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A B S T R A C T

Background and Objectives: Whole-genome sequencing is becoming popular as a tool for understand-

ing outbreaks of communicable diseases, with phylogenetic trees being used to identify individual

transmission events or to characterize outbreak-level overall transmission dynamics. Existing methods

to infer transmission dynamics from sequence data rely on well-characterized infectious periods, epi-

demiological and clinical metadata which may not always be available, and typically require computa-

tionally intensive analysis focusing on the branch lengths in phylogenetic trees. We sought to determine

whether the topological structures of phylogenetic trees contain signatures of the transmission patterns

underlying an outbreak.

Methodology: We use simulated outbreaks to train and then test computational classifiers. We test the

method on data from two real-world outbreaks.

Results: We show that different transmission patterns result in quantitatively different phylogenetic tree

shapes. We describe topological features that summarize a phylogeny’s structure and find that com-

putational classifiers based on these are capable of predicting an outbreak’s transmission dynamics.

The method is robust to variations in the transmission parameters and network types, and recapitulates

known epidemiology of previously characterized real-world outbreaks.

Conclusions and implications: There are simple structural properties of phylogenetic trees which, when

combined, can distinguish communicable disease outbreaks with a super-spreader, homogeneous

transmission and chains of transmission. This is possible using genome data alone, and can be done

during an outbreak. We discuss the implications for management of outbreaks.

K E Y W O R D S : evolutionary epidemiology; genomic epidemiology; computational modelling; machine

learning
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INTRODUCTION

Whole-genome sequence data contain rich informa-

tion about a pathogen population from which sev-

eral evolutionary parameters and events of interest

can be inferred. When the population in question

comprises pathogen isolates drawn from an out-

break or epidemic of an infectious disease, these

inferences may be of epidemiological importance,

able to provide actionable insights into disease

transmission. Indeed, since 2010, several groups

have demonstrated the utility of genome data for

revealing pathogen transmission dynamics and

identifying individual transmission events in out-

breaks [1–9], with the resulting data now being used

to inform public health’s outbreak management and

prevention strategies. To date, these reconstruc-

tions have relied heavily on interpreting genomic

data in the context of available epidemiological data,

drawing conclusions about transmission events

only when they are supported by both sequence data

and plausible epidemiological linkages collected

through field investigation and patient interviews.

Given the rapidly growing interest in this new field

of genomic epidemiology, several recent studies

have explored whether transmission events and pat-

terns can be deduced from genomic data alone.

Phylogenies derived from whole-genome sequence

data can be compared with theoretical models

describing how a tree should look under particular

processes; this has been done for viral sequence

data over the past several decades [10,11]. For

example, predicted branch lengths from sequences

modelled using birth–death processes can be

compared with branch lengths in trees inferred from

viral sequence data to explore transmission patterns

[1,12–14]. The field of linking properties of pathogen

phylogenies to underlying dynamics is termed

‘phylodynamics’, coined by Grenfell et al. [15].

Tools from coalescent theory have been adapted to

pathogen transmission; where coalescent theory

describes probability distributions on trees under a

given model for the population size, epidemiological

versions take into account the relationship between

pathogen prevalence (population size) as well as

incidence [16,17]. These approaches are powerful

but are computationally intensive and have not

explicitly focused on another potential source of in-

formation within a phylogeny—‘tree shape’.

The number of different phylogenetic tree shapes

on n leaves is a combinatorially exploding function

of n (there are ð2n� 3Þð2n� 5Þð2n� 7Þ:::ð5Þð3Þð1Þ

rooted labelled phylogenetic trees, or �10184 trees

on 100 tips, compared with �1080 atoms in the

universe). For the increasingly large outbreak gen-

ome datasets being obtained and analysed (390 [3]

616 [18] and recently 1000 [19] bacterial genomes),

the numbers of possible tree shapes are effectively

infinite. In the homogeneous birth (Yule) model, the

distribution of labelled histories (tree shape to-

gether with the ordering of internal nodes in time)

is uniform, so that there is a close relationship be-

tween the branching times and the tree shapes [20].

Perhaps for this reason, tree shapes have not

typically been seen as very informative. However,

for bacterial pathogens, particularly those with long

durations of carriage and variable infectious rates,

there is variability in the infection process which is

not captured by homogeneous models. This motiv-

ates asking the question: does tree shape carry epi-

demiological information? Recent work indicates

that tree shape reveals aspects of the evolution of

viral pathogens [13,21–24], but to date, we do not

have methods to exploit tree shape in an analysis of

pathogen transmission dynamics, built upon

simulated data and validated using real-world out-

break data.

