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Protein structural fluctuation, typically measured by Debye-Waller factors, or B-factors, is a mani-
festation of protein flexibility, which strongly correlates to protein function. The flexibility-rigidity
index (FRI) is a newly proposed method for the construction of atomic rigidity functions required
in the theory of continuum elasticity with atomic rigidity, which is a new multiscale formalism for
describing excessively large biomolecular systems. The FRI method analyzes protein rigidity and
flexibility and is capable of predicting protein B-factors without resorting to matrix diagonalization.
A fundamental assumption used in the FRI is that protein structures are uniquely determined by vari-
ous internal and external interactions, while the protein functions, such as stability and flexibility, are
solely determined by the structure. As such, one can predict protein flexibility without resorting to
the protein interaction Hamiltonian. Consequently, bypassing the matrix diagonalization, the origi-
nal FRI has a computational complexity of O(N2). This work introduces a fast FRI (fFRI) algorithm
for the flexibility analysis of large macromolecules. The proposed fFRI further reduces the compu-
tational complexity to O(N ). Additionally, we propose anisotropic FRI (aFRI) algorithms for the
analysis of protein collective dynamics. The aFRI algorithms permit adaptive Hessian matrices, from
a completely global 3N × 3N matrix to completely local 3 × 3 matrices. These 3 × 3 matrices, de-
spite being calculated locally, also contain non-local correlation information. Eigenvectors obtained
from the proposed aFRI algorithms are able to demonstrate collective motions. Moreover, we inves-
tigate the performance of FRI by employing four families of radial basis correlation functions. Both
parameter optimized and parameter-free FRI methods are explored. Furthermore, we compare the
accuracy and efficiency of FRI with some established approaches to flexibility analysis, namely, nor-
mal mode analysis and Gaussian network model (GNM). The accuracy of the FRI method is tested
using four sets of proteins, three sets of relatively small-, medium-, and large-sized structures and an
extended set of 365 proteins. A fifth set of proteins is used to compare the efficiency of the FRI, fFRI,
aFRI, and GNM methods. Intensive validation and comparison indicate that the FRI, particularly the
fFRI, is orders of magnitude more efficient and about 10% more accurate overall than some of the
most popular methods in the field. The proposed fFRI is able to predict B-factors for α-carbons of
the HIV virus capsid (313 236 residues) in less than 30 seconds on a single processor using only one
core. Finally, we demonstrate the application of FRI and aFRI to protein domain analysis. © 2014
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4882258]

I. INTRODUCTION

Proteins provide the structural basis for living organisms
and are essential research subjects of the biological sciences.
Although the original sequence-structure-function dogma2

has been seriously challenged,8, 32 the protein structure, in ei-
ther folded or unfolded form, still determines its function.
Therefore, the understanding of the structure of a protein
holds the key to the prediction of the protein’s function.27, 45

Unfortunately, it remains a major challenge in the biologi-
cal sciences to predict a protein’s functions from its known
structure.

a)Author to whom correspondence should be addressed. Electronic mail:
wei@math.msu.edu

There are a few essential factors, including protein ge-
ometry, electrostatics, and flexibility, that strongly correlate
to protein function. There is no need to elaborate on the
importance of protein geometry and electrostatics to protein
function and dynamics. However, the impact of protein flex-
ibility on protein function is often underestimated or even
overlooked. In general, protein flexibility is the ability to de-
form from the equilibrium state under external forces, such
as docking of ligands, docking with other proteins or random
bombardments of small molecules in liquid and/or gas phases
and lattice phonons in a solid phase.13 Under physiological
conditions, proteins experience everlasting motion or struc-
tural fluctuation in a wide variety of spatiotemporal scales
because of their flexibility and uninterrupted external forces.
However, at absolute zero temperature, there is no protein mo-
tion or fluctuation. Therefore, protein motion or fluctuation
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is just the molecule’s response to the external stimuli, while
protein flexibility is an intrinsic property of the structure. In
fact, protein flexibility varies from protein to protein and is a
signature of the protein. In a given protein, flexibility can be
different from atom to atom, from residue to residue and from
domain to domain. Typically, the performance of a theoretical
model for protein flexibility analysis can be validated via its
prediction of protein structural fluctuation.

X-ray crystallography is one of the most important tech-
niques for protein flexibility analysis. The atomic mean-
square-fluctuations are reflected in X-ray diffraction or other
diffraction data and can be estimated in terms of the Debye-
Waller factor, also known as the B-factor or temperature fac-
tor. Typically, reported B-factors are not corrected for the
variations in atomic diffraction cross sections and chemical
stability during the diffraction data collection, which per-
haps contributes to the fact that all-atom models usually do
not work as well as coarse-grained models in the B-factor
prediction.28 Nuclear magnetic resonance (NMR) is another
important method, which is particularly valuable for flexibil-
ity analysis under physiological conditions. NMR is able to
investigate protein flexibility at a variety of time scales.

Apart from experimental approaches, a number of the-
oretical methods have been developed for flexibility anal-
ysis and B-factor prediction in the past. Protein collective
motion and fluctuation can be elucidated by molecular dy-
namics (MD), which has considerably expanded our under-
standing of the conformational landscapes of proteins. How-
ever, the excessively large number of degrees of freedom
associated with the all-atom representation and long time in-
tegration becomes computationally inefficient with increas-
ing size of the system and can obscure larger scale motions.
Alternative time-independent approaches, such as normal
mode analysis (NMA),7, 15, 23, 39 graph theory,19 and elastic
network model (ENM)41 theories, including Gaussian net-
work model (GNM)4, 5, 12 and anisotropic network model
(ANM),3 have been developed for protein flexibility anal-
ysis in the past few decades. These methods can be de-
rived from their corresponding Newton’s equations by using
the time-harmonic approximation.28 The low order eigen-
modes computed from diagonalizing the Kirchhoff matrix
or the Hessian matrix can shed light on the long-time be-
havior of the protein dynamics beyond the reach of MD
simulations.5, 7, 23, 39, 41 Coarse-grained based ENM and GNM
approaches have become popular recently due to their simpli-
fied potential and computational efficiency.3–5, 16, 24, 37 It was
shown that the GNM is about one order more efficient than
most other approaches.48 Improvements to these approaches
have been developed for many aspects, including crystal peri-
odicity and cofactor corrections,17, 21, 22, 35 and density – clus-
ter rotational – translational blocking.11 These approaches
have been applied to the study of large proteins or protein
complexes, such as, hemoglobin,47 F1 ATPase,10, 50 chaper-
onin GroEL,20, 49 viral capsids,29, 36 and ribosome.38, 43 Flexi-
bility also plays an important role in stability25 and docking
analysis.14 For further detail in their status and application,
the reader is referred to recent review papers.9, 26, 34, 48

Recently, we have developed a new multiscale formalism
called continuum elasticity with atomic rigidity (CEWAR) for

the elastic analysis of excessively large macromolecules. In
the CEWAR approach, a continuous atomic rigidity function
is required to characterize the shear modulus in the stress
tensor of elasticity equations. To this end, a simple method,
called flexibility-rigidity index (FRI), is introduced to evalu-
ate macromolecular flexibility and rigidity.46 We noted after
the publication of our earlier work46 that the name of “flex-
ibility index” was proposed independently by von der Lieth
et al.42 and Jacobs et al.19 for two different quantities to de-
scribe bond strengths. Both of these flexibility indices are dis-
tinct from our proposed FRI. The FRI is a solely structural
based algorithm that does not reconstruct any protein inter-
action Hamiltonian. Only elementary arithmetics is needed in
the FRI method for proteins. In particular, the FRI prediction
of protein B-factors does not require a stringently minimized
structure and time consuming matrix diagonalization or ma-
trix decomposition, nor does it involve any training procedure.
Two types of monotonically decaying correlation functions,
namely, exponential type and Lorentz type, have been utilized
previously for the construction of protein correlation matrix.
Parameter ranges for the FRI have been extensively tested and
the performance of the FRI for protein B-factor prediction
has been carefully validated with a set of 263 proteins.46 It
is found that for residue based B-factor prediction, the FRI
can be made parameter free. However, it is not clear how the
FRI compares to alternative approaches in the field, particu-
larly the state of the art methods such as GNM and NMA.

