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Abstract

Purpose—Dynamic contrast-enhanced MRI of the heart is well-suited for acceleration with

compressed sensing (CS) due to its spatiotemporal sparsity; however, respiratory motion can

degrade sparsity and lead to image artifacts. We sought to develop a motion-compensated CS

method for this application.

Methods—A new method, Block LOw-rank Sparsity with Motion-guidance (BLOSM), was

developed to accelerate first-pass cardiac MRI, even in the presence of respiratory motion. This

method divides the images into regions, tracks the regions through time, and applies matrix low-

rank sparsity to the tracked regions. BLOSM was evaluated using computer simulations and first-

pass cardiac datasets from human subjects. Using rate-4 acceleration, BLOSM was compared to

other CS methods such as k-t SLR that employs matrix low-rank sparsity applied to the whole

image dataset, with and without motion tracking, and to k-t FOCUSS with motion estimation and

compensation that employs spatial and temporal-frequency sparsity.

Results—BLOSM was qualitatively shown to reduce respiratory artifact compared to other

methods. Quantitatively, using root mean squared error and the structural similarity index,

BLOSM was superior to other methods.

Conclusion—BLOSM, which exploits regional low rank structure and uses region tracking for

motion compensation, provides improved image quality for CS-accelerated first-pass cardiac MRI.
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INTRODUCTION

Compressed sensing (CS), an acceleration technique of growing importance, is making a

major impact on MRI (1). Using CS, high-quality images can be recovered from data

sampled well below the Nyquist rate provided that the sampling pattern is incoherent, the

images are sparse in a transform domain, and a sparsity-promoting iterative reconstruction is

used (1). Because of the high temporal and spatial redundancy inherent to dynamic contrast-

enhanced MRI, these data can be represented sparsely in a transform domain and are well-

suited for acceleration by CS (2). However, patient motion due to respiratory or other factors

reduces the spatiotemporal redundancy of the data and, if not corrected, leads to image

artifacts (3–11). The problem of imperfect breathholding and associated respiratory motion

presents a major challenge to CS-acceleration of first-pass cardiac MRI, where, even when

patients are instructed to suspend respiration for 15–20 seconds, they are often unable to

comply fully with instructions and they breathe during the scan.

A number of CS methods have been developed to accelerate dynamic MRI. Early studies

such as k-t SPARSE showed that sparsity in the spatial and temporal-frequency (x-f) domain

could be exploited to accelerate cine MRI using CS (2,12). The k-t FOCal Underdetermined

System Solver (k-t FOCUSS) method made improvements to x-f domain approaches by

separating the data into predicted and residual signals, where the predicted signal served as a

baseline signal and sparsity was exploited for the residual signal (4). While x-f domain

methods combined with parallel imaging have been successfully used for dynamic contrast-

enhanced MRI (3), the non-periodic nature of dynamic contrast-enhanced MRI leads to a

broader band of temporal frequencies than cine MRI, thus these applications present less x-f

sparsity than cine MRI. For these cases, data-driven spatiotemporal basis functions such as

those used in Partially Separable Functions (13) and the k-t Sparsity and Low-Rank (k-t

SLR) method (6) may have advantages. For example, the k-t SLR method, which is applied

in the image-time domain and exploits matrix rank sparsity by decomposing the signal using

singular value decomposition (SVD), has provided quite good image quality for accelerated

contrast-enhanced cardiac perfusion imaging (6). However, even while advanced sparsifying

transforms such as SVD provide improved image quality, these approaches are still subject

to artifacts when respiratory motion or other patient movement occurs.

One approach to handle complex dynamics such as breathing is to extract motion

information from the acquired data and apply motion compensation during CS

reconstruction. Some studies (7,14) base their work on Batchelor’s motion matrix method

(15) to correct for respiratory motion in free-breathing or real-time cine imaging. While this

approach carefully separates cardiac and respiratory motion, the data binning step limits its

extension to wider applications such as dynamic perfusion imaging and relaxation imaging.

Another approach is to compensate the image dataset for motion and then apply a CS

sparsity transform to the motion-compensated data, such as in k-t FOCUSS with motion

estimation and compensation (4) and the recent method of Motion-Adaptive Spatio-

Temporal Regularization (MASTeR) (16), as well as other methods (10,11). To date, these

methods have employed the temporal difference or x-f methods as the sparsifying transform,

and the results clearly demonstrate the advantages afforded by motion compensation.
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We sought to develop and evaluate a CS method for first-pass contrast-enhanced cardiac

perfusion MRI that combines the advantages of data-driven spatiotemporal basis functions

and regional motion tracking. Specifically, we propose a method that divides images into

regions, tracks the regions over time, and applies SVD to the tracked regions. Using this

approach, our method can both account for regional non-periodic variations in motion and

can exploit regional spatiotemporal sparsity. In our present implementation, the regions are

square blocks and we exploit matrix low rank sparsity, thus we have coined the term Block

LOw-rank Sparsity with Motion-guidance (BLOSM) to describe this method.

