the hyperphosphorylation of p65 by US3 was
sufficient to prevent the nuclear accumulation of NF-kB and
thereby to preclude its transcriptional activity.

DISCUSSION

In this study, HSV-1-encoded US3 has been demonstrated to be
able to inhibit TNF-a-stimulated NF-kB signaling pathway.
Given that the innate immune response is the first line of host
antiviral systems, these results indicate that US3 plays an impor-
tant role in immune evasion of the NF-«B signal transduction
pathway. This pathway controls transcription of many immune
molecules required to initiate an immune response to foreign
pathogens, and so disruption of this pathway is likely to suppress
critical immune effector capacity of the host cell.

It was previously reported that HSV-1 infection led to suppres-
sion of NF-kB activity (50-56), which was also described by other
members of the herpesvirus family, including EBV, VZV, and Ka-
posi’s sarcoma-associated herpesvirus (KSHV) (70-72). EBV
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BGLF4 is a member of the conserved herpesvirus kinases, having
been found to phosphorylate several cellular and viral transcrip-
tion factors, modulate their activities, and regulate downstream
events. UXT is an NF-kB coactivator and interacts with NF-kB.
BGLF4 phosphorylates UXT at the Thr3 residue. This modifica-
tion interferes with the interaction between UXT and NF-kB.
Thus, it attenuates NF-kB-mediated repression of the EBV lytic
infection (70). VZV ORF61 is identified as an inhibitor of TNF-
a-mediated activation of NF-«kB within VZV-infected DCs, and
its E3 ubiquitin ligase domain is essential (71). HSV-1 protein
kinase US3 has been previously reported to be a potent inhibitor
of IFN response, serving as one of several strategies used by HSV-1
to interrupt the innate immune system. It has been reported that
removal of US3 increased IRF3 activation and Toll-like receptor 3
(TLR3) and IFN levels in infected monocytic cells (27). Our recent
work has also clarified that the dimerization and nuclear translo-
cation of IRF3 were blocked because of its hyperphosphorylation
by US3 (28). In this study, HSV-1 US3 was demonstrated to block
NF-kB activation and the expression of downstream cytokines.
US3 also hyperphosphorylated p65 at serine 75 and abolished its
nuclear translocation. A recent study showed that US3 inhibited
TLR2-mediated activation of NF-kB through reducing TRAF6
polyubiquitination (73). However, the evidence was not convinc-
ing, as the effect of US3 on p65 was done only by DLR assays and
the activation effect of p65 was very low. It also indicated that US3
may inhibit NF-kB activation via multiple strategies.

HSV-1 US3 is a protein kinase, which is conserved within al-
phaherpesvirus. K220 of HSV-1 US3 is critical for ATP binding,
and D305 is critical for catalytic activity (74). The K220M and
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FIG 7 US3 prevents p65 nuclear translocation. HeLa cells were transfected with control vector, US3-Flag, K220M-Flag, and D305A-Flag expression plasmids.
Twenty-four hours posttransfection, cells were treated with TNF-a or mock treated for 30 min as indicated. Cells were stained with mouse anti-Flag and rabbit
anti-p65 pAb. FITC-conjugated goat anti-rabbit (green) and TRITC-conjugated goat anti-mouse (red) were used as the secondary antibodies. Cell nuclei (blue)
were stained with Hoechst 33258. The images were obtained by fluorescence microscopy using a 40X objective.

D305A mutants were constructed to investigate whether the ki-
nase activity of US3 is necessary for the inhibitory activity against
the NF-kB pathway. And our results show that the mutants could
not block the activity of TNF-a-induced NF-kB promoter and
hyperphosphorylate p65, indicating that the kinase activity was
indispensable for the inhibitory activity.

It was reported that degradation of IkBa and nuclear translo-
cation of NF-kB are not sufficient to promote a maximal NF-kB
transcriptional response. Rather, the NF-kB complex must un-
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dergo additional posttranslational modifications involving site-
specific phosphorylation (75). The p65/RelA subunit of NF-kB is
a principal target for phosphorylation by various kinases, which
function both in the cytoplasm and in the nucleus under differen-
tial induction by various stimuli (reviewed in depth in references
75 and 76). Both the RHD and the transcription activation do-
main (TAD) of p65 contain key sites (serine, threonine, or ty-
rosine that can be phosphorylated by kinases) that are specifically
targeted by these kinases. One of the key phosphorylation events
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involves the action of the catalytic subunit protein kinase A
(PKAc), which modifies the serine 276 residue that is located
within the RHD of p65. This posttranslational modification reg-
ulates both the DNA-binding and oligomerization properties of
NF-kB (77, 78). Phosphorylation of serine 276, however, is not
exclusively mediated through PKAc. Whereas lipopolysaccharide
(LPS) stimulation triggers PKAc action (79, 80), TNF-a stimu-
lates phosphorylation of serine 276 through mitogen- and stress-
activated kinase 1 (MSK1) (81), which enhances NF-kB transcrip-
tional activity. Interestingly, PKAc phosphorylates p65 in the
cytoplasm, whereas MSK1 functions in the nucleus. TNF-« in-
duces phosphorylation of serine 311 within the RHD of p65
through the action of yet another kinase, PKC{, and this modifi-
cation similarly enhances the overall transcriptional response (82,
83). Direct phosphorylation of the NF-kB molecule at multiple
sites has been shown to both positively and negatively regulate
NEF-kB activity. Phosphorylation of NF-kB is mediated by a vari-
ety of kinases (76), which could serve as potential targets for ad-
ditional HSV-mediated modulation of the pathway.

Previous studies indicated that the alphaherpesvirus US3 ki-
nases have minimal consensus phosphorylation sequence, which
was characterized as (R)n-X-(S/T)-Z-Z (where n = 2, X can be
absent or Arg, Ala, Val, Pro, or Ser, and Z can be any amino acid
except proline or an acidic residue) (10, 84). It is also reported that
US3 protein kinases could masquerade as Akt and protein kinase
A and phosphorylate the same substrates as they do (24, 74, 85).
However, more evidence indicated that US3 has more substrates
than originally predicted (16, 24).

In summary, the data presented herein describe the molecular
mechanism of HSV-1 protein kinase US3 to abolish the NF-kB
activation. Our results reveal a novel function for the US3 protein
contained in the virion as an early inhibitor of the NF-«B signaling
pathway. We provide convincing evidence that US3 efficiently in-
hibited p65-mediated transactivation by hyperphosphorylating
P65 at serine 75 and preventing its nuclear translocation. Further-
more, we also demonstrate that the protein kinase activity of US3
is essential for the blockade of NF-kB activation, indicating that it
is the process of phosphorylation that causes this pathway inhibi-
tion. These findings contribute to our understanding of the im-
mune antagonism employed by HSV-1 US3 to dampen host an-
tiviral signaling while potentially having implications for future
development of therapeutic interventions to modulate HSV-1
pathogenesis, vaccine design, and gene therapies.
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