One of the objectives of the present work is to introduce
a fast FRI (fFRI) algorithm by using appropriate data struc-
tures. Computational efficiency is a central issue. The com-
putational complexity of the proposed fFRI is of O(N ), com-
pared to that of O(N2) for the original FRI algorithm and of
O(N3) for the GNM, where N is the number of atoms. We use
a cell lists approach1 to reduce the computational complex-
ity. Another objective is to introduce anisotropic FRI (aFRI)
algorithms for the motion analysis of biomolecules. Unlike
ANM,3, 28 which is completely global and has 3N × 3N el-
ements in its Hessian matrix, the proposed aFRI algorithms
have adaptive Hessian matrices, which vary from completely
global to completely local. Despite the localization, there are
collective motions in three sets of eigenvectors. The other ob-
jective of the present work is to further analyze the perfor-
mance of the FRI methods for protein B-factor prediction. To
this end, we examine the accuracy of FRI algorithms asso-
ciated with four families of correlation functions and carry
out a comparative study of the FRI and fFRI vs. other cutting
edge approaches, namely, NMA and GNM. Our investigation
concerns three issues, i.e., accuracy, reliability, and efficiency
in the protein B-factor prediction. Finally, we also demon-
strate the applications of the FRI and aFRI to protein domain
analysis.

The rest of this paper is organized as follows. Section II
is devoted to methods and algorithms. To establish notation
and facilitate further discussion, the FRI approach is briefly
discussed. We present a new simplified version of the FRI
that is relevant to the B-factor prediction and visualization
analysis studied in this work. Anisotropic FRI algorithms
are proposed via two different ways. The fFRI algorithm is
developed by using appropriate data structures to avoid the
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evaluation of insignificant correlation matrix elements, which
leads to a sparse fFRI matrix. In Sec. III, we first analyze the
behavior of a few FRI correlation functions. Additionally, we
examine the parameter dependence of some FRI correlation
functions. Moreover, the performance of fFRI is investigated.
Further, we provide a comprehensive comparison of our FRI
and other established methods. We adopted three protein sets
corresponding to relatively small-, medium-, and large-sized
structures, proposed in the literature.28 We also utilize an ex-
tended set of 365 proteins to further evaluate the performance
of various methods. Furthermore, the computational complex-
ities of FRI, fFRI, and GNM are compared over a set of
44 proteins. Finally, we show that the FRI offers a distin-
guished visualization of biomolecular structure and interac-
tion. In Sec. IV, we demonstrate the usefulness of the FRI and
aFRI by carrying out an in-depth study of protein domains.
This paper ends with concluding remarks.

II. THEORY AND ALGORITHM

In the CEWAR model, the dynamics of a biomolecular
system under the given force f is governed by the equation of
motion46

ρẅ = [∇λ∇ · w + ∇μ · [∇w + (∇w)T ]

+ (λ + μ)∇∇ · w + μ∇2w] + f, (1)

where ρ is the density of the macromolecule, w is the dis-
placement, and λ = λ(r) and μ = μ(r) are, respectively, bulk
modulus and shear modulus. The FRI algorithm was proposed
to evaluate the shear modulus, i.e., rigidity.

This section describes the theory and algorithm underpin-
ning the FRI method. We first briefly review the FRI theory
to establish notation. Then, two anisotropic FRI algorithms
are introduced for the analysis of the anisotropic motions of
biomolecules. Finally, A fast FRI algorithm is proposed to re-
duce the computational complexity of the original FRI.

A. Flexibility-rigidity index

We consider proteins as examples to illustrate our FRI
algorithm, although other biomolecules, such as DNA and
RNA, can be similarly treated with a minor modification
of our algorithm. We are particularly interested in a coarse-
grained representation. However, methods for a full atom de-
scription can be formulated as well.

We seek a structure based algorithm to convert protein
geometry into protein topology. To this end, we consider a
protein with N Cα atoms. Their locations are represented by
{rj |rj ∈ R3, j = 1, 2, . . . , N}. We denote ‖ri − rj‖ the Eu-
clidean space distance between ith Cα atom and the jth Cα

atom. The distance geometry of protein Cα atoms is utilized
to establish the topology connectivity by using monotonically
decreasing radial basis functions,

Cij = �(‖ri − rj‖; ηij ), (2)

where ηij is a characteristic distance between particles, and
�(‖ri − rj‖; ηij) is a correlation function, which is, in gen-
eral, a real-valued monotonically decreasing function. As a

correlation function, it satisfies

�(‖ri − ri‖; ηii) = 1, (3)

�(‖ri − rj‖; ηij ) = 0 as ‖ri − rj‖ → ∞. (4)

Delta sequences of the positive type discussed in an earlier
work44 are all good choices. For example, one can use gener-
alized exponential functions

�(‖ri − rj‖; ηij ) = e−(‖ri−rj ‖/ηij )κ

, κ > 0 (5)

and generalized Lorentz functions

�(‖ri − rj‖; ηij ) = 1

1 + (‖ri − rj‖/ηij )υ
, υ > 0. (6)

Essentially, the correlation between any two particles should
decay according to their distance. Therefore, many other al-
ternatives can be used and some of them are investigated in
Sec. III.

The correlation map or cross correlation is an important
quantity for the GNM. We can define a similar correlation
map by setting C = {Cij}, i, j = 1, 2, . . . , N. The correlation
map measures the connectivity of Cαs in the protein. The sim-
ilarity and difference of the present correlation map and that
of the GNM are studied in Sec. III.

We define an atomic rigidity index μi as the summation
of topological connectivity

μi =
N∑

j=1

wij�(‖ri − rj‖; ηij ), ∀i = 1, 2, . . . , N, (7)

where wij is a weight function related to the atomic type. The
atomic rigidity index μi manifests the rigidity or stiffness at
the ith atom. In a general sense, the atomic rigidity index re-
flects the total interaction strength, including both bonded and
non-bonded contributions. It is quite straightforward to de-
fine the averaged molecular rigidity index as a summation of
atomic rigidity indices

μ̄MRI = 1

N

N∑
i=1

μi. (8)

The averaged molecular rigidity index can be used to predict
molecular thermal stability, bulk modulus, density (compact-
ness), boiling points of isomers, the ratio of surface area over
volume, surface tension, etc. A detailed investigation of these
aspects is beyond the scope of the present work.

We are now ready to define a position dependent shear
modulus

μ(r) =
N∑

j=1

wj (r)�(‖r − rj‖; ηij ), r ∈ 	E, (9)

where wj (r) is a weight function, r is in the proximity of ri,
and 	E is the macromolecular domain. In order to determine
wj (r), we define an average rigidity (or averaged rigidity in-
dex function) by

μ̄ = 1

V

∫
μ(r)dr, (10)
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where V is the volume of the macromolecule. If wj (r) is
a constant, its value can be uniquely determined by a com-
parison of μ̄ with experimental shear modulus33 for a given
macromolecule and correlation function.

We also define an atomic flexibility index as

fi = 1

μi

, ∀i = 1, 2, . . . , N. (11)

Since the flexibility at each atom is proportional to its temper-
ature fluctuation, we can express B-factors as

Bt
i = afi + b, ∀i = 1, 2, . . . , N, (12)

where {Bt
i } are theoretically predicted B-factors, and a and

b are two constants to be determined by a simple linear
regression.

We can also define the averaged molecular flexibility in-
dex (MFI) as a summation of atomic flexibility indices

f̄MFI = 1

N

N∑
i=1

fi. (13)

MFI should correlate with molecular stability and energy.
For the purpose of visualization, we define a continuous

atomic flexibility function as

F (r) =
N∑

j=1

Bt
i 
(‖r − rj‖), r ∈ 	E, (14)

where 
(‖r − rj‖) is a general interpolation function for
scattered data. Wavelets, spline functions, and modified Shep-
ard’s method30, 40 can be employed for the interpolation. One
can map f(r) to the molecular surface to visualize the protein
flexibility.46 Alternatively, one can compute the continuous
atomic flexibility function by

F (r) = 1∑N
j=1 wj (r)�(‖r − rj‖; ηij )

, r ∈ 	E. (15)

B. Anisotropic flexibility-rigidity index

In this section, we propose a new anisotropic model
based on our FRI theory. In existing anisotropic methods, the
Hessian matrix is always global, i.e., the matrix contains all
the 3N × 3N elements for N particles in a molecule. In our
aFRI model, the Hessian matrix is inherently local and adap-
tive. Its size may vary from 3 × 3 for a completely local aFRI
to 3N × 3N for a completely global aFRI, depending on the
focus of a physical problem.

Let us partition all the N particles in a molecule into a
total of M clusters {c1, c2, . . . , ck, . . . , cM}. Cluster ck has Nk

particles or atoms so that N = ∑M
k=1 Nk . A cluster may be of

physical interest, i.e., an alpha helix, a domain, or a binding
site of a protein. One of two extreme cases is that there is
only one particle in each cluster. We therefore have N clusters.
The other case is that there is only one cluster, i.e., the whole
molecule. The essential idea is to develop a Hessian matrix for
each cluster individually without the information about other
cluster properties. (However, information for nearby particles
outside the cluster is still required.) For example, if we are

interested in the thermal fluctuation of a particular cluster ck

with Nk particles or atoms, we can find 3Nk eigenvectors for
the cluster. Let us keep in mind that each position vector in
R3 has three components, i.e., r = (x, y, z). We denote

�ij
uv = ∂

∂ui

∂

∂vj

�(‖ri − rj‖; ηij ),

(16)
u, v = x, y, z; i, j = 1, 2, . . . , N.