Host contact network structure is one of the most

profound influences on the dynamics of an outbreak

or epidemic, and outbreak management and control

strategies depend heavily upon the type of trans-

mission patterns driving an outbreak. It is reason-

able to expect that pathogen genomes spreading

over different contact network structures—chains,

homogenous networks, or networks containing

super-spreaders, as illustrated in Fig. 1—would

accrue mutations in different patterns, leading to

observably different phylogenetic tree shapes. We

therefore characterized the structural features of

phylogenetic trees arising from the simulated evolu-

tion of a bacterial genome as it spreads over multiple

types of contact network. We found simple topo-

logical properties of phylogenetic trees that, when

combined, can be used to classify trees according

to whether the underlying process is chain-like,

homogenous, or super-spreading, demonstrating

that phylogenetic tree structure can reveal transmis-

sion dynamics. We use these properties as the basis

for a computational classifier, which we then use to

classify real-world outbreaks. We find that the com-

putational predictions of each outbreak’s overall

transmission dynamics are consistent with known

epidemiology.
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MATERIALS AND METHODS

Transmission model

We simulated disease transmission networks with

three different underlying transmission patterns:

homogeneous transmission, transmission with a

super-spreader and chains of transmission. Each

simulation started with a single infectious host

who infects a random number of secondary cases

over his or her infectious period; each secondary

case infects others, and so on, until the desired

maximum number of cases is reached. The models

share two key parameters: a transmission rate � and

a duration of infection parameter D. Our baseline

values are b ¼ 0:43 per month and D = 3 months,

reflecting a basic reproduction number of 1.3. This is

also the mean number of secondary infections for

each infectious case. We do not consider depletion

of susceptible contacts over time (saturation) as we

model small growing outbreaks at or near the

beginning of their spread in a community, and our

data (for tuberculosis (TB) in a developed setting)

suit this assumption.

The homogeneous transmission model assigns

each infectious host a number of secondary infec-

tions drawn from a Poisson distribution with param-

eter R0 ¼ bD. New infections are seeded uniformly

in time over the host’s infectious period. In the

super-spreader model, one host (at random in

the first five hosts) seeds 7–24 new infections (uni-

formly at random), and all other hosts are as in

the homogeneous transmission model. In the

chain-of-transmission model, almost all hosts infect

precisely one other individual. However, 2 (with

probability 2/3) or 3 (with probability 1/3) of the

hosts infect two other individuals, so that the

transmission tree consists of several chains of

transmission randomly joined together.

Durations of infection are drawn from a � dis-

tribution with a shape parameter of 1.5 and a

scale parameter of D=1:5. To reflect transmission

of a chronically infecting pathogen, such as

Mycobacterium tuberculosis, cases were infectious

for between 2 and 14 months with an average

specified by D. The mean infectious period was 4.3

months; a histogram is shown in supplementary Fig.

S2. We simulated 1000 outbreaks containing a

super-spreader, 1000 with homogeneous transmis-

sion and 1000 chain-like outbreaks. These used a

fixed parameter set; we also performed a sensitivity

analysis using alternative parameters. To ensure

that the size of the outbreak did not affect the tree

shape and classification, we simulated outbreaks

with 32 hosts—a similar size as the real-world out-

breaks we later investigated. We consider the effects

of phylogenetic noise in the Supplementary

Material.

Genealogies and phylogenies from the process

We extracted the true genealogical relationships as a

full rooted binary tree (a ‘phylogeny’), with tips cor-

responding to hosts and internal nodes correspond-

ing to transmission events among the hosts, as

follows. The outbreak simulations create lists of

who infected whom and at what time. Each host

also has a recovery time. We sort the times of all of

the infection events, and proceed in reverse order.
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Figure 1. Schematic illustration of different kinds of transmission networks. The index case is marked in grey.
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The last infection event must correspond to a

‘cherry’, i.e. it must have two tip descendants, one

corresponding to the infecting host and one to the

infectee. For all other infection events proceeding in

reverse order through the transmission, we create an

internal node, and determine its descendants by

determining whether the infector and the infectee

went on to infect anyone else subsequently. If not,

then the node’s descendants are the infector and

infectee at the time of sampling. If so, then the des-

cendant represents the infector or infectee at the

time of their next transmission. The tree is rooted

at the first infection event. Branch lengths corres-

pond to the times between infection events or, for

tips, the time between the infection event and the

time of sampling. This approach uses the simplify-

ing assumption that branching points in the patho-

gen genealogy correspond to transmission events,

as is done in almost all phylodynamic methods (see

[1,17,24]) However, where there is in-host pathogen

diversity transmission events do not correspond to

phylogenetic branching points [7,9]. We comment

on the constraints tree shape places on the space

of possible transmission trees consistent with a

phylogeny in [9].

