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Summary

The inter-species exchange of metabolites plays a key role in the spatio-temporal dynamics of

microbial communities. This raises the question whether ecosystem-level behavior of structured

communities can be predicted using genome-scale models of metabolism for multiple organisms.

We developed a modeling framework that integrates dynamic flux balance analysis with diffusion

on a lattice, and applied it to engineered consortia. First, we predicted, and experimentally

confirmed, the species-ratio to which a 2-species mutualistic consortium converges, and the

equilibrium composition of a newly engineered 3-member community. We next identified a

specific spatial arrangement of colonies, which gives rise to what we term the “eclipse dilemma”:

does a competitor placed between a colony and its cross-feeding partner benefit or hurt growth of

the original colony? Our experimentally validated finding, that the net outcome is beneficial,

highlights the complex nature of metabolic interactions in microbial communities, while at the

same time demonstrating their predictability.
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Introduction

Although often studied alone in well-mixed flasks, most microbial organisms live in multi-

species, structured, highly dynamic consortia (Denef et al., 2010; Dethlefsen et al., 2007;

Lozupone et al., 2012; Ramette and Tiedje, 2007; Xavier and Foster, 2007). Interactions of

microbes with each other and with the environment play a fundamental role in the evolution

and dynamics of these communities. Many of these interactions are mediated by the uptake

and excretion of small molecules, produced and degraded by the metabolic network encoded

within each organism. In turn, the ensuing spatio-temporal changes of nutrients and

byproducts in the environment continually modify the conditions sensed by individual cells,

causing transient niches and context-dependent inter-species interactions.

Given this complexity, one may ask whether a suitable mathematical modelling framework

could help bridge the gap between metabolic strategies of individual species and ecosystem-

level dynamics. Such a framework would be a powerful instrument for microbial ecology,

with potential impact on research areas as diverse as biogeochemical cycles (Falkowski et

al., 2008), the health-balancing role of the human microbiome (Lozupone et al., 2012;

Turnbaugh et al., 2007), and synthetic ecology (Klitgord and Segrè, 2011; Park et al., 2011;

Shou et al., 2007). Moreover, fundamental questions on the stability (May, 1973; Mougi and

Kondoh, 2012) and diversity (Curtis et al., 2002; Gudelj et al., 2010) of microbial

ecosystems, the evolution of cooperation (Harcombe, 2010; Xavier and Foster, 2007) and

the emergence of multicellularity (Pfeiffer and Bonhoeffer, 2003) lie precisely at the

boundary between the metabolic requirements of individual species and the community-

level implications of shared resources.

The past decade has seen the emergence of several novel experimental systems for

investigating the dynamics of structured microbial consortia. For example, spatial structure

was shown to be critical for maintaining diversity in systems with antagonistic interactions,

ranging from chemical warfare (Kerr et al., 2002) to predator-prey behavior (Balagaddé et

al., 2008), as well as beneficial interactions (Kim et al., 2008). In terms of metabolism, a

variety of novel, engineered mutualisms between co-dependent strains have been developed

(Harcombe, 2010; Hillesland and Stahl, 2010; Shou et al., 2007). These include a

laboratory-evolved costly cooperation between Salmonella enterica Serovar typhimurium

LT2 and an auxotrophic Escherichia coli K12 strain (Harcombe, 2010), which we use as a

starting point in the current work.

While some qualitative results, such as the importance of spatial structure in a two-species

system, are consistent with theory on the evolution of cooperation (Sachs et al., 2004),

broader and more quantitative predictions such as species ratios, or interactions between a

larger number of players are unexplored experimentally and computationally. How

predictable are consortia compositions in spatially structured environments, and how

strongly are they affected by initial species frequencies? Can stable systems be engineered

with more than two species? Can inter-species interactions in synthetic microbial consortia

emerge as a consequence of individual species solving their own metabolic resource

allocation problem?
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From a theoretical perspective, these questions bridge multiple distinct scales, from

individual intracellular reactions, up to the spatial distributions of multiple species and

environmental metabolites (Gudelj et al., 2010; MacLean and Gudelj, 2006). Classical

ordinary differential equation (ODE) models have been shown to recapitulate colony

diameter and height as a function of time (Kamath and Bungay, 1988; Pipe and Grimson,

2008; Pirt, 1967; Rieck et al., 1973). Agent-based models have successfully shown how

colony morphology arises as an emergent property of the behavior of individual cells or

clusters of cells (Ben-Jacob et al., 1998; Kreft et al., 1998, 2001; Xavier et al., 2005).

However, these approaches typically assume simple inter-species interaction rules rather

than computing them based on detailed representations of intracellular biochemical

networks.

In contrast, stoichiometric modeling, a class of systems biology methods with roots in

metabolic engineering, has been shown to provide testable predictions of metabolic activity

at the whole genome scale, with no need for the hundreds of differential equations and

kinetic parameters typical of classical kinetic models. One of the most broadly used

methods, flux balance analysis (FBA) (Orth et al., 2010) assumes steady state and optimality

to predict metabolic rates (fluxes) of all reactions in the cell, including uptake and secretion

fluxes, and the amount of microbial growth (Harcombe et al., 2013; McCloskey et al., 2013;

Segrè et al., 2002). It is important to keep in mind that the simplifications that make FBA

efficient and useful are also among the main reasons for its limitations, including the

incapacity to predict intracellular metabolite concentrations, the reliance on a pre-defined

metabolic objective and the need for prior knowledge of biomass composition. Alternative

uses of stoichiometric constrains (e.g. sampling of the feasible space (Bordel et al., 2010)),

integration with high-throughput data (Becker and Palsson, 2008; Collins et al., 2012) and

economy-inspired theory (Fleming, 2011; De Martino et al., 2012; Reznik et al., 2013;

Schuetz et al., 2012) are among the new directions being sought in order to overcome some

of these limitations.