Note that for each given ij, we define �ij = (�ij
uv) as a local

anisotropic matrix

�ij =

⎛
⎜⎜⎜⎝

�
ij
xx �

ij
xy �

ij
xz

�
ij
yx �

ij
yy �

ij
yz

�
ij
zx �

ij
zy �

ij
zz

⎞
⎟⎟⎟⎠ . (17)

Since rigidity and flexibility can both be anisotropic, it
is natural to propose two different aFRI algorithms based
on rigidity Hessian matrix and flexibility Hessian matrix,
respectively.

1. Anisotropic rigidity

The anisotropic rigidity is defined by a rigidity Hessian
matrix for an arbitrary cluster ck. Let us denote (μij

uv(ck)) a
rigidity Hessian matrix for cluster ck. Its elements are chosen
as

μij
uv(ck) = −wij�

ij
uv, i, j ∈ ck; i �= j ; u, v = x, y, z, (18)

μii
uv(ck) = ∑N

j=1 wij�
ij
uv, i ∈ ck; u, v = x, y, z, (19)

μij
uv(ck) = 0, i, j /∈ ck; u, v = x, y, z. (20)

Hessian matrix (μij
uv(ck)) is of 3Nk × 3Nk dimensions. Note

that the diagonal part, μii
uv(ck), has built in information from

all the particles in the system, even if the cluster is completely
localized, i.e., Nk = 1, ∀k.

An immediate test of the anisotropic rigidity is to check
if it works for the B-factor prediction. To this end, we collect
the diagonal terms of the rigidity Hessian matrix

μi
diag = Tr

(
μi

uv

)
(21)

=
N∑

j=1

wij

[
�ij

xx + �ij
yy + �ij

zz

]
. (22)

We then define a set of anisotropic rigidity (AR) based flexi-
bility indices by

f AR
i = 1

μi
diag

. (23)

B-factors can be predicted with a set of {f AR
i } by using the

linear regression in Eq. (12).

2. Anisotropic flexibility

To analyze biomolecular anisotropic motions in parallel
to ANM, we need to examine their anisotropic flexibility. To
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this end, we further define a flexibility Hessian matrix F(ck)
for cluster ck as

Fij (ck) = − 1

wij

(�ij )−1, i, j ∈ ck; i �= j ; u, v = x, y, z,

(24)

Fii(ck) =
N∑

j=1

1

wij

(�ij )−1, i ∈ ck; u, v = x, y, z, (25)

Fij (ck) = 0, i, j /∈ ck; u, v = x, y, z, (26)

where (�ij)−1 denote the unscaled inverse of matrix �ij such
that �ij(�ij)−1 = |�ij|. Similar to the anisotropic rigidity, the
diagonal part Fii(ck) has built in information from all parti-
cles in the system. Therefore, even if the partition of clusters
is completely localized (i.e., N clusters), certain correlation
among atomic motions is retained. By diagonalizing F(ck),
we obtain 3Nk eigenvectors for the Nk particles in cluster ck.
Since the selection of ck is arbitrary, eigenvectors of all other
clusters can be attained using the same procedure.

To obtain the B-factor prediction from this anisotropic
flexibility, we define a set of anisotropic flexibility (AF) based
flexibility indices by

f AF
i = Tr (F(ck))ii , (27)

= (F(ck))iixx + (F(ck))iiyy + (F(ck))iizz . (28)

Then Eq. (12) is employed to obtain B-factor predictions.
In this work, we only consider the coarse-grained model

in which each residue is represented by its Cα . To further sim-
plify the model, the differences between residues are ignored.
The parameter wij is assumed to be 1 and ηij is set to a con-
stant η.

C. Fast FRI algorithm

As discussed in our earlier work,46 the original FRI al-
gorithm has the computational complexity of O(N2), mainly
due to the construction of the correlation matrix. In the present
work, we propose a fFRI algorithm, which computes only the
significant elements of the correlation matrix and at the same
time maintains the accuracy of our method. As a result, the
computational complexity of our fFRI algorithm is of O(N ).

The essential idea is to partition the residues in a protein
into cubic boxes according to their spatial locations. For each
residue in a given box, we only compute its correlation matrix
elements with all residues within the given box and with all
residues in the adjacent 26 boxes. The accuracy and efficiency
of this approach are determined by the box dimension. We
select a box size of R such that

�(R; η) ≤ ε, (29)

where ε > 0 is a given truncation error. Therefore, for gener-
alized exponential functions (5), we have

R ≥ η

(
ln

1

ε

) 1
κ

. (30)

If we set ε = 10−2, we have R ≈ 4.6η for κ = 1 and R ≈ 2.15η

for κ = 2. Note that different κ values have different optimal
η values. The higher the κ value is, the larger the optimal η is.

Similarly, for generalized Lorentz functions (6), we
choose the box size

R ≥ η

(
1 − ε

ε

) 1
υ

. (31)

Again, if we set ε = 10−2, we have R ≈ 10η for υ = 2 and R
≈ 4.6η for υ = 3.

An optimal R should balance the accuracy and efficiency.
In Sec. III B, it is found that the selection of R = 12 Å is
near optimal for both exponential and Lorentz functions. In
Algorithm I, we present a pseudocode to illustrate the trunca-
tion algorithm of the fFRI.

III. NUMERICAL EXPERIMENTS

In this section, we validate the FRI approach for pro-
tein B-factor prediction by a comparison of its performance
with that of two established methods, namely, NMA and
GNM. We consider the accuracy, reliability and efficiency of
these methods. It is well known that the computational com-
plexity of matrix diagonalization is asymptotically close to
O(N3), while that of correlation map construction and two-
parameter linear regression given in Eq. (12) is asymptoti-
cally O(N2). The computational complexity of the proposed
fFRI algorithm is further reduced to O(N ). Therefore, there
is a dramatic reduction in the computational complexity. We
demonstrate that the FRI method outperforms other methods
in computational efficiency and is potentially useful for the
flexibility analysis of excessively large macromolecules.

To test FRI against GNM and NMA, five sets of struc-
tures are utilized. Among them, three sets were used by Park,
Jernigan, and Wu in their comparative study.28 These include
relatively small-, medium-, and large-sized sets of structures.
A fourth set of 44 structures was created to test the efficiency
of each algorithm. This set was created by randomly selecting
protein-only structures from the Protein Data Bank database
with varying size. The number of residues for proteins in this
set range from 125 to 313 236 residues. The final set, called
a superset, is a combination of sets including the three sets
used by Park el al.,28 the first 40 structures of the efficiency
set and a set of 263 high-resolution structures used in earlier
tests of the FRI method.46 The total number of structures in
the superset is 365 after the removal of duplicate structures.

To quantitatively assess the performance of the proposed
FRI model for the B-factor prediction, we consider the corre-
lation coefficient

Cc =
∑N

i=1

(
Be

i − B̄e
) (

Bt
i − B̄t

)
[ ∑N

i=1

(
Be

i − B̄e
)2 ∑N

i=1

(
Bt

i − B̄t
)2]1/2 , (32)

where {Bt
i , i = 1, 2, . . . , N} are a set of predicted B-factors

by using the proposed method and {Be
i , i = 1, 2, . . . , N} are a

set of experimental B-factors read from the PDB file. Here B̄t

and B̄e the statistical averages of theoretical and experimental
B-factors, respectively.
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ALGORITHM I. fFRI algorithm.