METHODS

BLOSM Overview

The proposed BLOSM method is based on the concept of motion-guided compressed

sensing using a regional approach to motion tracking and spatiotemporal sparsity. In

BLOSM (as shown in Fig. 1), blocks of image pixels are defined on one image and tracked

through time using motion maps extracted from the image data itself (not using separately

acquired training data). The tracked blocks are then grouped into clusters which contain

structurally-similar and temporally-related content. The clusters undergo SVD, image

estimates are re-computed, and the algorithm iterates as shown. Because the clusters contain

motion-tracked blocks, we expect them to exhibit decreased dynamic complexity and,

correspondingly, increased matrix low-rank sparsity (17). Specifically, referring to Fig. 2, a

block (red box) is initiated on the first image and is tracked to the succeeding images. Next,

as also illustrated, the tracked blocks are gathered into a 3D cluster and rearranged into a 2D

matrix, where each block becomes one column and blocks corresponding to separate time

points are placed into separate columns. The 2D matrix is then subject to SVD to exploit

low-rank sparsity. The 2D matrix is expected to have greater spatiotemporal sparsity

compared to the whole image or to untracked blocks because the blocks have a smaller

scope with decreased spatiotemporal variations, and motion tracking leads to less motion

contamination.

The CS reconstruction problem of BLOSM can be framed as the following constrained

optimization problem:

[1]

where m represents the estimated dynamic images, d is the acquired undersampled k-space

data, and ℱu is the undersampled Fourier transform which only takes values at the k-space

positions where the d are acquired. Φℛ represents the operator for block tracking and

creation of rearranged clusters, after m is divided into blocks which are tracked using

displacement maps. ‖*‖p* is a joint Schatten p-norm that exploits the regional low rank

property.

Block motion tracking

There are several techniques that may be used to extract motion information from images

(18–22), where displacements of moving objects relative to a reference image can be
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obtained. In this study, displacement maps were computed using the Advanced

Normalization Tools (ANTS) registration toolbox (23,24) which includes a set of state-of-

the-art image registration methods. The inputs to ANTS are the complex images. From these

inputs, the registration toolbox takes the magnitude of the complex images and outputs

pixel-by-pixel displacement maps. For block tracking, the displacement Δu of each pixel

was obtained as Δu = ℛ(u) ≡ (Δx, Δy, Δt) where u = (x, y, t) is the pixel space-time position

and the displacement operator ℛ is obtained using ANTS.

In BLOSM, blocks were initiated on the first image and motion tracking was applied to each

block. For example, consider one block B(u1) ∈ ℂNb×Nb, where u1 = (x1, y1, t1) indicates

that the block center was at position (x1, y1) at time frame t1. The displacement Δu1 of the

block center pixel was obtained from the displacement map as ℛ(u1) and the tracked pixel

location would then be u1 + ℛ(u1). Note that the displacement operator ℛ is calculated

globally using the whole image and that ℛ(u1) and u1 + ℛ(u1) may be non-integer

numbers. Instead of performing a spatial interpolation to get the tracked pixel location as in

conventional image registration, the tracked center from u1 was taken as u1 = {u1 + ℛ(u1)},

where “{}” takes the integer. A new block B(u2) was defined to include all neighboring

pixels around u2 with the same block size, as illustrated in Fig. 3. B(u2) was then motion

tracked to succeeding frames with the block center at un = {un−1 + ℛ(un−1)} on the nth

frame. The tracked blocks were collected as a cluster Ξ=[B(u1), B(u2), … B(uNt)] with

dimension of Nb×Nb×Nt. Φℛm yields a set of clusters Ξ=[Ξ1, Ξ2, …] and was obtained by

performing the block motion tracking procedure for each block defined on the first frame

and tracked through all subsequent frames. This approach avoids spatial interpolation, which

often leads to image blurring (25).

Regional sparsity

Matrix rank sparsity has been used previously for dynamic CS reconstruction (6,26–28),

with one example being the k-t SLR method. In these studies matrix rank sparsity was

applied to the entire image dataset. In addition, recent studies such as Low-dimensional-

structure Self-learning and thresholding (LOST) (29,30) and compartment-based k-t

Principal Component Analysis (31) showed that separating an image dataset into different

regions could increase spatiotemporal sparsity and improve reconstruction quality. Along

these lines, we explored the use of matrix rank sparsity applied regionally by using SVD on

tracked regions of dynamic datasets. Specifically, SVD was applied separately on each

cluster Ξ ∈ ℂNb×Nb×Nt. Each Ξ was rearranged into a matrix Z ∈ ℂNs×Nt (Ns=Nb×Nb) where

each block becomes one column. Then, Z was decomposed as Z = U∑V* by SVD. The

diagonal of ∑ ∈ ℂNs×Nt consists of singular values γ which, if the block is truly low rank,

will have fewer significant values than the rank of Z.