Recent efforts have shown how FBA can be extended to model metabolite-mediated

interactions between different species in microbial consortia (Klitgord and Segrè, 2011),

e.g., by searching for syntrophic compositions (Stolyar et al., 2007), interaction-inducing

environments (Klitgord and Segrè, 2010), competition/cooperation balances (Freilich et al.,

2011; Wintermute and Silver, 2010), or multi-level optima (Zomorrodi and Maranas, 2012)

in multi-species joint stoichiometric models, or by implementing dynamic flux balance

modeling of cocultures (Khandelwal et al., 2013; Salimi et al., 2010). Some of these

approaches require a priori assumptions on how two species interact, e.g. a tunable ratio of

the biomass production rates (Stolyar et al., 2007), a minimal growth rate for each species

(Klitgord and Segrè, 2010), or different types of joint or multilevel objective functions

(Freilich et al., 2011; Wintermute and Silver, 2010; Zomorrodi and Maranas, 2012). Most

importantly, to our knowledge, these approaches have not been extended to multi-species

communities in a structured environment, although a single-species model has been

previously coupled with reactive transport (Scheibe et al., 2009).

Here we introduce a multi-scale modeling framework that computes ecosystem-level spatio-

temporal dynamics based on detailed intracellular metabolic stoichiometry, without any a
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priori assumption on whether and how different species would interact. Our approach,

named Computation Of Microbial Ecosystems in Time and Space (COMETS), implements a

dynamic FBA algorithm on a lattice, making it possible to track the spatio-temporal

dynamics of multiple microbial species in complex environments with complete genome

scale resolution. We apply COMETS to the study of a previously built E. coli/S. enterica

synthetic consortium (Harcombe, 2010), and to a new three-member consortium that

incorporates Methylobacterium extorquens AM1 into the E. coli/S. enterica system.

Results

From genome-scale to ecosystem-level spatio-temporal models

COMETS uses dynamic flux balance analysis (dFBA) (Mahadevan et al., 2002) to perform

time-dependent metabolic simulations of microbial ecosystems, bridging the gap between

stoichiometric and environmental modeling. Simulations occur on a spatially structured

lattice of interacting metabolic subsystems (“boxes”), providing at the same time insight on

intracellular metabolic fluxes and on ecosystem-level distributions of microbial populations

and nutrients. COMETS incorporates two fundamental steps (Fig. 1 and Methods). The first

step, cellular growth, is modeled as an increase of biomass at different spatial locations,

using a hybrid kinetic-dFBA algorithm. Each box may contain biomass for an arbitrary

number of different species. The second step consists of a finite differences approximation

of the diffusion of extracellular nutrients and byproducts in the environment, and of the

expansion of biomass (see Methods). Simple diffusion simulations in absence of growth

behave as expected (Fig. S1, Related to Fig. 1). We have incorporated multiple species into

COMETS by importing the corresponding stoichiometric models, either from manually

curated reconstructions, or from automated pipelines that construct models from annotated

genomes and highthroughput data, such as Model SEED (Henry et al., 2010). In addition,

both spatially and molecularly complex environments can be designed by the user through

an interactive toolbox (Fig. S2, Related to Fig. 1) and simulation outcomes can be analyzed

through a visualization tool (Fig. S3, Related to Figs. 1 and 4).

COMETS recapitulates E. coli colony growth on different substrates

A key step toward modeling growth of spatially-structured communities is to make sure that

the basic dynamics of colony growth can be well-captured by our computational approach,

with parameter values estimated from the literature (Table 1). As in any FBA model,

COMETS does not require intracellular kinetic parameters. However, in analogy with

previous dFBA formulations, COMETS estimates the upper bounds to metabolite uptake

rates using a saturation curve, described through standard kinetic parameters Vmax and KM.

In the simulations presented below, we assumed these parameters to be the same for all

metabolites. Substrate-specific values can be easily introduced if known (see Methods),

though theoretical considerations based on the diffusion-limited nature of uptake kinetics

suggests limited substrate-to-substrate variation (Berg and Purcell, 1977). The effects of

variations of either universal or substrate-specific uptake kinetics parameters are illustrated

in Fig. S4 (Related to Figs. 1 and 2), along with sensitivity to all free parameters in

COMETS. Moreover, we show that COMETS simulations are invariant relative to small

rescaling of the space and time units (Fig. S5, Related to Figs. 1 and 2).
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As a first benchmark for COMETS we tested its capacity to reproduce the observation that

colonies increase linearly in diameter over time (Cooper et al., 1968; Palumbo et al., 1971;

Pirt, 1967; Wimpenny, 1979). Simulated colonies of E. coli followed this growth pattern

with only small deviations from linearity as result of lattice discreteness (Fig 2A).