In the main text, we use the true genealogical

relationships among the hosts in our outbreak, ex-

tracted from the simulations—this reduces phylo-

genetic noise and it allows us to compare the

resulting trees to 1000 samples of the BEAST pos-

terior timed phylogenies derived from whole-

genome sequence (WGS) data from the two real-

world outbreaks. To determine how sensitive our

approach is to phylogenetic noise, we also classified

the outbreaks using neighbour-joining phylogenies

derived from simulated gene sequences

(Supplementary Information).

Topological summaries of trees

Eleven summary metrics were used to summarize the

topology of the trees (see supplementary Table S1).

(1) Imbalance. The Colless imbalance [25] is

defined as 2
ðn�1Þðn�2Þ

Pn�1
i¼1 jTri � Tlij, where n

is the number of tips and Tri and Tli are the

number of tips descending from the left and

right sides at internal node i. It is a

normalized measure of the asymmetry of a

rooted full binary tree, with a completely

asymmetric tree having imbalance of 1 and

a symmetric tree having an imbalance of 0

[26]. The Sackin imbalance [27] is the average

length of the paths from the leaves to the

root of the tree.

(2) Ladders, IL nodes. We define the ‘ladder

length’ to be the maximum number of con-

nected internal nodes with a single leaf des-

cendant, and we divide it by the number of

leaves in the tree. This measure is not unre-

lated to tree imbalance but is more local—a

long ladder motif may occur in a tree that is

otherwise quite balanced. For this reason, lad-

der length may detect trees in which there has

been differential lineage splitting in some

clades or lineages, but where this occurred

too locally or in clades that are too small have

affected traditional approaches in charac-

terizing rapid expansion in some lineages.

Furthermore, traditional ways of detecting

positive selection may not be appropriate in

this context because the super-spreader, if pre-

sent, does not pass any advantageous prop-

erty to descendant infections. The portion of

‘IL’ nodes is the portion of internal nodes with

a single leaf descendant.

(3) Maximum width; maximum width over max-

imum depth. The ‘depth’ of a node in a tree is

the number of edges between that node and

the tree’s root. The ‘width’ of a tree at a depth

d is defined as the number of nodes with depth

d. We calculated the maximum width of each

tree divided by its maximum depth (max d, the

maximum depth of any leaf in the tree).

(4) Maximum difference in widths. We compared

�w ¼ max ifjwðdiÞ � wðdi�1Þjg in the trees.

This summary reflects the maximum absolute

difference in widths from one depth to the

next, over all depths di in the tree.

(5) Cherries. A cherry configuration is a node

with two leaf descendants.

(6) Staircase-ness. We use two measures of the

‘staircase-ness’ of phylogenies defined by

Norström et al. [21]: (i) the portion of sub-

trees that are imbalanced (i.e. that have dif-

ferent numbers of descending tips on the left

and right sides) and (ii) the average of min ð

Tli; TriÞ=max ðTli;TriÞ over the internal nodes of

the tree.

Outbreak classification
We trained k-nearest-neighbour (KNN) classifiers

using matlab’s ClassificationKNN.fit function
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with a Minkowski distance, inverse distance

weighting and 100 neighbours. KNN classification

was performed on 1000 trees of each type (homoge-

neous transmission, super-spreaders, chains) using

10-fold cross-validation. The 10 resulting classifiers

were then used to classify the groups of simulations

in the sensitivity analysis, allowing us to report on

the variability of classification results. KNN classifi-

cation is suitable for sets of data that have any num-

ber of groups. Here, there were three groups:

homogeneous outbreaks, super-spreader outbreaks

and chains of transmission. KNN classifiers’ quality

can be assessed with a table reporting how many in

each group are correctly classified, and how many

are classified into which incorrect group.

Alternatively, the quality can be summarized by re-

porting the portion of each group that is classified

correctly.

When there are only two groups to compare, so

that classification is binary, better methods are

available. One of the most powerful of these is the

support vector machine (SVM) approach. We used a

10-fold cross-validated SVM to resolve differences

between homogeneous transmission versus super-

spreader networks. Because SVMs are binary classi-

fiers, their quality can be assessed by reporting the

sensitivity (portion of true positives that are

classified as positive) and specificity (portion of true

negatives that are classed as negatives) of the pre-

dictions. The sensitivity and specificity of a classifier

trade off with each other, because it is always pos-

sible to classify all cases as positive (sensitivity 1 but

specificity 0) or all as negative (specificity 1 but sen-

sitivity 0). Classifiers use a cutoff, calling a data point

positive if the cutoff is above some threshold, and

negative otherwise. The overall quality of a binary

classifier can be visualized using a receiver operator

characteristic (ROC) curve, which captures the

change in sensitivity and specificity of a classifier

when its threshold is changed. See Cristianini and

Shawe-Taylor [28] for a full discussion of SVMs and

classification.