Coarse-to-fine strategy

We used a variable-density sampling pattern with full sampling of the central phase-encode

lines and random undersampling of the outer phase-encode lines. The total number of

collected ky lines was the fully sampled number divided by the acceleration rate, and 50% of

the total acquired lines were sampled around the center of k-space. Using this approach, the

initial image estimate has very low spatial resolution, and, as the algorithm iterates, the
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spatial resolution increases. We developed a coarse-to-fine strategy to take advantage of this

behavior, where smaller blocks and finer motion tracking (i.e., registration methods) were

used as the algorithm iterated and image resolution improved. Specifically, an initial

reconstruction was performed where no motion estimation was used for the first 50

iterations. Through the subsequent iterations, smaller block sizes and a finer registration

method were used for motion estimation. Given the dimensions of the images as Nx×Ny×Nt,

the initial block size was set as 1/5 of the shorter spatial dimension. After 50 iterations, a

mutual-information-based rigid registration method embedded within ANTS was performed

to obtain global translational shifts. After subsequent sets of 50 iterations, the block size was

decreased 1.5 times until the final block size reached 5×5 pixels. Motion information was

updated every 50 iterations. After 150 iterations, the rigid registration was replaced with a

cross-correlation-based non-rigid registration method using ANTS.

Avoidance of gaps

To ensure that gaps are not left between tracked blocks, we used highly overlapping blocks

and a gap detection and filling method. After defining the initial blocks, a second set of

blocks, shifted by half the block size, was also defined and used (Fig. 4). In addition, during

execution of BLOSM, images are automatically inspected for gaps and additional blocks are

generated to cover gaps if they appear. Specifically, on the nth frame after block motion

tracking, a mask of uncovered areas or “gaps” is calculated as Gn. A “common” gap mask

Gc is generated by taking the union set (along the temporal direction) of all the gap masks:

Gc = G1 ∪ G2 ∪ … GNt. Gc is then used for each frame to get the pixels belonging to the

gaps. Spatially discontinuous gaps are separated using connected component analysis (32)

and are treated as different gap blocks at different spatial locations. Gap blocks at the same

spatial location on different frames are gathered together into a 3D block cluster, which is

further transformed into a 2D matrix and subjected to SVD, in the same manner as the other

block clusters. No motion tracking is performed for the gap blocks in order to avoid

potential additional gaps that might occur if the gap blocks were tracked.

Optimization method

A solution to the constrained optimization problem of Eq. 1 can be obtained by solving the

following unconstrained Lagrangian problem using a diminishing λ through the iterations

(33)

[2]

An iterative soft-thresholding (IST) algorithm (34) was adopted to solve Eq.2. Specifically,

for the ith iteration, the following steps were taken:

[3]

[4]

where 𝓓λ,p is a singular value soft thresholding operator defined as

Chen et al. Page 5

Magn Reson Med. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



[5]

and soft() is the well-known soft thresholding operation defined as

[6]

𝓓λ,p was applied to every cluster generated by Φℛmi. 𝓢w is a weighted averaging operator

(35) which merges the blocks to form images. The weighting was calculated as the

reciprocal of the number of times one pixel was overlapped by different blocks. m' is an

auxiliary variable and δ is a fixed value step size. Currently, the calculation was set to have a

fixed number of iterations.

Evaluation of BLOSM

To evaluate the BLOSM method, we used computer simulations and experimental first-pass

contrast-enhanced cardiac MRI of human subjects. In both settings, retrospectively rate-4

undersampled images reconstructed using BLOSM were compared to fully-sampled data

and to other CS methods. Since BLOSM uses SVD applied to motion-tracked regions, we

compared it to conventional k-t SLR (which uses SVD applied to non-motion-compensated

whole images), BLOSM without block motion-guidance (BLOSM w/o MG), and k-t SLR

with global motion-guidance (k-t SLR w/ gMG). The implementation of BLOSM w/o MG

was straightforward. The blocks were treated as static and motion information was not

estimated. Overlapping blocks were still generated. SVD was applied to each cluster of

blocks. The implementation of k-t SLR was treated as BLOSM without motion guidance or

blocks. k-t SLR w/ gMG exploited sparsity of the registered/motion compensated whole

images. Specifically, for one iteration, the images were first compensated for motion by

registering them to one reference image, which was the temporal average of the last 10

images. SVD was applied on the registered images. After the singular value shrinkage, the

de-noised images were “registered back” for fidelity calculations since the original acquired

data contained motion. These algorithms were all solved using IST, and no additional

sparsity constraints were used. The weighting factor λ in front of the sparsity term was

optimized independently for each of these three methods, as it was for BLOSM. Other

parameters such as the norm p and the block size Nb were selected to be the same as those

used for BLOSM. BLOSM was also compared to k-t FOCUSS with motion estimation and

compensation (k-t FOCUSS with ME/MC), since this is a motion-compensated CS method.

The program code of k-t FOCUSS with ME/MC was obtained online (36). The five CS

methods: BLOSM, k-t FOCUSS with ME/MC, k-t SLR, BLOSM w/o MG and k-t SLR w/

gMG were systematically compared.

Image quality for the various reconstruction algorithms was quantified using the root mean

square error (RMSE) and the structure similarity (SSIM). RMSE measures the direct

difference between the two images and is widely used for the assessment of CS methods (3–

7,37,38). In this study, we used the relative RMSE (rRMSE) defined as
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[7]

where N = Nx×Ny×Nt, x are the fully-sampled images and y are the reconstructed images.