Importantly, COMETS accurately predicted the rate of diameter increase on a variety of

carbon sources (Fig 2B) as compared to previously published data by Lewis and Wimpenny

(Lewis and Wimpenny, 1981). These simulations with different carbon sources required

only changes in the initial environmental conditions, with no need for parameter tuning.

Species ratio convergence in a co-dependent, two-species consortium

We next tested the ability of COMETS to predict interactions between members of the E.

coli/S. enterica synthetic consortium mentioned above (Harcombe, 2010). In lactose

medium, Salmonella enterica Serovar typhimurium LT2 relies on carbon byproducts from

an Escherichia coli K12 metB mutant. Reciprocally, this auxotrophic E. coli requires

methionine from its partner in order to grow in minimal medium. Stoichiometric models of

each partner were modified to incorporate known genetic constraints (Fig. 3A). For the E.

coli strain, the metB mutation was incorporated by constraining to zero the flux through the

corresponding reaction (cystathionine γ-synthase). In S. enterica, methionine excretion

requires gain-of-function mutations in metA (homoserine transsuccinylase) (SM Douglas,

WRH, CJM, unpublished). This excretion was modeled as coupled to biomass, so that as

cells grew they excreted observed levels of the amino acid. These genetic alterations created

an obligate mutualistic interaction in silico consistent with that observed in the laboratory;

neither species was able to grow in isolation on lactose minimal media, but growth was

observed when both species were present (Fig 3B).

In order to test whether COMETS could quantitatively capture community level behavior,

we tested its ability to predict the impact of starting conditions on species ratio in our two-

species consortium grown on solid medium (Fig 3C). COMETS predicted that, following a

single 48-hour growth cycle, communities would converge in composition even when initial

frequencies differed by two orders of magnitude (1%-99% E. coli). This convergence was

indeed observed experimentally over 48 hours, in agreement with previous observations in

other model ecosystems (Estrela and Brown, 2013; Shou et al., 2007). More surprisingly,

COMETS also correctly predicted the species ratio to which the communities converged in

the laboratory. COMETS predicted a composition of 79±4% E. coli, which is not

significantly different than the experimentally observed frequency of 78±6% (mean

±standard deviation, p=0.67 with a 2-tailed t-test). As illustrated for example in (Kerner et

al., 2012), predicting species stability and convergence to specific ratios based on simple

kinetic models is not a trivial challenge. Furthermore, previous implementations of

constraint-based metabolic modeling have struggled to predict which pairs of E. coli mutants

would co-exist, let alone their equilibrium ratios (Wintermute and Silver, 2010).

An engineered three-species consortium converges to a stable composition

As described above, one of the strengths of COMETS is its ability to handle arbitrarily

complex ecosystems. We therefore challenged COMETS to predict the behavior of a tri-

partite obligate mutualism. Towards this goal, we experimentally engineered a new synthetic
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consortium, which incorporates M. extorquens AM1 into the previous E. coli/S. enterica

system. This represents a significant advance in complexity relative to obligate consortia

that have been previously engineered (Harcombe, 2010; Shou et al., 2007). M. extorquens is

the best-studied model system for C1 metabolism (Chistoserdova et al., 2009; Vuilleumier et

al., 2009) and has the ability to obtain energy, carbon and nitrogen from methylamine. Here

we used a ΔhprA strain (Marx, 2008) that lacks a key enzyme (hydroxypyruvate reductase)

for assimilating carbon from methylamine. In media with lactose and methylamine, the

ΔhprA M. extorquens strain relies on acetate from E. coli, while providing the other two

species with a source of nitrogen due to dissimilation of methylamine (Fig 4A). To our

knowledge this is the first metabolically-engineered obligate mutualism between three

species (but see (Miller et al., 2010) and (Kim et al., 2008) for systems that were not

metabolically engineered, and (Hernández-Sánchez et al., 2013) for a non-obligate system).

COMETS again made accurate predictions about the obligate nature of species interactions

in the consortium (Fig. 4B). Similarly to the E. coli mutant, a model of the engineered M.

extorquens was created by constraining flux through HprA to zero. COMETS correctly

predicted that no species – nor species pair – was capable of growth in lactose-methylamine

media. Only when all three species were present was sustained growth observed both in the

laboratory and in simulations.

Extending the analysis presented above for the two-species system, we investigated the

ability of COMETS to predict the stability and steady-state community composition in our

novel three-species mutualism. COMETS predicted that the community would converge to

very similar species ratios from different starting conditions (Fig 4C); after 5 growth cycles

each lasting 96 hours, there was no significant difference between species ratios (E. coli p=

0.48, S. enterica p = 0.91, M. extorquens p=0.50 with a 2-tailed t-test). Interestingly,

COMETS predicted that M. extorquens would dominate the community despite having the

lowest maximal growth rate. Experimental observation supported the predicted convergence

of community composition over 5 growth cycles, and the dominance of M. extorquens (see

also Fig. S3, Related to Figs. 1 and 4).

The metabolic eclipse dilemma: benefit of a competitor in spatially-structured mutualism

We used the two-species consortium to investigate the influence of spatial structure on

competition in mutualistic systems. As a first step, we tested the growth of each partner as a

function of increasing distance between them. Consistent with expectations, both the

modeled colonies and the observations of the pair exhibited decreased growth as they were

initiated further apart (Fig. S6, Related to Fig. 5).