Input: atoms(N) � XYZ coordinates from PDB file

mincoor ← minval(atoms) � Compute dimensions of bounding box
maxcoor ← maxval(atoms)
R ← boxsize � Set size of grid
Nbox ← ceiling((maxcoor − mincoor)/R) � Compute number of boxes in each direction

for ii ← 1, Natoms do
i, j, k ← ceiling((atoms(ii) − mincoor)/R) � Count the number of atoms in each box
Natoms(i, j, k) ← Natoms(i, j, k) + 1

end for

for k ← 1, Nbox[3] do
for j ← 1, Nbox[2] do

for i ← 1, Nbox[1] do
allocate(box(i, j, k)) � Allocate space for each box

end for
end for

end for

for ii ← 1, Natoms do � Copy coordinates to appropriate box based on 3D coordinates
i, j, k ← ceiling((atoms(ii) − mincoor)/R)
box(i, j, k) ← atoms(ii)

end for

for k ← 1, Nbox[3] do � Iterate over boxes
for j ← 1, Nbox[2] do

for i ← 1, Nbox[1] do

for na ← 1, Natoms(i, j, k) do � Iterate over atoms in current box

for n ← k − 1, k + 1 do � Iterate over adjacent boxes
for m ← j − 1, j + 1 do

for l ← i − 1, i + 1 do

for nb ← 1, Natoms(l, m, n) do � Iterate over atoms in adjacent boxes
dist ← distance(box(i, j, k)(na), box(l, m, n)(nb))
FRI(na) ← kernel(dist)

end for

end for
end for

end for

end for

end for
end for

end for

A. Analysis of FRI correlation functions

In order to further explore the FRI method, we test four
types of correlation functions. Apart from the Lorentz and ex-
ponential functions, two alternative functions are employed in
our study. All correlation functions equal the unit at the origin
and are monotonically decreasing with respect to increasing
distance (r). Each correlation function is tested with a range
of parameter values for each of 365 structures as listed in Ta-
ble I. The performance of the new correlation functions comes
close to that of the exponential and Lorentz functions with the
product of these two having the highest average correlation
coefficient among alternative functions.

B. Analysis of fFRI algorithms

To analyze the best parameter for Lorentz and exponen-
tial functions, we study their behavior in Fig. 1, where each

function is tested over a range of parameters. For exponen-
tial type of functions, κ = 1 and η = 3 Å give rise to a near
optimal parameter-free FRI. Similarly, for Lorentz type of
functions, υ = 3, and η = 3 Å offer near optimal results. It is

TABLE I. Comparison of average correlation coefficients computed from
various correlation functions. Each function was tested across a range of pa-
rameters and the best score was saved for each structure and used to calculate
the average over a set of 365 structures.

Correlation Parameter Average correlation
function range coefficient

e−(r/η)κ 1.0 ≤ η ≤ 10.0 0.5 ≤ κ ≤ 10.0 0.676
1

1+(r/η)υ 1.0 ≤ η ≤ 10.0 0.5 ≤ υ ≤ 10.0 0.673
1

1+(r/η)υ e−(r/η)κ 1.0 ≤ η, υ, κ ≤ 10.0 0.670
1√

1+(r/η)υ 1.0 ≤ η, υ ≤ 10.0 0.577
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FIG. 1. Parameter testing for exponential (left chart) and Lorentz (right
chart) functions. Average correlation coefficient of B-factor predctions of 365
proteins is plot against choice of η for a range of values for κ or υ.

seen from Fig. 1 that exponential functions are quite sensitive
to η values, while Lorentz functions are relatively robust with
respect to η. This study provides a basis for the selection of
parameter free FRI (pfFRI) schemes.

It is interesting to analyze the performance of the pro-
posed fFRI in terms of accuracy and efficiency. To this end,
we first explore the impact of box size on the correlation co-
efficients of a few fFRI schemes in Fig. 2. For each given κ

and υ, the best η found in Fig. 1 is employed. It is seen from
Fig. 2 that both exponential and Lorentz types of functions are
able to achieve their near optimal performance at R = 12 Å.
Therefore, we recommend R = 12 Å, η = 3 Å and κ = 1
for the exponent type of fFRI method. Similarly, R = 12 Å, η

= 3 Å and υ = 3 are near optimal for Lorentz type of fFRI
methods.

C. Comparison of B-factor predictions

1. FRI vs GNM and NMA

In order to compare the FRI and GNM, we re-analyzed
the structures from Park et al.28 with the GNM method with
a cutoff value of 7 Å, the same value used by the authors. It
was found that some correlation coefficients were artificially
low for GNM due to multiple coordinates for some Cα atoms
in some PDB data and missing Cα atoms in others. To ensure
a fair comparison between the FRI and GNM we re-analyzed
the structures using GNM after processing the PDB files to
fix these issues. We removed all but the highest occupancy
coordinates for each atom and used every Cα atom from the

FIG. 2. The impact of box size to the average correlation coefficient for a set
of 365 proteins. The fFRI is examined over a range of values for parameters
(κ and υ) to illustrate the relationship between accuracy and choice of box
size R.

TABLE II. Correlation coefficients for B-factor prediction obtained by op-
timal FRI (opFRI), parameter free FRI (pfFRI), and Gaussian normal mode
(GNM) for small-size structures.

PDB ID N opFRI pfFRI GNMa NMAa

1AIE 31 0.588 0.416 0.155 0.712
1AKG 16 0.373 0.350 0.185 − 0.229
1BX7 51 0.726 0.623 0.706 0.868
1ETL 12 0.710 0.609 0.628 0.355
1ETM 12 0.544 0.393 0.432 0.027
1ETN 12 0.089 0.023 − 0.274 − 0.537
1FF4 65 0.718 0.613 0.674 0.555
1GK7 39 0.845 0.773 0.821 0.822
1GVD 52 0.781 0.732 0.591 0.570
1HJE 13 0.811 0.686 0.616 0.562
1KYC 15 0.796 0.763 0.754 0.784
1NOT 13 0.746 0.622 0.523 0.567
1O06 20 0.910 0.874 0.844 0.900
1OB4 16 0.776 0.763 0.750b 0.930
1OB7 16 0.737 0.545 0.652b 0.952
1P9I 29 0.754 0.742 0.625 0.603
1PEF 18 0.888 0.826 0.808 0.888
1PEN 16 0.516 0.465 0.270 0.056
1Q9B 43 0.746 0.726 0.656 0.646
1RJU 36 0.517 0.447 0.431 0.235
1U06 55 0.474 0.429 0.434 0.377
1UOY 64 0.713 0.653 0.671 0.628
1USE 40 0.438 0.146 − 0.142 − 0.399
1VRZ 21 0.792 0.695 0.677b − 0.203
1XY2 8 0.619 0.570 0.562 0.458
1YJO 6 0.375 0.333 0.434 0.445
1YZM 46 0.842 0.834 0.901 0.939
2DSX 52 0.337 0.333 0.127 0.433
2JKU 35 0.805 0.695 0.656 0.850
2NLS 36 0.605 0.559 0.530 0.088
2OL9 6 0.909 0.904 0.689 0.886
2OLX 4 0.917 0.888 0.885 0.776
6RXN 45 0.614 0.574 0.594 0.304

aGNM and NMA values are taken from the coarse-grained (Cα) GNM and NMA results
reported in Park et al.28

bValues indicate correlation coefficients, from our own test of GNM, that have signif-
icantly increased compared to the values reported by Park et al.28 See Sec. III C for
details regarding the calculation of new GNM scores.

original PDB files to run the GNM B-factor prediction code
and calculate corrected correlation coefficients. In Tables II–
IV, optimal and parameter free FRI is compared to the GNM
data reported by Park et al.28 The newly calculated correlation
coefficient is shown only if there is a significant improvement
using our processed PDB files. On the other hand, Table V
lists all correlation coefficients for GNM from our own tests
using our processed PDB files. These correlation coefficients
are typically the same as those reported by Park et al.28 al-
though some have changed. The use of our processed PDB
files leads to a slight increase in the average scores for the
GNM in our analysis.

To directly compare the FRI with GNM and NMA,
we calculated the correlation coefficient of Cα B-factor
predictions for the three structure sets taken from Park et al.28

To further compare the FRI and GNM, we also calculated the
accuracy of these two methods on a superset of 365 structures.
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TABLE III. Correlation coefficients for B-factor prediction obtained by op-
timal FRI (opFRI), parameter free FRI (pfFRI) and Gaussian normal mode
(GNM) for medium-size structures.