We also used the structural similarity index (SSIM), which is a more comprehensive

measurement of the similarity between two images, and includes measurement of structure,

intensity and contrast, representing human perception more closely (39). The equation for

SSIM is

[8]

where x and y are the two images undergoing comparison, μx and σx are the average and

variance of x, σxy is the covariance of x and y, and c1 and c2 are variables that stabilize the

division with a weak denominator, chosen as described by Wang et al (39).

Computer-simulated phantoms

Computer simulations of heart-like phantoms with complex motions and signal intensity

variations were used to evaluate BLOSM. Specifically, we simulated objects undergoing

rigid translational shifts along the phase-encoding and readout directions, objects

undergoing both abrupt and gradual changes in size (which can be interpreted as either

through-plane motion or cardiac contraction), objects undergoing appearance and

disappearance (i.e., non-permanent features) and an object undergoing counterclockwise

rotation. Motions were combined with temporally quadratically changing signal intensity.

The images were Fourier transformed to generate k-space data, undersampled at acceleration

rate 4 using the variable density ky-t mask described above, and then reconstructed using

various CS algorithms.

First-pass cardiac perfusion imaging

All imaging was performed on a 1.5T MR scanner (Avanto, Siemens, Erlangen, Germany).

Eight different subjects with suspected heart disease were studied in accordance with

protocols approved by our institutional review board after informed consent was obtained.

For each subject a 5-channel phased-array RF coil was used and 1–4 short-axis slices were

acquired each heartbeat for 50 repetitions during infusion of 0.075 mmol/kg gadopentetate

dimeglumine (Magnevist, Bayer HealthCare, Montvale, NJ). A saturation-recovery Turbo

FLASH sequence was used with parameters as follows: nonselective 90° saturation pulse

with a saturation recovery time of 100–120 ms, field of view = 240–315×370–410 mm2,

matrix = 86–152×128–200, slice thickness = 8 mm, flip angle = 8–15°, TR = 1.9–2.2 ms,

and TE = 0.9–1.4 ms. Immediately prior to initiating the perfusion scan, each subject was

instructed to suspend respiration during the scan using our standard instructions for

breathholding. If the subjects could not hold their breath for the entire scan, they were

instructed to breathe lightly for the remainder of the scan. As is typical for first-pass

perfusion MRI of the heart, even with proper instructions about breathing, many patients do

Chen et al. Page 7

Magn Reson Med. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



not comply well with the instructions, and various breathing patterns occur during perfusion

imaging. The datasets collected and used in this study all present prominent respiratory

motion, even though the patients were instructed not to breath. From the 8 patients studied, a

total of 26 slices were collected, and each slice was treated as a distinct dataset. All data

were acquired without prospective undersampling. Among the 26 datasets, 14 of them were

fully-sampled sum-of-squares (SoS) combined magnitude-valued images and 12 of them

were fully-sampled multi-coil complex-valued k-space data. In this study, we focused our

efforts on evaluating BLOSM and other CS methods using only single-coil data. To serve

this purpose, we combined the 12 multi-coil complex-valued k-space datasets into 12 single-

coil magnitude-valued image data using SoS. The resulting 26 magnitude-valued datasets

were transformed into k-space and retrospectively undersampled at acceleration rate 4 using

the variable density ky-t mask described above, and then reconstructed using various CS

algorithms.

Evaluation of initial block size, initial block positions, the coarse-to-fine strategy, and the
use of motion compensation

Systematic experiments were performed to determine whether the initial block size or block

positions have an effect on image quality. For these studies, the same datasets were

reconstructed using different initial block sizes or positions. Specifically block size factors

of 2, 3, 4, …,10 were chosen, which correspond to initial block sizes of 51, 35, 27, …, 11

for an image matrix of 102*128. Due to the usage of the coarse-to-fine (CTF) strategy,

where the block size decreases through the iterations and the registration method varied with

iteration, the final block size was kept constant (5 for all settings), and the total iteration

number was the same for different initial settings. Relative RMSE was calculated to perform

a quantitative evaluation comparing the initial block sizes. Reconstruction time was also

recorded. To assess whether there is a dependence on the initial block positions, BLOSM

reconstructions using the original initial block positions and using shifted initial block

positions (shifted by up to one quarter of the initial block size) were compared to reference

images, where the reference images were fully-sampled 2DFT-reconstructed images.

Experiments were also performed to demonstrate the utility of the CTF strategy. For these

studies, both simulated and human datasets were reconstructed using BLOSM with and

without the CTF strategy. In BLOSM without the CTF strategy, a constant block size and

rigid registration method were used through all the iterations. Studies were also performed

to show that motion guidance within BLOSM improves image quality. Both simulated and

human datasets were used for these studies, which compared BLOSM with and without

motion tracking.