As growth of communities will rarely be as simple as pairwise interactions between micro-

colonies, we then asked how additional colonies influence pairwise interactions. When

essential metabolites diffuse from a point source one might expect that colonies have an

“eclipse” effect, casting a resource shadow that reduces the metabolites available to more

distant colonies. Based on this logic, one would expect that the growth rate of a colony

would be reduced if a competitor colony is placed between the colony and a mutualistic

partner (Fig 5A). The extent of negative impact should scale with the rate at which the

intermediate colony removes metabolites from the environment. On the other hand, one
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could argue for an opposite outcome, i.e. that the newly interposed colony, by helping the

mutualistic partner, will ultimately benefit the original colony. Intuition alone cannot

provide an answer to this conundrum, as its solution depends on the balance between the

metabolic rates of the different species, the spatial organization of the colonies, and the

diffusion rates.

We used COMETS to simulate the outcome of this gedanken experiment. COMETS

predicted that a colony of wildtype S. enterica (whose model lacks the imposed methionine

excretion of the mutualistic strain) would rapidly remove carbon from its surroundings and

diminish the growth of a more distant colony of mutualistic S. enterica (Fig 5B). However,

if the intermediate colony were another mutualistic S. enterica, then, based on COMETS,

the growth of the distal colony would end up being larger than in the absence of an

interfering colony. Though this effect is predicted to be time dependent, it holds over a

substantial temporal window (Fig 5B).

We then tested the computational predictions experimentally, and found that after 10 days a

colony of S. enterica eclipsed by a methionine-excreting competitor produced more biomass

than in the absence of a competitor (Fig 5C, p=0.02 with a 2-tailed t-test). The intermediate

colony increased the growth and excretion of a mutualistic partner, and this amplifying

effect outweighed the influence of competition for carbon. In addition to correctly predicting

these qualitative behaviors, COMETS also predicted the ratio of distal colony biomasses in

the three scenarios (Fig 5C). The difference in the timing at which these ratios were

observed (experiment, 240 hours; model, 110 hours) may be partially ascribed to the fact

that COMETS does not take into account lag time nor changes in diffusion due to plate

drying over this long period.

Thus, based on both the model and the experiment, the metabolic eclipse has the non-

intuitive outcome of benefiting the colony that is being eclipsed. Additional insight on the

details of this phenomenon would require experimental measurements of metabolite

concentrations at different points in space and time, e.g. using imaging mass spectrometry

(Louie et al., 2013; Watrous and Dorrestein, 2011). While this is beyond the scope of the

current work, we can use COMETS to provide some preliminary theoretical insight, by

taking advantage of its capacity to record simulated fluxes and metabolites at any given time

and location for all organisms. This is best illustrated in the heatmaps of Fig 6, which

display snapshots of key intracellular transport fluxes (for acetate, methionine and oxygen),

and of the corresponding environmental metabolite concentrations, across different

organisms, spatial locations and time points. The maps provided putative mechanistic insight

into how heterogeneity in metabolic phenotypes determined local community composition

and function, ultimately driving ecosystem-level dynamics. For example, is it possible to see

how acetate uptake/secretion rates diverge over time, matched by methionine fluxes in the

opposite directions, and rising levels of oxygen consumption. Helpful insight on the eclipse

dilemma can be obtained by further elaboration of the computational data illustrated in Fig.

6. In particular, by using the flux values across the different colonies and time points, we

were able to determine that the distal S. enterica colony took up a lower percentage - but a

greater amount - of the acetate excreted by its partner when a competitor was present (Fig

5D).
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Discussion

Our results demonstrate that inter-species interactions and microbial community dynamics

can emerge as the consequence of individual species locally optimizing intracellular

resource allocation. We have used synthetic two- and three-species consortia whose growth

depends upon metabolic exchange to experimentally test the predictions of a computational

framework that is based entirely on this individual optimality postulate. This approach

requires very few free parameters and no a priori assumptions on whether or how species

would interact. One notable exception is the need to impose that S. enterica secretes

methionine as it grows. This requirement, not unlike other flux constraints added in FBA

models to match empirical knowledge (such as the maintenance flux), is a consequence of

the fact that the specific strain used in the experiment has evolved this secretion capacity as

a new trait. Such a trait could not possibly be captured by the standard S. enterica FBA

model. This current limitation could be addressed by adding in COMETS the capacity for

organisms to evolve, i.e. undergo mutations (e.g. in the form of random changes in

constraints) and selection (competition between newly emerged variants).

Data from both two- and three-species consortia confirmed predictions that they would

repeatedly converge to a steady-state composition even from different starting conditions.

The convergence of the two-species consortium is similar to observations with auxotrophic

yeast (Shou et al., 2007); our results indicate that this robust behavior extend to the three-

species consortium. Here there was a potential tension between mutualistic interactions and

direct competition for limiting nutrients, such as S. enterica and M. extorquens competing

for acetate, and E. coli and S. enterica competing for ammonia. Particularly surprising was

the accuracy of the prediction that the three-species consortium would be dominated by M.

extorquens – the strain with the slowest maximal growth rate. Whereas the potentially rapid

E. coli and S. enterica faced dual limitations (methionine and N or acetate and N,

respectively), M. extorquens could access N and energy from methylamine, and the limiting

acetate was only required for assimilation. These results are noteworthy in light of the

exciting possible opportunities of using synthetic ecology to design microbial consortia for

biomedical and metabolic engineering applications. For this goal to come to fruition it is

critical to be able to predict how synthetic communities behave through time, even in

heterogeneous environments, such as the lining of a human gut, or the architecture of a leaf.