Here, SVMs were constructed using the SVMtrain

method in matlab with a linear kernel function.

The training data xi in the ith ‘fold’ were the 11

summary metrics for 900 trees derived from each

process. The test data were the remaining 100

trees. This was done 10 times (10 ‘folds’ of cross-

validation). All training data were from simulations

with the baseline set of parameters. The 10

SVMs (one for each ‘fold’) were tested on the

remaining trees using matlab’s SVMclassify, which

computes

signðyÞ ¼ sign
X

i

aikðxi; xÞ þ b

 !

where ai are weights, xi are the support vectors, x is

the input to be classified, k is the kernel function and

b is the bias. These tests were done separately on the

different groups of simulated trees. The SVMclassify

function was modified to return y (i.e. the degree to

which an outbreak could be considered super-

spreading) rather than only the sign of y (a binary

prediction). We have also performed 10-fold SVM

classification in R using the e1071 package.

Classifiers are available along with a script to profile

the structure of a tree in newick format, using

the phyloTop package [29] (see Supplementary

Information).

Sensitivity analysis
To determine whether the classifier is robust to

different choices of model parameters and to

sampling, we simulated three groups of 500 homo-

geneous and super-spreader outbreaks with (i)

randomly selected parameters, (ii) a random

sampling density and (iii) both random parameters

and random sampling. Group (i) had randomized

parameters in which b=D was uniformly distributed

between 1.25 and 2.5. Group (ii) had fixed param-

eters, but the number of cases varied uniformly

between 100 and 150, and we sampled only 33 of

those cases. The third group had both randomized

parameters and random sampling.

To ensure that the classification is detecting

variability in the number of secondary cases (i.e.

super-spreading), we performed classification on

outbreaks in which we used a negative binomial dis-

tribution to determine the numbers of secondary

cases in the outbreak. We varied the parameters

of the distribution such that the mean number of

secondary cases was the same (R0) but the variance

differed, with the expected variance ranging from

two to five times what it would be in the Poisson

(homogeneous transmission) case. We classified

the outbreaks using the 10 SVM classifiers obtained

under 10-fold cross-validation on the baseline case.

We report the mean and standard deviation of the

specificity, i.e. the portion of cases correctly classi-

fied as ‘super-spreader’ outbreaks.

To determine whether the classifier is relevant to

different kinds of models, we applied it to simulated

phylogenies described in Robinson et al. [22]. In that
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work, dynamic networks of sexual contacts were

created based on random graphs with a Poisson dis-

tribution, and with a distribution of contacts derived

from the National Survey on Sexual Attitudes and

Lifestyles (NATSAL) [30]. See Supplementary mater-

ial for further details.

Classification of outbreaks from published
genomic data
We used the classifier on phylogenetic trees derived

from two real-world tuberculosis outbreak datasets.

Outbreak A was previously published Gardy et al. [31]

and is available in the NCBI Sequence Read Archive

under the accession number SRP002589. This

dataset comprises 31 M. tuberculosis isolates col-

lected in British Columbia over the period 1995–

2008 and was sequenced using paired-end 50 bp

reads on the Illumina Genome Analyzer II.

Outbreak B comprises 33 M. tuberculosis isolates col-

lected in British Columbia over the period 2006–11,

and was sequenced using paired-end 75 bp reads on

the Illumina HiSeq. The outbreak, sequences and

single nucleotide polymorphisms (SNPs) are pre-

sented in Didelot et al. [9].

For both datasets, reads were aligned against

the reference genome M. tuberculosis CDC1551

(NC002755) using Burrows-Wheeler Aligner [32].

Single nucleotide variants were identified using

samtools mpileup [33] and were filtered to remove

any variant positions within 250 bp of each other and

any positions for which at least one isolate did not

have a genotype quality score of 222. The remaining

variants were manually reviewed for accuracy and

were used to construct a phylogenetic tree for each

outbreak as described above. We apply the classifi-

cation methods to 1000 samples from the BEAST

posterior timed phylogenies estimated from WGS

data using a birth–death prior.