Computation time

Benchmark tests for BLOSM, k-t SLR and k-t FOCUSS with ME/MC were performed. All

tests were performed in MATLAB on a desktop computer (3.4GHz Intel(R)i7 CPU with

12GB RAM). A human perfusion dataset with a matrix size of 102×128 and 44 time frames

was used. A fixed number of 200 iterations was used for BLOSM and k-t SLR, and the k-t

FOCUSS with ME/MC method used a convergence metric to terminate the algorithm.
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RESULTS

Comparison of BLOSM and other CS reconstruction methods using computer simulations

Fig. 5 shows the comparison of BLOSM to other reconstruction algorithms for the

computer-simulated phantoms. Example rate-4 accelerated CS-reconstructed images at one

time point along with the fully-sampled reference and under-sampled FFT reconstructed

images are shown on the top row. In Fig. 5 various motions were presented: rigid

translational shifts along the phase-encoding direction (phantom 1, or P1) and readout

direction (P3); translational shifts combined with an abrupt change in size and appearance/

disappearance of non-permanent features (P2) and gradual change in size (P4), both of

which can be interpreted as either through-plane motion or cardiac contraction; and object

rotation (P5). Corresponding position-time (x-t) profiles are shown on the bottom row for

each of the simulated phantoms. In the presence of object motion, signal intensity variation,

and the appearance and disappearance of objects, visual inspection shows that images

reconstructed using BLOSM most closely resemble the fully sampled images, as compared

to the other CS methods. k-t FOCUSS with ME/MC and conventional k-t SLR had

substantial residual artifact as well as some blurring. Some artifacts were more severe on k-t

FOCUSS with ME/MC. BLOSM w/o MG removed more artifacts than conventional k-t

SLR, which supports the concept of exploiting regional instead of global spatiotemporal

sparsity. However, edge artifacts along the direction of motion can be seen on BLOSM w/o

MG, which are attributed to the lack of motion correction. k-t SLR w/ gMG had substantial

smoothing effects. Relative RMSE and SSIM analysis showed that BLOSM achieved the

minimum error and the maximum similarity (rRMSE=2.85E-8, SSIM=0.89) compared to k-t

FOCUSS with ME/MC (rRMSE=6.30E-8, SSIM=0.66), k-t SLR (rRMSE=8.85E-8,

SSIM=0.49), BLOSM w/o MG (rRMSE=6.50E-8, SSIM=0.78) and k-t SLR w/ gMG

(rRMSE=8.28E-8, SSIM=0.57).

Comparison of BLOSM and other CS reconstruction methods for accelerated first-pass
cardiac perfusion imaging of human subjects

Fig. 6 shows representative results from first-pass contrast-enhanced perfusion images of the

heart using different CS reconstruction methods. Images acquired at early, middle, and late

phases of contrast enhancement are shown in different rows. Due to patient respiration, the

heart shifted downward (~16 mm) in the middle row. Images from fully-sampled k-space

data as well as rate-4 retrospectively-accelerated images reconstructed using conventional

FFT, BLOSM and other CS methods are shown in separate columns. Visual inspection

shows that BLOSM-reconstructed images resemble the fully-sampled data at all phases

better than the other CS methods. Reconstruction methods without motion guidance, namely

k-t SLR and BLOSM w/o MG (columns 3 and 4), show the inability to recover artifact-free

images when motion occurs (row 2). k-t FOCUSS with ME/MC (row 2) had blurring and

lower SNR as compared to BLOSM. k-t SLR w/ gMG had excessive blurring, similar to that

seen in the simulated phantom, which propagated through many phases including phases

with little or no motion.

Motion recovery can also be appreciated by observation of the x-t profiles. As highlighted

by the red arrows, noise and artifacts were mostly removed without over-smoothing using
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BLOSM, while all the other methods showed various artifacts and did not recover x-t

profiles when motion occurred as accurately as BLOSM.

The reconstructed images were analyzed quantitatively using rRMSE and SSIM. Values for

26 slices are shown in Fig. 7. BLOSM demonstrated the best reconstruction quality with the

minimum rRMSE and the maximum value of SSIM (p<0.05 vs. all other methods, ANOVA)

Evaluation of initial block size, initial block positions, the coarse-to-fine strategy, and the
use of motion compensation

Fig. 8 plots rRMSE as a function of the BLOSM iteration number for different initial block

sizes, and shows that BLOSM converges to a single rRMSE value independent of the initial

block size. Thus, no single initial block size is optimal for BLOSM. Using similar plots,

Figs. 9A–B demonstrate the benefits of the coarse-to-fine strategy, as use of the coarse-to-

fine strategy reduces rRMSE in both phantom and human data. Lastly, Figs. 9C–D show the

benefits of motion guidance, as BLOSM with motion tracking leads to reduced rRMSE as

compared to BLOSM w/o MG. A number of abrupt transitions in rRMSE as a function of

iteration are observed in Fig. 8, and correspond to coarse-to-fine adjustments of block size,

registration method, and iterative soft threshholding values as BLOSM iterates. To quantify

potential differences related to initial block positions, BLOSM using the original block

positions and BLOSM using the shifted block positions were both compared to a reference

image (a fully-sampled 2DFT-reconstructed image). As shown in Fig. 10, we found a nearly

identical difference distribution compared to the reference image for BLOSM using the

original block positions and BLOSM using the shifted block positions.

Computation time

Benchmark tests showed the total computation times for BLOSM, k-t SLR and k-t FOCUSS

with ME/MC for a given dataset were 986, 32, and 142 seconds, respectively. For BLOSM,

647 seconds were spent on motion estimation, 93 seconds on computing sparsifying

transforms (SVD) and 210 seconds on block handling. Due to the coarse-to-fine strategy,

BLOSM iterations were divided into 4 stages, where stage 1 had 60 blocks of size 21×21

pixels, stage 2 had 90 blocks of size 17×17, stage 3 had 154 blocks of size 13×13 and stage

4 had 216 blocks of size 11×11. The average computation times per iteration were 1.1±0.04,

1.5±0.04, 1.9±0.05 and 2.3±0.05 seconds for each stage, respectively.