PDB ID N opFRI pfFRI GNMa NMAa

1ABA 87 0.727 0.698 0.613 0.057
1CYO 88 0.751 0.702 0.741 0.774
1FK5 93 0.590 0.568 0.485 0.362
1GXU 88 0.748 0.634 0.421 0.581
1I71 83 0.549 0.516 0.549 0.380
1LR7 73 0.679 0.657 0.620 0.795
1N7E 95 0.651 0.609 0.497 0.385
1NNX 93 0.795 0.789 0.631 0.517
1NOA 113 0.622 0.604 0.615 0.485
1OPD 85 0.555 0.409 0.398 0.796
1QAU 112 0.678 0.672 0.620 0.533
1R7J 90 0.789 0.621 0.368 0.078
1UHA 83 0.726 0.665 0.638b 0.308
1ULR 87 0.639 0.594 0.495 0.223
1USM 77 0.832 0.809 0.798 0.780
1V05 96 0.629 0.599 0.632 0.389
1W2L 97 0.691 0.564 0.397 0.432
1X3O 80 0.600 0.559 0.654 0.453
1Z21 96 0.662 0.638 0.433 0.289
1ZVA 75 0.756 0.579 0.690 0.579
2BF9 36 0.606 0.554 0.680b 0.521
2BRF 100 0.795 0.764 0.710 0.535
2CE0 99 0.706 0.598 0.529 0.628
2E3H 81 0.692 0.682 0.605 0.632
2EAQ 89 0.753 0.690 0.695 0.688
2EHS 75 0.720 0.713 0.747 0.565
2FQ3 85 0.719 0.692 0.348 0.508
2IP6 87 0.654 0.578 0.572 0.826
2MCM 113 0.789 0.713 0.639 0.643
2NUH 104 0.835 0.691 0.771 0.685
2PKT 93 0.162 0.003 − 0.193b − 0.165
2PLT 99 0.508 0.484 0.509b 0.187
2QJL 99 0.594 0.584 0.594 0.497
2RB8 93 0.727 0.614 0.517 0.485
3BZQ 99 0.532 0.516 0.466 0.351
5CYT 103 0.441 0.421 0.331 0.102

aGNM and NMA values are taken from the coarse-grained (Cα) GNM and NMA results
reported in Park et al.28

bValues indicate correlation coefficients, from our own test of GNM, that have signif-
icantly increased compared to the values reported by Park et al.28 See Sec. III C for
details regarding the calculation of new GNM scores.

Two versions of the FRI are used for these tests. The first, op-
timal FRI (opFRI), searches a wide range of parameters for
the highest scoring parameter and the second, parameter free
FRI (pfFRI), uses υ = 3 and η = 3 Å in all cases. The cor-
relation coefficients for three sets proposed by Park et al.28

are reported in Tables II–IV for FRI, GNM, and NMA. The
results of the B-factor predictions for the superset are shown
in Fig. 3. Using the top left chart as an example, both axises
are correlation coefficients. For each circle, its x-coordinate is
its correlation coefficient for pfFRI, while its y-coordinate is
its correlation coefficient for opFRI. Since all circles are
located above the diagonal line, opFRI always outperforms
pfFRI. The average correlation scores for optimal FRI, pa-
rameter free FRI, GNM, and NMA for each set of structures
are listed in Table VI. As shown in Table VI and Fig. 3,

TABLE IV. Correlation coefficients for B-factor prediction obtained by op-
timal FRI (opFRI), parameter free FRI (pfFRI), and Gaussian normal mode
(GNM) for large-size structures.

PDB ID N opFRI pfFRI GNMa NMAa

1AHO 64 0.698 0.625 0.562 0.339
1ATG 231 0.613 0.578 0.497 0.154
1BYI 224 0.543 0.491 0.552 0.133
1CCR 111 0.580 0.512 0.351 0.530
1E5K 188 0.746 0.732 0.859 0.620
1EW4 106 0.650 0.644 0.547 0.447
1IFR 113 0.697 0.689 0.637 0.330
1NKO 122 0.619 0.535 0.368 0.322
1NLS 238 0.669 0.530 0.523b 0.385
1O08 221 0.562 0.333 0.309 0.616
1PMY 123 0.671 0.654 0.685 0.702
1PZ4 114 0.828 0.781 0.843 0.844
1QTO 122 0.543 0.520 0.334 0.725
1RRO 112 0.435 0.372 0.529 0.546
1UKU 102 0.665 0.661 0.742 0.720
1V70 105 0.622 0.492 0.162 0.285
1WBE 204 0.591 0.577 0.549 0.574
1WHI 122 0.601 0.539 0.270 0.414
1WPA 107 0.634 0.577 0.417 0.380
2AGK 233 0.705 0.694 0.512 0.514
2C71 205 0.658 0.649 0.560 0.584
2CG7 90 0.551 0.539 0.379 0.308
2CWS 227 0.647 0.640 0.696 0.524
2HQK 213 0.824 0.809 0.365 0.743
2HYK 238 0.585 0.575 0.510 0.593
2I24 113 0.593 0.498 0.494 0.441
2IMF 203 0.652 0.625 0.514 0.401
2PPN 107 0.677 0.638 0.668 0.468
2R16 176 0.582 0.495 0.618b 0.411
2V9V 135 0.555 0.548 0.528 0.594
2VIM 104 0.413 0.393 0.212 0.221
2VPA 204 0.763 0.755 0.576 0.594
2VYO 210 0.675 0.648 0.729 0.739
3SEB 238 0.801 0.712 0.826 0.720
3VUB 101 0.625 0.610 0.607 0.365

aGNM and NMA values are taken from the coarse-grained (Cα) GNM and NMA results
reported in Park et al.28

bValues indicate correlation coefficients, from our own test of GNM, that have signif-
icantly increased compared to the values reported by Park et al.28 See Sec. III C for
details regarding the calculation of new GNM scores.

opFRI outperforms pfFRI in many cases although the major-
ity of structures have little difference in their score for each
method. Both optimal and parameter free FRI methods out-
perform GNM and NMA for most structures. B-factor pre-
diction with the FRI is most accurate for smaller structures
(<70 residues). All three methods tend to perform worse as
the structures get larger except in the case of NMA where the
medium-sized structures scored slightly lower than the large-
sized structures. This behavior is expected because as proteins
get larger their structures become more complex and may in-
clude structural co-factors and more amino acid side chain in-
teractions that contribute to the protein’s stability. The coarse-
grained Cα representation used in these methods is unable to
capture these kinds of details. The average increase in corre-
lation coefficients when using the FRI over GNM on the su-
perset of 365 proteins is 0.096 for opFRI and 0.059 for pfFRI.
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TABLE V. Correlation coefficients for B-factor prediction obtained by optimal FRI (opFRI), parameter free FRI (pfFRI), and Gaussian normal mode (GNM)
for a set of 365 proteins. GNM scores reported here are the result of our tests with a processed set of PDB files as described in Sec. III C.

PDB ID N opFRI pfFRI GNM PDB ID N opFRI pfFRI GNM

1ABA 87 0.727 0.698 0.613 1PEF 18 0.888 0.826 0.808
1AGN 1492 0.331 0.051 0.170 1PEN 16 0.516 0.465 0.270
1AHO 64 0.698 0.625 0.562 1PMY 123 0.671 0.654 0.685
1AIE 31 0.588 0.416 0.155 1PZ4 114 0.828 0.781 0.843
1AKG 16 0.373 0.350 0.185 1Q9B 43 0.746 0.726 0.656
1ATG 231 0.613 0.578 0.497 1QAU 112 0.678 0.672 0.620
1BGF 124 0.603 0.539 0.543 1QKI 3912 0.809 0.751 0.645
1BX7 51 0.726 0.623 0.706 1QTO 122 0.543 0.520 0.334
1BYI 224 0.543 0.491 0.552 1R29 122 0.650 0.631 0.556
1CCR 111 0.580 0.512 0.351 1R7J 90 0.789 0.621 0.368
1CYO 88 0.751 0.702 0.741 1RJU 36 0.517 0.447 0.431
1DF4 57 0.912 0.889 0.832 1RRO 112 0.435 0.372 0.529
1E5K 188 0.746 0.732 0.859 1SAU 114 0.742 0.671 0.596
1ES5 260 0.653 0.638 0.677 1TGR 104 0.720 0.711 0.714
1ETL 12 0.710 0.609 0.628 1TZV 141 0.837 0.820 0.841
1ETM 12 0.544 0.393 0.432 1U06 55 0.474 0.429 0.434
1ETN 12 0.089 0.023 − 0.274 1U7I 267 0.778 0.762 0.691
1EW4 106 0.650 0.644 0.547 1U9C 221 0.600 0.577 0.522
1F8R 1932 0.878 0.859 0.738 1UHA 83 0.726 0.665 0.638
1FF4 65 0.718 0.613 0.674 1UKU 102 0.665 0.661 0.742
1FK5 93 0.590 0.568 0.485 1ULR 87 0.639 0.594 0.495
1GCO 1044 0.766 0.693 0.646 1UOY 64 0.713 0.653 0.671
1GK7 39 0.845 0.773 0.821 1USE 40 0.438 0.146 -0.142
1GVD 52 0.781 0.732 0.591 1USM 77 0.832 0.809 0.798
1GXU 88 0.748 0.634 0.421 1UTG 70 0.691 0.610 0.538
1H6V 2927 0.488 0.429 0.306 1V05 96 0.629 0.599 0.632
1HJE 13 0.811 0.686 0.616 1V70 105 0.622 0.492 0.162
1I71 83 0.549 0.516 0.549 1VRZ 21 0.792 0.695 0.677
1IDP 441 0.735 0.715 0.690 1W2L 97 0.691 0.564 0.397
1IFR 113 0.697 0.689 0.637 1WBE 204 0.591 0.577 0.549
1K8U 89 0.553 0.531 0.378 1WHI 122 0.601 0.539 0.270
1KMM 1499 0.749 0.744 0.558 1WLY 322 0.695 0.679 0.666
1KNG 144 0.547 0.536 0.512 1WPA 107 0.634 0.577 0.417
1KR4 110 0.635 0.612 0.466 1X3O 80 0.600 0.559 0.654
1KYC 15 0.796 0.763 0.754 1XY1 18 0.832 0.645 0.447
1LR7 73 0.679 0.657 0.620 1XY2 8 0.619 0.570 0.562
1MF7 194 0.687 0.681 0.700 1Y6X 87 0.596 0.524 0.366
1N7E 95 0.651 0.609 0.497 1YJO 6 0.375 0.333 0.434
1NKD 59 0.750 0.703 0.631 1YZM 46 0.842 0.834 0.901
1NKO 122 0.619 0.535 0.368 1Z21 96 0.662 0.638 0.433
1NLS 238 0.669 0.530 0.523 1ZCE 146 0.808 0.757 0.770
1NNX 93 0.795 0.789 0.631 1ZVA 75 0.756 0.579 0.690
1NOA 113 0.622 0.604 0.615 2A50 457 0.564 0.524 0.281
1NOT 13 0.746 0.622 0.523 2AGK 233 0.705 0.694 0.512
1O06 20 0.910 0.874 0.844 2AH1 939 0.684 0.593 0.521
1O08 221 0.562 0.333 0.309 2B0A 186 0.639 0.603 0.467
1OB4 16 0.776 0.763 0.750 2BCM 413 0.555 0.551 0.477
1OB7 16 0.737 0.545 0.652 2BF9 36 0.606 0.554 0.680
1OPD 85 0.555 0.409 0.398 2BRF 100 0.795 0.764 0.710
1P9I 29 0.754 0.742 0.625 2C71 205 0.658 0.649 0.560
2CE0 99 0.706 0.598 0.529 2OLX 4 0.917 0.888 0.885
2CG7 90 0.551 0.539 0.379 2PKT 93 0.162 0.003 − 0.193
2COV 534 0.846 0.823 0.812 2PLT 99 0.508 0.484 0.509
2CWS 227 0.647 0.640 0.696 2PMR 76 0.693 0.682 0.619
2D5W 1214 0.689 0.682 0.681 2POF 440 0.682 0.651 0.589
2DKO 253 0.816 0.812 0.690 2PPN 107 0.677 0.638 0.668
2DPL 565 0.596 0.538 0.658 2PSF 608 0.526 0.500 0.565
2DSX 52 0.337 0.333 0.127 2PTH 193 0.822 0.784 0.767
2E10 439 0.798 0.796 0.692 2Q4N 153 0.711 0.667 0.740
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TABLE V. (Continued.)