RESULTS

Tree shapes capture transmission patterns

Different transmission networks result in
quantitatively different tree shapes
To determine whether tree shapes captured informa-

tion about the underlying disease transmission

patterns within an outbreak, we simulated evolution

of a bacterial genome over three types of outbreak

contact network—homogenous, super-spreading

and chain—and summarized the resulting

phylogenies with five metrics describing tree shape.

Figure 2 and 3 illustrate the distributions of these

metrics across the three types of outbreaks, reveal-

ing clear differences in tree topology depending on

the underlying host contact network. Super-spreader

networks gave rise to phylogenies with higher

Colless imbalance, longer ladder patterns, lower

�w and deeper trees than transmission networks

with a homogeneous distribution of contacts.

Trees derived from chain-like networks were less

variable, deeper, more imbalanced and narrower

than the other trees. Other topological summary

metrics considered did not resolve the three out-

break types as fully (Supplementary Information).

Classification on the basis of tree shape

Topological metrics can be used to
computationally classify outbreaks
To evaluate whether the five topological summary

metrics could realiably and automatically differenti-

ate between the three types of outbreaks, we trained

a series of computational classifiers on the

simulated datasets. We first trained a KNN classifier

using the 11 tree features to discern which combin-

ations of features correspond to phylogenies

derived from the three underlying transmission

processes. The KNN classifiers correctly

identified the underlying transmission dynamics

well (see Table 1), with an average of 89 (0.03)%

of the homogeneous outbreaks, 86 (0.05)% of the

super-spreader outbreaks and 100% of the chain

outbreaks correctly classified under 10-fold cross-

validation. Mis-classifications were between the

homogeneous and super-spreader outbreaks.

SVM improves classification accuracy

To better resolve the separation between super-

spreader-type outbreaks and those with homoge-

neous transmission, we trained a SVM classifier to

distinguish between those two types of outbreaks

alone. Figure 4a shows the ROC curve for an SVM

classification trained on 300 of the 1000 simulated

homogeneous and super-spreader outbreaks. The

area under the curve (AUC) is 0.97, reflecting a very

good classifier performance; the theoretical max-

imum AUC is 1, and 0.5 corresponds to random

guessing. We performed 10-fold cross-validation,

each time training a new SVM on 900 of the 100 trees

and testing it on the remaining 100. The average

sensitivity was 0.93 and the average specificity was

0.89; the average AUC was 0.98. These values are

listed in Table 1.
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Effects of the extent of super-spreading,

sampling, and early classification

Outbreak classification is robust to variable
parameters and model choice, but not to
sampling
To explore how robustly phylogenetic structure cap-

tures variation in transmission processes, we

performed sensitivity analyses in which we explored

the effect of varying the transmission parameters

b=D, sampling and both the parameters and

sampling together.

Using the KNN classifier applied to the three

outbreak types, we found that the overall classi-

fier error remained at �10% when the

Table 1. Results of cross-validated classification

KNN Hom SS Chains

Baseline 0.89 (0.03) 0.85 (0.05) 1.00 (0)

Varied parameters 0.90 (0.01) 0.89 (0.01) 1.00 (0)

Varied sampling 0.98 (0.01) 0.21 (0.01) 1.00 (0)

Varied both 0.98 (0.01) 0.20 (0.01) 1.00 (0)

10 isolates 0 (0.001) 0.5 (0.5) 0.5 (0.53)

20 isolates 0.99 (0.01) 0.01 (0.001) 0 (0)

SVM Spec. Sens. AUC

Baseline 0.93 (0.05) 0.89 (0.05) 0.98 (0.01)

Varied parameters 0.92 (0.05) 0.92 (0.04) 0.98 (0.01)

Varied sampling 0.79 (0.07) 0.76 (0.05) 0.86 (0.003)

Varied both 0.83 (0.07) 0.74 (0.06) 0.87 (0.002)

10 isolates 1 (0) 0 (0) 0.61 (0.07)

20 isolates 0.93 (0.13) 0.21 (0.34) 0.78 (0.07)

Sensitivity (the true negative rate) here is the portion of homogeneous outbreaks correctly classified as homogeneous,
and specificity (true positive rate) is the portion of super-spreader outbreaks correctly classified. For SVM classification,
sensitivity and specificity have a trade-off, such that greater sensitivity can be achieved at the cost of reduced specificity
and vice versa. Sensitivity and specificity are computed with the optimal threshold returned by matlab’s perfcurve
function. The AUC captures the overall classifier quality. For KNN classification we report the portion correct by
outbreak type, as there are three types. Numbers shown are mean (standard deviation) using the 10 classifiers found
with 10-fold cross validation of the baseline case.