DISCUSSION

We developed a novel CS reconstruction technique, termed BLOSM, that exploits regional

spatiotemporal sparsity and compensates for the effects of respiratory motion by embedding

motion tracking within the reconstruction algorithm. Experiments comparing different

reconstruction algorithms demonstrated that the regional approach with motion

compensation combine to contribute to the superior performance of BLOSM. Visual

inspection of images as well as quantitative assessments of image quality (rRMSE and

SSIM) demonstrated the advantages of BLOSM.

The two key components of BLOSM, namely the use of both regional sparsity and motion

tracking, work together to achieve improved image quality. The finding that BLOSM
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without motion guidance performed better than global k-t SLR demonstrated that regional

sparsity has advantages over global sparsity when using SVD. This finding was also

observed in previous work where compartment-based k-t PCA separated perfusion images

into different parts (right ventricular blood pool, left ventricle, etc.) and achieved better

image quality than conventional k-t PCA (31). In addition, BLOSM with motion guidance

performed better than BLOSM without motion guidance, showing the advantage of the

motion-guided regional approach.

Adequate motion tracking is central to the performance of BLOSM. We chose to use the

ANTS toolbox because it can handle various types of motion and deformation, even with

changing signal intensity (23,24). It is worth pointing out that although in BLOSM blocks

are tracked, the motion information used for block tracking is obtained by registering whole

images, not by using a block matching algorithm, such as in k-t FOCUSS with ME/MC. We

used the displacement of the central pixel of the block to represent the whole block motion.

The displacements in a region are expected to be smoothly changing, so the center pixel

should be representative of the block. Also, our method for tracking blocks in BLOSM

avoided the use of spatial interpolation. In contrast, our implementation of k-t SLR with

global motion guidance included spatial interpolation steps in the sparsity calculation and in

the fidelity calculation, and lead to blurring and smoothing. BLOSM was designed to avoid

spatial interpolation, which contributed to its lack of blurring. BLOSM was evaluated using

2D imaging, and may be subject to errors when through-plane motion occurs. Therefore, we

used computer simulations to investigate the behavior of BLOSM with through-plane

motion and found that, while some minor blurring can occur, BLOSM still performed better

than the other CS methods under these conditions. This result held even when objects

completely disappeared and appeared over time. In the future we may investigate a frame

rejection scheme and/or a 3D acquisition to better deal with throughplane motion. While

motion tracking within BLOSM will never be perfect, we combined motion tracking with

SVD, which is known to be fairly tolerant to misregistration of serial images (6,13,40). Also,

the use of a block-tracking approach could potentially lead to image regions that are not

covered by tracked blocks, i.e., gaps. To avoid such a situation, we use highly overlapping

blocks and, if gaps do occur, they are detected and patched with additional blocks. Our

results also showed that BLOSM converges to a common RMSE independent of the initial

block size, and that there is little effect of using different initial block positions on the

resulting reconstructed images.

Our data also support the use of the coarse-to-fine strategy for BLOSM. As the BLOSM

algorithm iterates, the spatial resolution of the estimated image improves and supports the

use of finer motion estimation and use of smaller blocks. When comparing BLOSM with

and without the coarse-to-fine strategy, rRMSE is lower when using this strategy. In the

current implementation of BLOSM, the block size decreased and the registration method

updated once for every fifty iterations, and these settings achieved good results. However, a

better approach to consider in the future may be to include an estimate of displacement

accuracy into the cost function and to adaptively weight motion-guidance. In that case, when

the displacement estimation accuracy is low, less trust will be given to the current estimate

and the previous estimate would be used instead. Such a strategy would be similar to the
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approach used with Kalman filters and may improve tolerance to motion estimation error

(41).

Free parameters for the CS problem were empirically varied to find a set that achieved low

rRMSE. The Schatten norm, p, threshold value, λ, and block size, Nb, were optimized

separately while fixing the other parameters. Parameter optimization was done for phantom

and human data, and the optimal values were similar for both types of data, indicating that

the algorithm is stable. With Schatten norm p<=1, Eq.1 becomes a non-convex problem. We

found that optimal image quality was achieved with p=0.9, and this agrees with other results

using the same Schatten norm applied to MR images of the brain (33). The threshold value

for each block at singular value γ is calculated as λ p(γ)p−1 and the selection of p=0.9

enables a block-specific regularization since different blocks have different values of γ.