PDB ID N opFRI pfFRI GNM PDB ID N opFRI pfFRI GNM

2E3H 81 0.692 0.682 0.605 2Q52 412 0.756 0.748 0.621
2EAQ 89 0.753 0.690 0.695 2QJL 99 0.594 0.584 0.594
2EHP 248 0.804 0.804 0.773 2R16 176 0.582 0.495 0.618
2EHS 75 0.720 0.713 0.747 2R6Q 138 0.603 0.540 0.529
2ERW 53 0.461 0.253 0.199 2RB8 93 0.727 0.614 0.517
2ETX 389 0.580 0.556 0.632 2RE2 238 0.652 0.613 0.673
2FB6 116 0.791 0.786 0.740 2RFR 154 0.693 0.671 0.753
2FG1 157 0.620 0.617 0.584 2V9V 135 0.555 0.548 0.528
2FN9 560 0.607 0.595 0.611 2VE8 515 0.744 0.643 0.616
2FQ3 85 0.719 0.692 0.348 2VH7 94 0.775 0.726 0.596
2G69 99 0.622 0.590 0.436 2VIM 104 0.413 0.393 0.212
2G7O 68 0.785 0.784 0.660 2VPA 204 0.763 0.755 0.576
2G7S 190 0.670 0.644 0.649 2VQ4 106 0.680 0.679 0.555
2GKG 122 0.688 0.646 0.711 2VY8 149 0.770 0.724 0.533
2GOM 121 0.586 0.584 0.491 2VYO 210 0.675 0.648 0.729
2GXG 140 0.847 0.780 0.520 2W1V 548 0.680 0.680 0.571
2GZQ 191 0.505 0.382 0.369 2W2A 350 0.706 0.638 0.589
2HQK 213 0.824 0.809 0.365 2W6A 117 0.823 0.748 0.647
2HYK 238 0.585 0.575 0.510 2WJ5 96 0.484 0.440 0.357
2I24 113 0.593 0.498 0.494 2WUJ 100 0.739 0.598 0.598
2I49 398 0.714 0.683 0.601 2WW7 150 0.499 0.471 0.356
2IBL 108 0.629 0.625 0.352 2WWE 111 0.692 0.582 0.628
2IGD 61 0.585 0.481 0.386 2X1Q 240 0.534 0.478 0.443
2IMF 203 0.652 0.625 0.514 2X25 168 0.632 0.598 0.403
2IP6 87 0.654 0.578 0.572 2X3M 166 0.744 0.717 0.655
2IVY 88 0.544 0.483 0.271 2X5Y 171 0.718 0.705 0.694
2J32 244 0.863 0.848 0.855 2X9Z 262 0.583 0.578 0.574
2J9W 200 0.716 0.705 0.662 2XHF 310 0.606 0.591 0.569
2JKU 35 0.805 0.695 0.656 2Y0T 101 0.778 0.774 0.798
2JLI 100 0.779 0.613 0.622 2Y72 170 0.780 0.754 0.766
2JLJ 115 0.741 0.720 0.527 2Y7L 319 0.928 0.797 0.747
2MCM 113 0.789 0.713 0.639 2Y9F 149 0.771 0.762 0.664
2NLS 36 0.605 0.559 0.530 2YLB 400 0.807 0.807 0.675
2NR7 194 0.803 0.785 0.727 2YNY 315 0.813 0.804 0.706
2NUH 104 0.835 0.691 0.771 2ZCM 357 0.458 0.422 0.420
2O6X 306 0.814 0.799 0.651 2ZU1 360 0.689 0.672 0.653
2OA2 132 0.571 0.456 0.458 3A0M 148 0.807 0.712 0.392
2OCT 192 0.567 0.550 0.540 3A7L 128 0.713 0.663 0.756
2OHW 256 0.614 0.539 0.475 3AMC 614 0.675 0.669 0.581
2OKT 342 0.433 0.411 0.336 3AUB 116 0.614 0.608 0.637
2OL9 6 0.909 0.904 0.689 3B5O 230 0.644 0.629 0.601
3BA1 312 0.661 0.624 0.621 3MD4 12 0.860 0.781 0.914
3BED 261 0.845 0.820 0.684 3MD5 12 0.649 0.413 -0.218
3BQX 139 0.634 0.481 0.297 3MEA 166 0.669 0.669 0.600
3BZQ 99 0.532 0.516 0.466 3MGN 348 0.205 0.119 0.193
3BZZ 100 0.485 0.450 0.600 3MRE 383 0.661 0.641 0.567
3DRF 547 0.559 0.549 0.488 3N11 325 0.614 0.583 0.517
3DWV 325 0.707 0.661 0.547 3NE0 208 0.706 0.645 0.659
3E5T 228 0.502 0.489 0.296 3NGG 94 0.696 0.689 0.719
3E7R 40 0.706 0.687 0.642 3NPV 495 0.702 0.653 0.677
3EUR 140 0.431 0.427 0.577 3NVG 6 0.721 0.617 0.597
3F2Z 149 0.824 0.792 0.740 3NZL 73 0.627 0.583 0.506
3F7E 254 0.812 0.803 0.811 3O0P 194 0.727 0.706 0.734
3FCN 158 0.640 0.606 0.632 3O5P 128 0.734 0.698 0.630
3FE7 91 0.583 0.533 0.276 3OBQ 150 0.649 0.645 0.655
3FKE 250 0.525 0.476 0.435 3OQY 234 0.698 0.686 0.637
3FMY 66 0.701 0.655 0.556 3P6J 125 0.774 0.767 0.810
3FOD 48 0.532 0.440 -0.126 3PD7 188 0.770 0.723 0.589
3FSO 221 0.831 0.817 0.793 3PES 165 0.697 0.642 0.683
3FTD 240 0.722 0.713 0.634 3PID 387 0.537 0.531 0.642
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TABLE V. (Continued.)