Figure 2. Distribution of simple summary measures of tree topology

102 | Colijn and Gardy Evolution, Medicine, and Public Health

3.3 
,
approximately 


transmission rate varied up to a factor of 2

(Table 1). The effect of reduced sampling density

was much greater, and while the portion of

homogeneous outbreaks correctly predicted was

high (98%), the error was high because only 21%

of super-spreader outbreaks were correctly classi-

fied. Mis-classification was between these two

outbreak types, and chains of transmission were

always correctly classified. Varying both the

sampling and the parameters decreased the qual-

ity of the predictions slightly.

We also evaluated the sensitivity of SVM classifi-

cation to different transmission model parameters

by training and testing an SVM on a further 500

simulated super-spreading, and homogenous net-

works with variable transmission parameters b=D.

As with the baseline parameter networks, the SVM

returned an AUC of 0.98 for the variable b=D groups,
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Figure 3. Box plots of the features used to summarize the shapes of phylogenies
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though the sensitivity and specificity were both

slightly reduced (0.92; see Table 1). However, the

SVM’s performance declined with decreased

sampling density (AUC of 0.86; sensitivity 0.76 and

specificity 0.79), and decreased sampling with vari-

able transmission parameters (AUC of 0.87, sensi-

tivity 0.74 and specificity 0.83). Notably, the decline

in performance was much less with the SVM method

than the KNN method. Figure 4b shows the ROCs

for SVM classification on these groups.

The decline in performance due to lower sampling

density occurs for two primary reasons. The super-

spreaders are relatively rare; if they were not, then the

outbreak would not really be a ‘super-spreader’ out-

break, but one with a higher rate of transmission

overall. When sampling density is reduced, there is

therefore a good chance that the super-spreader in-

dividuals are not sampled. In addition, under weak

sampling, only a few of a super-spreader’s secondary

cases would be sampled. Both of these factors act to

reduce the ability of the genealogy to capture super-

spreading. Under very low sampling densities, it is

likely that the probability of a given tree approaches

what it would be under the homogeneous birth–

death model or the appropriate coalescent model,

even where the infectious period is not memoryless.

Though we have not shown this, very low sampling

should reduce the asymmetry that arises from one

lineage continuing in the same host and another

continuing in a new host, because each lineage

would be expected to change hosts multiple times

along a branch under low sampling densities.

Accordingly, if sampling density is low enough that

coalescent methods are appropriate, they may be

used to relate branching times and some aspects

of tree shapes to epidemic models [24].

We varied the extent of heterogeneity in the num-

bers of secondary cases in our outbreaks, using a

negative binomial distribution and varying its par-

ameters. We found that the classifier (trained on

outbreaks each with a single super-spreader but with

varying secondary case numbers) had a high sensi-

tivity of classification (>0.7) when the ratio of the

standard deviation to the mean of the secondary

case number distribution was 2 or more. Figure 4a

shows the average sensitivity increasing with the

variability in secondary case numbers.

We tested the SVM classifiers to determine

whether they could distinguish between phylogen-

etic trees derived from simulated sequence trans-

mission on different contact networks, namely

dynamical models of sexual contact networks over

a 5-year simulated time period [22]. The performance

was good when sampling was done over time, such

Figure 4. (a) Sensitivity of the SVM classification increases as the variability in the number of secondary cases in the outbreak increases. Variability is quantified as

the ratio of the standard deviation to the mean of the numbers of secondary cases caused by an infectious case. Sensitivity is the portion of simulated outbreaks

with the corresponding variability that were classed as super-spreader outbreaks; the solid line shows the mean sensitivity over the 10 SVMs produced by cross-

validation and dotted lines are the mean ± the standard deviation. (b and c) ROCs for the SVM classifier based on the 11 summary metrics describing tree shape.

ROC curves are a visual way to assess the classifier’s quality—a perfect classifier will obtain all the true positives and will have no false positives, giving an AUC of 1.

An imperfect classifier has a trade-off, and can attain a specificity (true positive rate) of 1 at the cost of having a false-positive rate of 1 (top right corner of the plot).

The ROC curve illustrates the shape of this trade-off; the higher the AUC, the higher the quality of the classifier. Guessing yields an AUC of 0.5. In b, different lines

correspond to the different groups of simulations in the SVM sensitivity analysis. Panel c shows the SVM classifier’s performance when only the earliest outbreak

isolates are sampled. Performance is poor with 10 isolates (black line) and better with 20 (blue line)
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that cases infected early in the simulation were likely

to be sampled. When sampling was done at one

time, years after seeding the simulated infection,

neither classifier detected differences between the

two types of contact network. Details are presented

in the Supplementary Information.