We demonstrated here that the dynamics are repeatable not only within replicates, but

between treatments with different starting conditions.

Our experiment on the metabolic eclipse provided a specific, subtle example of COMETS

arbitrating between the positive and negative effects that arise from the spatial organization

of colonies. That proximity of a conspecific competitor could be an advantage due to the

stimulation of a shared mutualistic partner highlights the utility and importance of spatially-

explicit experiments when investigating the nature of interactions in microbial communities.

More broadly, the balance between positive and negative effects that arise from local

interactions determines changes in community properties such as composition and function,

and has important implications for the evolutionary dynamics of microbial systems. For

example, whether cooperation is selected in structured environments critically depends not

only on the qualitative existence of benefits and costs, but on the quantitative balance
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between these interactions (Bull and Harcombe, 2009). COMETS has the capacity to

evaluate the impact of conflicting types of interactions. For example, the observed

dichotomy between fractions and amounts of exchanged nutrients between different species

(Fig. 5D) may provide a useful starting point for studying the complexity of cross-feeding

interactions in natural ecosystems. Moreover, while in this work we focus on inter-species

interactions, COMETS can be used to study phenotypic diversity and metabolic

heterogeneity within individual colonies. The 3D version of COMETS (under development)

will enhance this type of analysis, as it will explicitly account for changes in diffusivity for

different molecules (including oxygen) through the colony itself.

The prominent role of optimization in flux balance in general, and in COMETS in particular,

deserves further reflection. In COMETS, each organism operates based on its own objective

(maximization of biomass, in the current work) given the surrounding nutrient availability.

Note that the same species in different spatial locations (in the same in silico experiment)

may utilize resources differently (e.g. oxygen-limited biomass in one location will have

different physiology than carbon-limited biomass in another). This is an important

difference from approaches that optimize the interests of the group, and is a central

component of COMETS’ ability to accurately predict species ratios. However, even the

assumption that evolution has acted on a population to optimize a simple objective has been

challenged by new data and analyses (Harcombe et al., 2013; Schuetz et al., 2012). Indeed it

is unlikely that any single objective function could faithfully represent the possible spectrum

of metabolic strategies across many different conditions. Future work could explore how

COMETS predictions change upon implementing alternative conditiondependent objective

functions. Such objective functions could be linear or quadratic (Segrè et al., 2002), and

could include constraints associated with genetic regulation (Becker and Palsson, 2008;

Collins et al., 2012).

Future elaborations of COMETS can be envisioned to incorporate additional aspects of

microbial physiology that play an important role in microbial ecosystems, such as

chemotaxis, quorum sensing, and antibiotic warfare. For example, chemotaxis could be

modeled using non-isotropic diffusion, as a function of specific metabolite gradients. Toxins

or antibiotics could be modeled as additional diffusible molecules that affect the death rate

of specific organisms. The fact that COMETS performed so well despite lacking these

important components is likely a consequence of our use of communities designed to

strongly rely on metabolic-based interactions. At the same time, metabolism plays a

fundamental role in many microbial systems, and it will be interesting to use COMETS as a

null model to explore whether metabolic interactions are sufficient to explain ecosystem

dynamics. Since no preliminary assumption needs to be made about which nutrients may

mediate an interaction, COMETS can be extended to arbitrarily complex metabolic

interdependencies. For example, as shown here, extending a consortium from two-way to

three-way requires no additional assumptions or effort, other than modifying the initial

conditions. Along the same line, COMETS can be extended to any number of species

(including genetically modified strains), while increasing at most linearly in computational

complexity.

Harcombe et al. Page 9

Cell Rep. Author manuscript; available in PMC 2014 July 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



The increasing flow of metagenomic sequencing data provides top-down observational

insight into the taxonomic and functional dynamics of microbial communities in different

environments. Our work shows that there is a complementary, mechanistic, bottom-up way

of studying how ecosystem dynamics may be ultimately understood in terms of its

constituents’ genomes. This approach is directly amenable to experimental testing, and

paves the way for new computationally-driven directions in synthetic ecology. Despite the

fact that our current work has been focused on small engineered communities, the concepts

and algorithms we developed should be applicable and relevant to natural microbial

consortia as well.

Methods

COMETS variables

COMETS simulates the biomass and metabolite dynamics of multiple microbial species in

physical space. Physical space (in 2D) is discretized into what could be thought of as an N

by M grid of “boxes” whose location is defined by a pair of coordinates (x,y), with x=1,…,N

and y=1,…,M. Each box corresponds to a square of size L by L, where L is the minimal

length scale, or the spatial resolution of COMETS (see Supplemental Experimental

Procedures).

Each box can contain different microbial species and extracellular metabolites. Microbial

species’ abundances are described as the amounts of the corresponding biomass in each box.

We denote with Bα(x,y) the amount (in g dry cell weight) of biomass of species α present in a

box at position (x,y), and with Qm
(x,y) the amount (in mmoles) of metabolite m present in a

box at position (x,y). Note that both biomass and metabolite abundances are time dependent

variables, i.e. Qm
(x,y)=Qm

(x,y)(t) and Bα(x,y)=Bα(x,y)(t). For each metabolite in each box we

can define a concentration Cm
(x,y)=Qm

(x,y)/V in mmoles/ml.