PDB ID N opFRI pfFRI GNM PDB ID N opFRI pfFRI GNM

3FVA 6 0.835 0.825 0.789 3PIW 154 0.758 0.744 0.717
3G1S 418 0.771 0.700 0.630 3PKV 221 0.625 0.597 0.568
3GBW 161 0.820 0.747 0.510 3PSM 94 0.876 0.790 0.745
3GHJ 116 0.732 0.511 0.196 3PTL 289 0.543 0.541 0.468
3HFO 197 0.691 0.670 0.518 3PVE 347 0.718 0.667 0.568
3HHP 1234 0.720 0.716 0.683 3PZ9 357 0.709 0.709 0.678
3HNY 156 0.793 0.723 0.758 3PZZ 12 0.945 0.922 0.950
3HP4 183 0.534 0.500 0.573 3Q2X 6 0.922 0.904 0.866
3HWU 144 0.754 0.748 0.841 3Q6L 131 0.622 0.577 0.605
3HYD 7 0.966 0.950 0.867 3QDS 284 0.780 0.745 0.568
3HZ8 192 0.617 0.502 0.475 3QPA 197 0.587 0.442 0.503
3I2V 124 0.486 0.441 0.301 3R6D 221 0.688 0.669 0.495
3I2Z 138 0.613 0.599 0.317 3R87 132 0.452 0.419 0.286
3I4O 135 0.735 0.714 0.738 3RQ9 162 0.510 0.403 0.242
3I7M 134 0.667 0.635 0.695 3RY0 128 0.616 0.606 0.470
3IHS 169 0.586 0.565 0.409 3RZY 139 0.800 0.784 0.849
3IVV 149 0.817 0.797 0.693 3S0A 119 0.562 0.524 0.526
3K6Y 227 0.586 0.535 0.301 3SD2 86 0.523 0.421 0.237
3KBE 140 0.705 0.704 0.611 3SEB 238 0.801 0.712 0.826
3KGK 190 0.784 0.775 0.680 3SED 124 0.709 0.658 0.712
3KZD 85 0.647 0.611 0.475 3SO6 150 0.675 0.666 0.630
3L41 220 0.718 0.716 0.669 3SR3 637 0.619 0.611 0.624
3LAA 169 0.827 0.647 0.659 3SUK 248 0.644 0.633 0.567
3LAX 106 0.734 0.730 0.584 3SZH 697 0.817 0.815 0.697
3LG3 833 0.658 0.614 0.589 3T0H 208 0.808 0.775 0.694
3LJI 272 0.612 0.608 0.551 3T3K 122 0.796 0.748 0.735
3M3P 249 0.584 0.554 0.338 3T47 141 0.592 0.527 0.447
3M8J 178 0.730 0.728 0.628 3TDN 357 0.458 0.419 0.240
3M9J 210 0.639 0.574 0.296 3TOW 152 0.578 0.556 0.571
3M9Q 176 0.591 0.510 0.471 3TUA 210 0.665 0.658 0.588
3MAB 173 0.664 0.591 0.451 3TYS 75 0.853 0.800 0.791
3U6G 248 0.635 0.632 0.526 4DT4 160 0.776 0.738 0.716
3U97 77 0.753 0.736 0.712 4EK3 287 0.680 0.680 0.674
3UCI 72 0.589 0.526 0.495 4ERY 318 0.740 0.701 0.688
3UR8 637 0.666 0.652 0.597 4ES1 95 0.648 0.625 0.551
3US6 148 0.698 0.586 0.553 4EUG 225 0.570 0.529 0.405
3V1A 48 0.531 0.487 0.583 4F01 448 0.633 0.372 0.688
3V75 285 0.604 0.596 0.491 4F3J 143 0.617 0.598 0.551
3VN0 193 0.840 0.837 0.812 4FR9 141 0.671 0.655 0.501
3VOR 182 0.602 0.557 0.484 4G14 15 0.467 0.323 0.356
3VUB 101 0.625 0.610 0.607 4G2E 151 0.760 0.755 0.758
3VVV 108 0.833 0.741 0.753 4G5X 550 0.786 0.754 0.743
3VZ9 163 0.785 0.749 0.695 4G6C 658 0.591 0.590 0.528
3W4Q 773 0.737 0.725 0.649 4G7X 194 0.688 0.587 0.624
3ZBD 213 0.651 0.516 0.632 4GA2 144 0.528 0.485 0.406
3ZIT 152 0.430 0.404 0.392 4GMQ 92 0.678 0.628 0.550
3ZRX 221 0.590 0.562 0.391 4GS3 90 0.544 0.522 0.547
3ZSL 138 0.691 0.687 0.526 4H4J 236 0.810 0.806 0.689
3ZZP 74 0.524 0.460 0.448 4H89 168 0.682 0.588 0.596
3ZZY 226 0.746 0.709 0.728 4HDE 168 0.745 0.728 0.615
4A02 166 0.618 0.516 0.303 4HJP 281 0.703 0.649 0.510
4ACJ 167 0.748 0.746 0.759 4HWM 117 0.638 0.622 0.499
4AE7 186 0.724 0.717 0.717 4IL7 85 0.446 0.404 0.316
4AM1 345 0.674 0.619 0.460 4J11 357 0.620 0.562 0.401
4ANN 176 0.551 0.536 0.470 4J5O 220 0.793 0.757 0.777
4AVR 188 0.680 0.605 0.650 4J5Q 146 0.742 0.742 0.689
4AXY 54 0.700 0.623 0.720 4J78 305 0.658 0.648 0.608
4B6G 558 0.765 0.756 0.669 4JG2 185 0.746 0.736 0.543
4B9G 292 0.844 0.816 0.763 4JVU 207 0.723 0.697 0.553
4DD5 387 0.615 0.596 0.351 4JYP 534 0.688 0.682 0.538
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TABLE V. (Continued.)

PDB ID N opFRI pfFRI GNM PDB ID N opFRI pfFRI GNM

4DKN 423 0.781 0.761 0.539 4KEF 133 0.580 0.530 0.324
4DND 95 0.763 0.750 0.582 5CYT 103 0.441 0.421 0.331
4DPZ 109 0.730 0.726 0.651 6RXN 45 0.614 0.574 0.594
4DQ7 328 0.690 0.683 0.376

Additionally, opFRI and pfFRI are more accurate on average
than GNM and NMA for all three sets of structures used by
Park et al.28 From these results we conclude that both FRI
and pfFRI are more accurate on average than either GNM or
NMA.

2. fFRI vs GNM

Table VII lists the average correlation coefficients of B-
factor prediction for 365 proteins using fFRI schemes at a
given truncation (R = 12 Å). It is seen that the proposed fFRI
schemes implemented in either exponential (η = 3 Å and κ

= 1) or Lorentz (η = 3 Å and υ = 3) are at least 10% more
accurate than the GNM.

D. Efficiency comparison for FRI, fFRI, and GNM

This section concerns the computational efficiency of the
FRI method. The efficiency of the FRI and the fFRI is com-
pared with that of the GNM.

Computational efficiency in B-factor prediction becomes
important for large proteins and for repeated predictions in

FIG. 3. Comparison of correlation coefficients from B-factor prediction us-
ing GNM, coarse-grained (Cα) NMA and FRI methods. Top left: pfFRI vs
opFRI for 365 proteins; top right: opFRI vs GNM for 365 proteins; bottom
left: pfFRI vs GNM for 365 proteins; bottom right: pfFRI vs NMA for three
sets of proteins used by Park et al.28 The correlation coefficients for NMA
are adopted from Park et al.28 for three sets of proteins. For optimal FRI,
parameter υ is optimized for a range from 0.1 to 10.0. For the parameter free
version of the FRI (pfFRI), we set υ = 3 and η = 3 Å. The line y = x is
included to aid in comparing scores.

molecular dynamics simulation and flexible docking analy-
sis. High efficiency in rigidity analysis is also a requirement
for CEWAR dynamics, where atomic rigidity functions are
to be evaluated during the time evolution. The previously de-
scribed set of 44 proteins as listed in Table VIII are used to
test the computational complexity of the FRI, fFRI, and GNM
algorithms. The method used to obtain the structure of the
HIV virus capsid, which has more than 313 000 amino acid
residues, does not provide experimental B-factors. To ensure
a fair test, we have added some random noise to the predicted
B-factors. The resulting B-factors of the HIV structure are
employed in our efficiency test as if they were real experi-
mental data.