Outbreak classification is possible using early
isolates only
To determine whether classification of an outbreak

is possible early in an outbreak—information that

could potentially inform real-time deployment of a

specific public health response—we evaluated the

10 KNN and 10 SVM classifiers’ performance when

only the first 10 and first 20 genomes of the outbreak

were sampled (10 of each, constructed using 10-fold

cross-validation). The KNN performed poorly on the

first 10 isolates, with none of the homogeneous out-

breaks correctly classified, and only 50% of the

others. Mis-classifications were between the super-

spreader and chain outbreaks. After 20 isolates had

been sampled, KNN classifiers grouped all out-

breaks with homogeneous transmission. The SVM

had AUC values of 0.61 and 0.78 after 10 and 20

isolates were detected, respectively (see Table 1

and Fig. 4c), although the optimal cutoffs gave

low-sensitivity values. These data suggest that

SVM classification can give some information about

an outbreak’s transmission dynamics at early points

within the outbreak.

Real-world outbreaks

Topological metric-based classification
recapitulates known epidemiology of real-world
outbreaks
Finally, to evaluate the classifiers’ performance on

real-world outbreaks with known epidemiology,

we applied the classifier to genome sequence data

from two tuberculosis outbreaks whose underlying

transmission dynamics have been described

through comprehensive field and genomic epidemi-

ology. Outbreak A [31] was reported to arise from

super-spreading activity, while Outbreak B displayed

multiple waves of transmission, resulting in a some-

what more homogenous network.

We found that our classification results agreed

with the empirical characterizations of the two out-

breaks’ underlying transmission dynamics. In the

KNN classification, Outbreak A was grouped with

super-spreader outbreaks most often (56(0.5)%),

with 44% of the posterior trees grouping with homo-

geneous outbreaks none with chains. 77(0.7)% of

the trees from Outbreak B were classed as homoge-

neous, with the other 23% classed with super-

spreader outbreaks. As above, numbers in

parentheses are standard deviations over the 10

classifiers from the 10-fold cross-validation. The

SVM classification grouped 75(8)% of BEAST pos-

terior Outbreak A trees with super-spreaders, and

76(9)% of Outbreak B trees with homogeneous

transmission. We also applied the classifiers to the

maximum clade credibility (MCC) trees for the two

outbreaks; the MCC tree from Outbreak A grouped

with super-spreaders and that from B grouped with

homogeneous outbreaks in all of the 10 cross-

validated classifications. Thus both classifiers’ pre-

dictions agree with epidemiological investigations

of the outbreak, using tree shapes alone to classify

transmission patterns.

DISCUSSION

We have found that there are simple topological

properties of phylogenetic trees which, when

combined, are informative as to the underlying

transmission patterns at work in an outbreak.

Tree structures can be used as the basis of a clas-

sification system, able to describe an outbreak’s

dynamics from genomic data alone. These topo-

logical signatures are robust to variation in the

transmissibility, and to the nature and structure

of the model, but sampling has a detrimental

effect on the strength of the signal. Signs of the

underlying transmission dynamics are present

within the first 20 genomes sampled from an out-

break, and the classifiers are able to recapitulate

known, real-world epidemiology from actual out-

break datasets.

The relationship between host contact heterogen-

eity and pathogen phylogenies is complex. In large

datasets, phylogenetic branch lengths can reveal

heterogeneous contact numbers [12], but distribu-

tions of branch lengths are not a suitable tool for

small outbreaks of a chronically infecting and slowly

mutating organism like TB. Early work made the

assumption that heterogeneous contact numbers

would yield heterogeneous cluster sizes in viral

phylogenies [34]. But cluster sizes also depend on

the pathogen population dynamics [22] and the epi-

demic dynamics [24]. The relationship between het-

erogeneous contact numbers and tree imbalance

[13] is not robust to the dynamics of a contact net-

work [22], sampling [22,24] or the epidemic model

used [24]. It is clear from this body of work that
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increased heterogeneity in contact numbers will not

always lead to a simple increase or decrease of some

measure, like imbalance, of tree structure. However,

we have found that in small outbreaks, several sim-

ple topological features, taken together, can distin-

guish between outbreaks with high heterogeneity (a

super-spreader) and low heterogeneity.

In any modelling endeavor, when a model repro-

duces features of real data—whether those are tree

structures, branch lengths or other data such as

prevalence and incidence of an infection, locations

of cases and so on—it remains possible that there

are processes not included in the model that are the

real origin of the observations. When we use models

to interpret data, we use formal or informal priors to

weigh the likelihoods of the assumptions behind the

model when compared with other processes that

could drive the same phenomena. Here, one aspect

of the complex relationship between contact hetero-

geneity and phylogeny structure is illustrated by the

fact that genealogies from a long chain of transmis-

sion can look similar to genealogies derived from a

super-spreader. Indeed, if one individual infects 10

others over a long period, and none of those infects

anyone else, the genealogy among isolates would

look the same as a genealogy in which each case

infected precisely one other. However, it is unlikely

that such a chain of cases would occur, with no

one ‘ever’ infecting two others rather than one.