Biomass in each box can increase due to cellular growth, or decrease due to microbial death.

In addition, upon growth, biomass can expand from a given box to a neighboring one, a

process that we currently model as slow diffusion. Metabolite levels in each box can change

due to secretion or uptake by the microbial biomass present in the same box, or due to

diffusion in/from neighboring boxes. The details of how biomass and metabolite levels

change are described next.

COMETS biomass dynamics

The amount of biomass produced by a given population of microbes per unit time is

estimated based on the nutrients available in the environment, and on the capacity of the

organism’s metabolism to transform such nutrients into biomass. Towards this goal, we

employ a pseudo-dynamic version of FBA known as dynamic FBA, or dFBA (Mahadevan

et al., 2002; Orth et al., 2010).

Following a standard notation, we call Sα the stoichiometric matrix of a species α. Matrix

element Sαi,j denotes the number of molecules of intracellular metabolite i that participate in

reaction j (positive if metabolite i is a product, negative if it is a reactant). Each reaction is

Harcombe et al. Page 10

Cell Rep. Author manuscript; available in PMC 2014 July 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



associated with a flux vαj (measured in mmol/(gDW*h), giving rise to a vector vα. The basic

Linear Programming problem of FBA (for species α) can be written as follows:

Eq. 1

where Z defines the objective function, taken to be by default maximization of biomass

production (see Discussion). The vectors LBα and UBα correspond to the lower and upper

bounds to all fluxes respectively. As detailed below, the dynamic calculation of these

bounds is an important aspect of COMETS.

In the dFBA formulation of COMETS, each step, for each species, consists of two main

processes:

i. Calculation of upper bounds for uptake rates In line with previous FBA

computations, exchange fluxes balance flow in and out of each model (see (Orth et

al., 2010) for additional discussion). What is unique to the dFBA formulation of

COMETS is the implementation of additional environment-dependent constraints

on these uptake/secretion fluxes. Upper bounds on uptake fluxes for the dFBA

calculation are estimated based on a concentration-dependent saturating function,

in analogy with Michaelis-Menten kinetics (Feng et al., 2012). Given an

environmental concentration Cm of m (in a given box), the upper bound to um is

given by the following saturation curve:

Eq. 2

where n is a Hill coefficient (currently set to 1),  is the maximal rate, and

 is a binding constant.

ii. Solution of FBA problem and update of biomass and extracellular metabolite levels

Upon setting all upper bounds based on the dynamically changing environmental

concentrations, an FBA problem is solved for each species in each box, as

described in Eq. 1. Next, the abundance of biomass (for all species) and

environmental metabolites are updated in each box, according to the following

discrete update rules:

where  is the growth rate of the corresponding species (in that specific box,

(x,y)), and  is the rate of uptake/secretion of metabolite m by species α.

Thus, starting with a user-defined initial condition, a dFBA time step is performed on each

box in the grid. Each box is updated independently. If there are multiple species present in a

single box, they compete for media and space (i.e. a preset total carrying capacity per box).

In this case, the order in which FBA is done is randomized among the species in each box.
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In addition to biomass increase due to cellular growth, at each time cycle COMETS

evaluates the extent of biomass reduction, due to dilution or cell death.

Diffusion

Diffusion steps are alternated with growth steps, predicting how biomass and extracellular

metabolites propagate across the lattice. COMETS numerically computes approximate

solutions to the standard two-dimensional diffusion equation on a 2D lattice, by using an

alternating direction implicit (ADI) scheme with a central difference formulation (Peaceman

and Rachford, Jr., 1955) as used in similar individual-based models (Chung et al., 2010;

Gerlee and Anderson, 2008) (see Figure S1). This diffusion step is applied to biomass and

media with substantially different diffusion coefficients. If the different species in the model

are not allowed to exist in the same box (an option set by the user), then they undergo

diffusion in random order; all boxes occupied by other species are treated as Neumann

boundaries. Diffusion is applied separately to each medium component. While metabolite-

specific diffusion constants may be introduced if known, here we use the same value for all

metabolites. Some boxes may represent physical barriers, which could be used to model

different environmental topologies (e.g Petri dish or a microfluidic device).

COMETS download

COMETS executables, code, instructions and examples can be downloaded at http://

www.bu.edu/segrelab/comets (see also Fig. S2, Related to Fig. 1).

In silico experiments

We tested the predictive power of COMETS with metabolic models of E. coli (iJO_1366)

(Orth et al., 2011), S. enterica (iRR_1083) (Raghunathan et al., 2009) and M. extorquens

AM1 (Klitgord and Segrè, 2010). Standard FBA models were converted to COMETS format

with the script provided on the COMETS website. Mutant E. coli and M. extorquens models

were constructed by constraining flux through knocked out reactions to zero. A mutant S.

enterica model was constructed that excreted methionine at a rate consistent with empirical

observations. To achieve this we added on the right side of the growth reaction 0.5

mmol/gDW of excreted extracellular methionine, balanced by an equal amount of

intracellular methionine consumed (at the left side of the reaction equation). A ΔhprA M.

extorquens model was constructed by constraining flux through the knocked out reaction to

zero.

In silico environments were consistent with carbon limited minimal media (Table S1).

Square lattices were constructed with individual boxes either 0.02 (Figure 2) or 0.05 cm a

side (Figures 3–6). The amount of carbon under each box was calculated based on standard

25 ml plates (for example 5g/L glucose media was implemented as 0.0088 mmol/cm2).