Singular values which contain most of the energy and contrast will receive low penalties

while small singular values which mainly correspond to noise and artifacts will receive

higher penalties. When p is fixed, the weighting factor λ in Eq.6 controls the threshold and

has a high impact on reconstruction quality. For each of the CS methods (BLOSM, BLOSM

w/o MG, k-t SLR and k-t SLR w/ gMG) a range of λ (0~2000) was independently tested

using a couple of datasets to find the optimal λ that gave the minimum rRMSE. For the IST

algorithm and using a diminishing of λ through iterations, we found that the final image

quality was stable for a range of λ values (20~200) even with changes in other experimental

parameters, such as the norm p. When an aggressive λ value (>500) was chosen, over-

regularization was observed as block-like artifacts. Other recent methods exploiting regional

sparsity (29,31,35) also have different regularization of different regions. A moderate

filtering or denoising step is taken in these studies to ease the block artifacts. Our use of

overlapping blocks is similar to these strategies. In our study, all images were scaled to have

a maximum value of 250 and no block artifacts were observed for a wide range of λ (0~500)

with our experimental settings. Most of the datasets tested showed optimal behavior at λ=50.

Thus a λ value of 50 was chosen to reconstruct all the datasets.

BLOSM is a motion-adaptive regional-sparsity-based CS method. Other methods such as k-t

FOCUSS (4) and, recently, MASTeR (16) also incorporate motion compensation into a CS

reconstruction. In k-t FOCUSS with motion estimation and compensation, although motions

are estimated on a regional basis, x-f sparsity is exploited. In MASTeR, motion estimation

varies regionally and temporal-difference sparsity is used. In contrast, BLOSM uses regional

motion estimation and exploits regional matrix low-rank structure. Also, these three methods

differ in the details of the motion estimation algorithms, which likely effects resulting image

quality. Previously, most CS methods for dynamic imaging have exploited sparsity using

either whole images (such as k-t SLR) or single pixels (such as temporal difference or x-f

sparsity). BLOSM, which exploits regional sparsity, is in between these two extremes, and

provides the advantages of greater flexibility (compared to whole images) and use of more

information (compared to single pixels). The k-t SLR method used in this study for

comparison was modified to use the IST optimization algorithm and excluded the

spatiotemporal total variance reported by Lingala et al (6). The modified k-t SLR method

was used in order to make a fair comparison with BLOSM. Like k-t SLR, BLOSM could be

extended to include extra sparsity constraints and could be solved by alternating direction
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algorithms (42). In this manuscript, we focused our efforts on evaluating BLOSM and other

CS methods using only single-coil data. In the future we plan to combine BLOSM with

parallel imaging such as SENSE (43) and Self-consistent Parallel Imaging (SPIRiT) (44) by

exploiting joint sparsity (3,45–47) to achieve higher acceleration rates and better

reconstruction quality. BLOSM is also compatible with non-Cartesian k-space trajectories.

A limitation of our study was that, when comparing various reconstruction methods, we

used magnitude-only datasets, thus phase effects were not accounted for.

The present study focused on using BLOSM to reconstruct high-quality accelerated contrast-

enhanced first-pass cardiac perfusion images, even in the presence of respiration due to

imperfect breathholding. However, using the concepts of regional motion tracking and

regional sparsity, BLOSM may also be applicable to other dynamic MRI such as cardiac

cine imaging, T1 mapping, multi-TI arterial spin labeling, and other methods. Acceleration

of these applications with BLOSM may be the subject of future studies. The computation

time of BLOSM could also be improved in the future. The time consumed by the motion

estimation (65% of total time) and block handling (21% of total time) can be decreased

through better parallelization of the code and implementation using a graphics processing

unit.

In summary, BLOSM makes use of data-driven spatiotemporal basis functions applied to

regions and achieves motion compensation by embedding regional motion tracking into the

iterative CS image reconstruction algorithm. With this combination, BLOSM attains the

benefits of data-driven spatiotemporal basis functions while reducing artifacts from non-

periodic motion such as breathing.
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Figure 1.
General description of Block LOw-rank Sparsity with Motion-guidance (BLOSM). A set of

undersampled dynamic images are divided into blocks (labeled 1 to 5 as an example).

Motion trajectories for each block are obtained from the current image estimation and used

to track each block through time. The motion-tracked blocks are stacked together to form a

cluster for each group of blocks. Each cluster then undergoes a singular value shrinkage step

and the resulting blocks are merged into a new estimated image. The iterations continue for

a fixed number of iterations or until a stopping criteria is met.
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Figure 2.
BLOSM tracks blocks of pixels through time and exploits regional low-rank sparsity. An

example block of pixels (red square) is tracked through all the frames. These temporally

related blocks with similar spatial contents are gathered together to form a 3D (Nb×Nb×Nt)

cluster. The cluster is rearranged into a 2D matrix (Ns×Nt, Ns = Nb×Nb), which has high

spatiotemporal correlations. Singular value decomposition is applied to the matrix, and only

a few of the singular values have significantly higher values than the others, thus the data

present low-rank sparsity.
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Figure 3.
Illustration of BLOSM block tracking. m(t1) and m(t2) are two consecutive images. An

object (gray circle) is displayed on both images which underwent a translational shift