Similarly, it is unlikely that one host could infect

everyone in an outbreak, with no onward transmis-

sion by anyone else. In our simulations, once the

occasional person in a long chain can infect two

others, and if non-super-spreader individuals infect

others homogeneously, we find that simple

topological structures are well able to resolve the

differences between chains and super-spreader

outbreaks.

We have used 11 coarse and simple summaries of

tree topology. However, any small set of a few sum-

mary statistics cannot capture the topology with

much resolution. In contrast, most methods to com-

pare phylogenies in fine detail are suited only for

phylogenies on the same sets of tips [35], and so

cannot be used to compare different outbreaks or

to compare simulations to data. Finding the correct

balance to summarize trees sufficiently that

they can be compared across different tree sizes,

different outbreaks and different settings, without

summarizing them so much as to remove the most

useful information is a challenge, and a number of

methods will likely be developed, beginning with

viral pathogens as in the recent work on Poon et al.

[23]. Indeed, although we feel that the measures

we have used are demonstrative that tree

structure is revealing, they are not intended to be

comprehensive or exhaustive descriptions of tree

topology. The fact that a few simple topological

summaries can reveal underlying transmission pat-

terns is a proof-of-principle that tree shape is

informative.

We have taken a different approach than has

recently been taken in a number of studies aiming

to infer transmission trees from phylogenetic data

[7,9,36,37], or to identify or at least rule out trans-

mission events based on epidemiological and gen-

etic data [2–6]. These methods use the timing of case

presentation (and estimated times of infection) to

help determine who infected whom. In contrast, in

pathogens with long and variable infectious dur-

ation, the timing of case presentation does not pro-

vide much information about the timing of infection.

In this setting, even whole-genome sequence data

may not contain sufficient information to clearly

characterize individual transmission events, as we

have recently found [9]. However, individual trans-

mission events are often of interest mainly because

they reveal ‘patterns’ of transmission. When we

reconstruct an outbreak we are not seeking to

determine whether case C will infect case D in the

next outbreak, but rather, to find sufficient informa-

tion about how the outbreak occurred that pub-

lic health practices can benefit. Here, we have

found that tree shapes can reveal overall patterns

of transmission without first inferring who infected

whom.

The classification method we have developed

provides not only an important empirical quan-

tification of the degree to which genomic data is

informative in the absence of epidemiological infor-

mation, but is also a useful tool that can be used to

describe outbreaks both retrospectively and pro-

spectively. The ability to situate an outbreak on

the spectrum from homogeneous transmission to

super-spreading and to do so within the earliest

stages of an outbreak when neither a large num-

ber of specimens nor detailed epidemiological in-

formation is available represents an important

opportunity for public health investigations.

Situating an outbreak on this spectrum does not

require pinning down individual transmission

events, but relies more on characterizing sum-

mary features of the outbreak and/or its phylogeny.

If the data point towards a significant role for super-
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spreading in an outbreak, a containment strategy

will require intensive screening of the super-

spreader’s contacts. In an outbreak where onward

transmission is occurring in chains, a focus on ac-

tive case finding around multiple individuals will be

needed instead. Ultimately, investigation of any out-

break of a communicable disease will involve the

collation of multiple sources of information,

including epidemiological, clinical and genomic

data. The approach described here represents one

part of this toolbox, and has the advantages of being

robust to the unique nature of complex chronic in-

fection, providing useful information even when

epidemiological information is incomplete, and

being informative within the earliest stages of an

outbreak.

supplementary data

Supplementary data is available at EMPH online.

acknowledgements

We thank the Vancouver Island Health Authority and the

Interior Health Authority for their contributions to the

real-world outbreak field investigations, and Dr. Patrick

Tang, Dr. James Johnston, and Dr. Mabel Rodrigues for their

contributions to the genome sequencing work. We thank

Michael Boyd, who developed the phyloTop package with

C.C. C.C. is supported by the Engineering and Physical

Sciences Research Council (EPSRC EP/K026003/1, EP/

I031626/1).

Conflict of interest: None declared.

references

1. Stadler T, Kouyos R, Von Wyl V et al. Estimating the basic

reproductive number from viral sequence data. Mol Biol

Evol 2012;29:347–57.
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