Oxygen depletion has been observed inside colonies (Peters et al., 1987; Wimpenny and

Coombs, 1983) so oxygen concentrations were constrained to 0.25 mmol/cm2. Trace metals

and other minor components of media were provided at a concentration of 1000 mmol/box

so that they were not limiting.
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Simulations were executed with parameters based on published values (see also Table 1).

Metabolite diffusion was set to 5×10−6 cm2/sec in agreement with sugar diffusion in

(Stewart, 2003). Biomass diffusion was set to 3×10−9 cm2/sec for most simulations based on

(Korolev et al., 2011). The colony expansion simulations were run with a biomass diffusion

of 3×10−10 cm2/sec because they were carried out on 1.5% agar plates rather than the 0.8%

agarose used in all other experiments. Michaelis-Menten parameters were set to canonical

values of Km = 0.01 mM and Vmax= 10 mmol g−1 hr−1 for all metabolites, well within the

range of observed values (Gosset, 2005). An upper bound on biomass per box on the lattice

was set based on the observation that E. coli colonies do not exceed a height of

approximately 0.2 mm (Lewis and Wimpenny, 1981). Cell death rate was set to 1% per time

step (Saint-Ruf et al., 2004). The time step for all simulations was 0.1 hr.

Strains used experimentally

The experimental data we collected involved strains of E. coli K-12, S. enterica LT2 and M.

extorquens AM1. The E. coli was an isolate from the Keio collection (ΔmetB CGSC# 10824,

(Baba et al., 2006), erroneously referred to as ΔmetA in (Harcombe, 2010)) with the lac

operon replaced via conjugation with E. coli HfrH PO1 relA1 thi-1 spoT supQ80

nad57::Tn10. The methionine excreting S. enterica LT2 mutant was created through a

combination of engineering and selection (Harcombe 2010). The ΔhprA M. extorquens was

created previously (Marx, 2008).

Colony expansion comparisons

The E. coli colony growth dynamics were compared to results from (Lewis and Wimpenny,

1981). They made minimal media plates with 15 g/L bacto-agar and 0.5% (w/v) of glucose,

lactate or acetate. Plates were inoculated with a glass needle technique, incubated at 37 °C

and measured microscopically. Average profiles were determined and used to calculate the

radial growth rate. This data was compared against COMETS, by simulating growth of a

colony on each of the carbon sources. Colonies were initiated with 3×10−7 g biomass in the

center of a 50x50 lattice with a box width of 0.02 cm. The diameter at various time points

was based on the number of boxes with more than 10−7 g biomass/box along a horizontal

line through the center of the colony.

Two-Species Consortium

The two-species ratio tests involved mixed cultures grown as a lawn on petri dishes or in

simulations. Experimentally, E. coli and S. enterica were grown overnight in permissive

media and then mixed at a ratio of 1:99 and 99:1. Five µl of these mixtures were spread on 5

mm plates of lactose Hypho minimal media (2.92 mM lactose, 7.26 mM K2HPO4, 0.88 mM

NaH2PO4, 1.89 mM (NH4)2SO4, 0.41 mM MgSO4, 1 mL of a metal mix based on (Delaney

et al., 2013) (recipe in Table S2). The plates were allowed to grow for 2 days at 37 °C. At

the end of this time, CFU were determined by washing and scraping plates with 720 μL of

minimal media, and then spreading dilutions on LB plates. On LB both E. coli and S.

enterica can grow independently, and X-gal (5-bromo-4-chloro-3-indolyl-β-D-

galactopyranoside) was included in the plates so that blue E. coli colonies could be

distinguished from white S. enterica colonies. Comparison to COMETS was carried out by
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randomly distributing 100 boxes in the relevant species ratios each with 3×10−7 biomass

across a 25×25 lattice (individual box width=0.05 cm). Cell overlap was allowed and the

total biomass of each type was determined after 48 hours of simulated growth. Three

replicate simulations were carried out for each treatment.

The impact of space and orientation on the consortium involved detailed placement of cells.

Wet lab experiments were carried out with overnight cultures of E. coli and S. enterica that

were washed and concentrated to ~109 cells/mL. Cells were added to wells in a 384 well

plate in the desired layout. A 384-pin head was then used to stamp the cells onto a petri dish

so that E. coli was inoculated 10 mm from focal S. enterica, and when relevant intermediate

S. enterica was exactly half way between. Different treatments were separated by 30 mm.

These plates were grown at 37 °C with high humidity for 10 days. The biomass produced in

the eclipse experiment was assayed by cutting colonies out of the plate, breaking up the

agar, vortexing extensively, plating on permissive LB plates and counting colonies.

COMETS comparisons were carried out in a 50×140 lattice of 0.05 cm boxes. Boxes were

inoculated with 2×10−6 g of biomass at the appropriate distances.

Three-species consortium

Experiments with the three-species consortium involved very similar protocols to those with

the two-species consortium. Each species was grown in permissive media and then the

species were combined volumetrically at ratios of 1:100:100 or 100:1:100 E. coli:S.

enterica:M. extorquens. 10 μL of one of the mixtures was added to each of three replicate

methylamine-lactose minimal medium plates ((NH4)2SO4 replaced with 1.9 mM Na2SO4,

and 2.51 mM methylamine·HCl added). After 96 hrs incubation the surface of the plates was

scrubbed with 720 μL of minimal media. An aliquot of 5 μL of the resultant suspension was

then transferred to a fresh plate, spread and incubated for 96 hrs. A total of five transfers

were completed and at each transfer the ratios of the three species were determined from

their CFU concentrations.