(rightward and upward) from frame to frame. A red point is labeled on the circle to represent

part of the object. A block B(u1) centered at the red point is initiated on m(t1). The red point

is tracked from m(t1) to m(t2) using the ANTS toolbox, as shown by the arrow. Note that the

tracked point on m(t2) is not at the center of the pixel. Instead of using spatial interpolation,

the pixel containing the red dot (the shaded pixel) is selected as the new center pixel for the

block. Then the neighboring pixels are included to form a tracked block on m(t2) as B(u2)

where u2 = {u1 + Δu1}.
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Figure 4.
In BLOSM, overlapping blocks are used to avoid gaps. The circles in the figure represent

block centers. The solid red centers represent initial blocks that cover the whole image, and

the unfilled circles represent additional blocks. The initial blocks are demarcated by solid

lines, and the additional blocks, which overlap the initial blocks, are demarcated by dashed

lines.
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Figure 5.
Reconstruction of retrospectively rate-4 undersampled images from computer-simulated

phantoms that undergo translational shifts, rotation, deformation/TPM and variable signal

intensity over time. Example reconstructed images at one time frame are shown in the top

row. Phantom 1 (P1) undergoes rigid translational shifts along the phase-encoding direction.

P2 has an abrupt change in size as well as appearance/disappearance of features to mimic

through plane motion combined with translational shifts in the readout direction. P3

undergoes rigid translational shifts along the readout direction. P4 undergoes a gradual

change in size which can be interpreted as either cardiac contraction or through-plane

motion. P5 rotates counterclockwise through time to mimic object rotation motion. All the

phantoms also have quadratically changing signal intensity over time. Corresponding x-t

profiles for each phantom (P1–P5) are shown on the bottom panel, where the profile

locations are indicated by dashed lines on the fully-sampled image. The first column shows

fully-sampled data reconstructed by FFT and serves as a reference. The other columns

display undersampled data reconstructed using conventional FFT and the CS methods:

BLOSM, k-t FOCUSS with ME/MC, k-t SLR, BLOSM without motion guidance (BLOSM

w/o MG) and k-t SLR with global motion guidance (k-t SLR w/ gMG). BLOSM provided

the most accurate recovery of the fully sampled images. For k-t FOUCSS with ME/MC, k-t

SLR and BLOSM w/o MG, residual artifacts and moderate motion blurring can be observed,

especially on P4.
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Figure 6.
Comparison of BLOSM with other CS algorithms using retrospectively rate-4 undersampled

first-pass contrast-enhanced MRI of the heart. Example frames are presented in different

rows representing early, mid and late phases of contrast passage. Undersampled data are

reconstructed by conventional FFT, BLOSM, k-t FOCUSS with ME/MC, k-t SLR, BLOSM

without motion guidance (w/o MG) and k-t SLR with global motion guidance (w/ gMG).

Respiratory motion occurred to a large degree during the middle phase (second row) and to a

lesser degree at the late phase (third row). BLOSM provided the best image quality for all

the phases and very closely matched the fully-sampled images. k-t FOCUSS with ME/MC,

k-t SLR and BLOSM w/o MG performed fairly well for phases where there was no or little

motion. For the mid phase, severe artifacts can be seen for k-t FOCUSS with ME/MC, k-t

SLR and BLOSM w/o MG. k-t SLR w/ gMG resulted in blurred images for all phases. x-t

profiles showing similar results are shown on the bottom row, with important dynamic

features highlighted by red arrows.
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Figure 7.
Quantitative analysis of the performance of various reconstruction methods applied to rate-4

accelerated first-pass contrast-enhanced MRI of the heart. Average relative root mean square

error (rRMSE) and structural similarity (SSIM), averaged over time, of the CS-reconstructed

images were compared to fully-sampled reference images. BLOSM achieved the lowest

error (rRMSE) and highest similarity (SSIM) of all the CS methods. (* P<0.01 v.s.

undersampled, k-t FOCUSS with ME/MC, k-t SLR and k-t SLR w/ gMG; & P<0.05 v.s.
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BLOSM w/o MG; ** P<0.01 v.s. undersampled, k-t SLR, and k-t SLR w/ gMG; $ P<0.05

v.s. k-t FOCUSS with ME/MC).
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Figure 8.
Convergence of BLOSM for different initial block sizes. BLOSM using different initial

block sizes was used to reconstruct a first-pass perfusion dataset. These rRMSE vs. iteration

curves demonstrate that the convergence of BLOSM is essentially independent of the initial

block size (not all tested initial block sizes are shown, but all had similar behavior).
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Figure 9.
Convergence of BLOSM under various conditions. Panels (A and B) show for both

computer simulated phantoms and in vivo perfusion imaging that the coarse-to-fine strategy

provides lower rRMSE compared to not using this strategy. Similarly, panels (C and D)

show that for both computer simulated phantoms and in vivo perfusion imaging the use of

motion guidance reduces rRMSE compared to not using motion guidance.
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Figure 10.
Image reconstruction using BLOSM is not highly dependent on the initial block positions.

Images were reconstructed using BLOSM with original initial block positions (A) and with

shifted initial block positions (D). The difference between a fully-sampled 2DFT-

reconstructed image (Reference image) and (A) is shown in (B), and the difference between

the reference image and (D) is shown in (E). Histograms from multiphase difference images

using the original initial block positions and the shifted initial block positions are shown in

(C) and (F), respectively. Using either the original initial block positions or the shifted initial

block positions results in the same difference distribution (Gaussian distribution verified

using the Jarque-Beta test) compared to the reference images. μ is the mean and σ2 is the

variance.
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