This process was emulated in COMETS by randomly distributing 100 boxes in the relevant

species ratios each with 3×10−7 biomass across a 15x15 lattice (individual box width=0.05

cm). The initial ratios based on CFU data were 1:8:92 and 16:1:83 E. coli:S. enterica:M.

extorquens. The simulations were carried out for 96 hours at which point the species ratios

were calculated. A new lattice was then randomly populated with the initial amount of

biomass in the new ratios to mimic the laboratory transfer regime. Three replicate

simulations were carried out for each of the treatments.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

Microbial community dynamics can be inferred from intracellular metabolism

Metabolic interactions drive synthetic microbial consortia to predictable equilibria

The “metabolic eclipse”: how spatial organization shapes the dynamics of mutualism

Computation of Microbial Ecosystems in Time and Space (COMETS): a flexible tool
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Figure 1.
A schematic representation of the key steps of COMETS simulations, from the level of

individual boxes (top) to a whole lattice (bottom). Within each box, dFBA is solved for each

species, with uptake set by Michaelis-Menten equations (top right). These calculations

amount to piecewise linear approximations of the growth and environmental metabolites as

a function of time. Classical discretization of the diffusion equation gives local rules for

updating biomass and nutrients in each box (middle). The ensuing algorithm computes

ecosystem dynamics (bottom) as a function of intracellular metabolism of individual

species.
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Figure 2.
COMETS predictions of E. coli colony growth on various carbon sources. A) COMETS

predicts that colony diameter increases linearly on glucose (diamonds), lactate (squares) and

acetate (triangles). B) COMETS predictions of the rate of colony expansion (white bars)

compared to the values reported by Wimpenny (black bars, no error estimate available).

Predicted colony expansion on glucose was 16.7% slower than observed, while predicted

growth on lactate and acetate deviated by 2.7% and 2.2% respectively.
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Figure 3.
COMETS predictions of growth for a two-species synthetic consortium. A) The consortium

consists of a mutant S. enterica that provides methionine to an auxotrophic E. coli, obtaining

carbon byproducts in return. B) COMETS correctly predicts that co-culture is necessary for

growth on lactose minimal medium. C) Predicted and observed species frequencies before

and after 48 hours of growth. Blue bars correspond to E. coli, red bars to S. enterica.

COMETS ratios (left) represent biomass; observed values (right) are based on CFU. Error

bars are standard deviations.
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Figure 4.
COMETS predictions of growth for a novel 3-species consortium. A) A mutant M.

extorquens AM1 was added to the 2-species system. The M. extorquens lacks hprA, so it

relies on carbon from E. coli, while providing the other two species with a source of

nitrogen. B) COMETS correctly predicts that all three members of the consortium are

necessary for growth on lactose/methylamine minimal medium. C) Species frequencies

before and after 5 transfers. Blue bars correspond to E. coli, red bars to S. enterica and green

bars to M. extorquens. COMETS ratios (left) represent biomass; observed values (right) are

based on CFU. Error bars are standard deviations.
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Figure 5.
The impact of competition on focal colony growth. A) Naïve expectation that growth of

focal S. enterica colonies (red circles next to numerals) would be reduced by placement of a

competitor between the focal S. enterica and its obligate mutualistic partner E. coli (blue

circles). Relative anticipated growth is represented by grey arrows, methionine diffusing

from S. enterica colonies is displayed in red, carbon byproducts diffusing from E. coli are

displayed in blue. B) COMETS predicted that wildtype S. enterica between E. coli and the

focal colony would reduce its growth (line ii) as compared to the no competitor scenario

(line i). However, if a second colony of the same methionine-excreting S. enterica is placed

in the middle, it increases growth of the distal colony (line iii). C) Growth of the distal

colonies standardized to scenario i for the case with no competitor (i), wildtype competitor

(ii), and mutualistic competitor (iii). COMETS ratios (left three bars) represent biomass;

experimental values (right three bars) are based on CFU. Error bars are standard deviations.

D) Acetate uptake of distal colonies i and iii in COMETS. The fraction of acetate is the total

uptake of the distal colony divided by the total acetate excretion of its partner. The amount

of acetate is the total moles taken up by each colony during the first 89 hours (i.e. before any

E. coli start to utilize acetate).
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Figure 6.
Heatmaps of the spatial distributions of exchange fluxes (left-side, 3 by 5 set of heatmaps),

metabolite concentrations (right-side, copper-toned, 3 by 5 set of heatmaps) and growth

rates (top-right, gray-shaded heatmaps) are shown at different time points during the

“metabolic eclipse” simulation described in Fig. 5. The legend in the top-left corner shows

the relative positions of the simulated colonies (E = E. coli; S = S. enterica). Fluxes (left) are

scaled from excretion (blue) to uptake (red) for each lattice box at each of five time points

for three key metabolites (acetate, methionine and oxygen). Metabolite concentrations scale

from low (dark) to high (bright). Fluxes are normalized across all time points; metabolites

are normalized within each time point (to make early low concentration levels visible).
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