Table VIII and Figure 4 list the running times for each
method in our FORTRAN implementations of GNM and FRI.
Tests were conducted using a single core of an AMD Phe-
nom II X6 1100T processor and include the entire GNM
and FRI algorithm leaving out only the time it takes to load
PDB files. As expected, GNM has a computational complex-
ity close to O(N3) due to the matrix decomposition, while the
FRI is approximately of O(N2), mainly because of the com-
putation of correlation functions. As for the fFRI, its com-
putational complexity is of O(N ) due to the nature of its
sparse matrix. The lines of best fit for CPU time (t) are: t
= (4 × 10−8) ∗ N3.09 for GNM, t = (2 × 10−7) ∗ N1.98

for FRI and t = (1 × 10−7) ∗ N0.975 for fFRI. Some of
the 44 structures used for efficiency testing were excluded
from the final analysis of the FRI and fFRI methods because
they required so little time to run that it was not possible
to get an accurate measure of execution time. A few of the
largest structures were only tested with FRI and fFRI meth-
ods because they require much more CPU time to run with
GNM and the efficiency data are already sufficient to show
that GNM scales at approximately O(N3). For a protein of
seven thousand amino acid residues, it takes close to 10 000 s
for GNM and only a few seconds for the FRI to predict the B-
factors in our test. The fFRI is significantly faster than other
methods. It takes less than 30 s for the fFRI to predict the
B-factors of the HIV virus capsid with 313 236 residues.

TABLE VI. Average correlation coefficients for Cα B-factor prediction with
FRI, GNM and NMA for three structure sets from Park et al.28 and a superset
of 365 structures.

PDB set opFRI pfFRI GNM NMA

Small 0.667 0.594 0.541 0.480
Medium 0.664 0.605 0.550 0.482
Large 0.636 0.591 0.529 0.494
Superset 0.673 0.626 0.565 NA
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TABLE VII. Average correlation coefficients (CC) of B-factor prediction
for a set of 365 proteins using fFRI (R = 12). The improvements of the fFRI
over the GNM prediction (0.565) are given in parentheses.

Exponential parameters Avg. CC Lorentz parameters Avg. CC

κ = 0.5, η = 0.5 Å 0.615 (8.8%) υ = 2.5, η = 2.0 Å 0.622 (10.1%)
κ = 1.0, η = 3.0 Å 0.623 (10.3%) υ = 3.0, η = 3.0 Å 0.626 (10.8%)
κ = 1.5, η = 6.0 Å 0.619 (9.6%) υ = 3.5, η = 4.0 Å 0.623 (10.3%)

TABLE VIII. CPU execution times (in seconds) from efficiency compari-
son between FRI, fFRI, and GNM.

PDB ID N FRI fFRI GNM

3P6J 125 * * 0.141
3R87 132 * * 0.156
3KBE 140 * * 0.187
1TZV 141 * * 0.203
2VY8 149 * * 0.219
3ZIT 152 * * 0.234
2FG1 157 * * 0.265
2X3M 166 * * 0.312
3LAA 169 * * 0.327
3M8J 178 * * 0.375
2GZQ 191 * * 0.468
4G7X 194 * * 0.499
2J9W 200 * * 0.546
3TUA 210 * * 0.655
1U9C 221 * * 0.733
3ZRX 221 * * 0.718
3K6Y 227 * * 0.765
3OQY 234 * * 0.873
2J32 244 * * 0.967
3M3P 249 * * 1.029
1U7I 267 * * 1.263
4B9G 292 * * 1.669
4ERY 318 * * 2.122
3MGN 348 * * 2.902
2ZU1 360 * * 3.136
2Q52 412 * * 4.696
4F01 448 * * 6.178
3DRF 547 0.062 * 11.154
3UR8 637 0.07 * 17.409
2AH1 939 0.156 * 61.012
1GCO 1044 0.187 * 75.801
1AGN 1492 0.343 * 298.632
1F8R 1932 0.655 * 654.127
1H6V 2927 1.545 * 2085.842
1QKI 3912 2.699 * 6365.668
3KGV 4064 2.949 * 6194.518
1K32 6138 6.755 * *
1JZ0 8168 11.87 * *
4BGR 8949 14.056 0.889 *
1VSZ 12 012 25.413 1.248 *
GroEL 14 700 * 1.467 *
B Gal 16 336 * 1.716 *
1VRI 18 540 * 1.934 *
HIV 313 236 * 29.344 *

FIG. 4. Efficiency comparison between FRI algorithms and GNM. Execu-
tion time in second (s) vs. number of residues for FRI (circle), fFRI (square),
and GNM (diamond). A set of 44 Cα only PDB files was used to evaluate
the computational complexity of GNM, FRI and fFRI. Available correlation
coefficient values are listed in Table VIII.

E. Visualization of correlation maps

The correlation functions used to generate FRI correla-
tion maps are based on monotonically decreasing radial basis
functions. NMA, GNM, and related tools, on the other hand,
use either a Kirchhoff (i.e., contact matrix) or a cross correla-
tion map for connectivity between atoms. A Kirchhoff matrix
is similar to our correlation map except the values are set to
−1 for pairs of atoms within a cutoff distance and set to 0 for
pairs of atoms outside the cutoff distance. The downside of
using the Kirchhoff matrix is that, by definition, it treats all
bonds within a certain cutoff distance the same and neglects
all interactions outside that distance. We know that the closest
atoms, such as covalently bonded atoms, will contribute more
to the rigidity of a particular atom. With a rapidly decaying
distance function, such as those used in our correlation func-
tions, the impact of covalently bonded atoms is emphasized
over the interactions that are just slightly more distant. This
relationship is important because while structural features at
a distance can play a significant role in stability and flexibility
of a molecule, local structure has a much greater impact. Ad-
ditionally, the cross correlation map in GNM and other meth-
ods does not reflect the atomic distance relations in a direct
manner. In contrast, given a correlation matrix and a function
from the FRI method it is easy to reconstruct the position of
each Cα atom in our coarse-grained model. The FRI corre-
lation maps on the right side of Fig. 5 display distance val-
ues along side the correlation values to reflect this property of
the FRI. These maps were calculated using the Lorentz func-
tion with υ = 2.5. The second case (PDB: 1AIE), a single
α-helix, is a good example of how the distance based correla-
tion map reflects secondary structure information. The width
of the band of high correlation is four amino acids, approxi-
mately the number of amino acids in one turn of an α-helix.
For atoms within one turn of the helix, correlation values
to nearby atoms follow a predictable pattern based on their
distance. The cross-correlation matrix for 1AIE from GNM
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FIG. 5. Comparison of correlation maps generated by GNM (middle) and FRI (right) for three proteins which are displayed in a secondary structure represen-
tation (left). From top to bottom, PDB IDs for the structures displayed are 3TYS, 1AIE, and 3PSM. The three-dimensional representation of each protein is
generated in VMD18 and colored by secondary structure. The correlation maps in the middle column are computed using the GNM method and the correlation
maps from the FRI method are shown in the right column.

shows a similar overall pattern but without the same kind of
atomic detail from the distance based correlation functions.

The other structures in Fig. 5 are from larger proteins
and they show how the FRI and GNM represent complex
arrangements of secondary structures. The FRI correlation
maps clearly indicate where secondary structures are in the
protein and what other residues they interact closely with.
In these correlation maps, secondary structures are typically
shown as small bands of relatively high correlation (yellow
to red) while interactions between them appear in green and
they often appear as regularly spaced green spots. These spots
have space between them because they involve interactions
with one face of an α-helix or similar fold and so the residues
on the far side have a lower correlation. The cross-correlation
matrix from GNM also gives some indication of where sec-
ondary structures are, α-helix is a square of green and beta
sheets are lines, however these shapes are less defined on the
atomic scale. Similarly the interactions between secondary
structures are harder to pinpoint atomically as these interac-
tions appear as a green smear in the matrices while in the
correlation maps of the FRI method there are discrete spots
with individual correlation values for atom to atom interac-
tions. In the last example of Fig. 5 we can also see in the top

left and bottom right corners how each map displays the inter-
action between two images of a structure from a single X-ray
crystallography experiment.

IV. PROTEIN DOMAIN ANALYSIS WITH FRI AND aFRI

A. FRI for protein identification

Structural domains, as opposed to functional domains,
are the basic unit of protein structures. Typically, these por-
tions of a protein fold independently and are stable on their
own. The way various domains are assembled in a protein
dictates its shape and function and is therefore interesting to
biologists. One simple way to identify these domains and their
interactions is by looking at the correlation matrix. The FRI
correlation matrix or correlation map allows us to identify
protein structural domains because the values of a correla-
tion function directly reflect the pairwise distances between
Cα-Cα atoms. Therefore FRI correlation maps are also dis-
tance maps, which have been shown to be an effective tool for
identifying protein domains as early as 1974.31 This method
involves generating a Cα-Cα pairwise distance map and iden-
tifying dense, triangular areas of contacts near the diagonal.
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FIG. 6. Secondary structure representations and correlation maps for PDB
structures 1S7O, 3PGK, and 2NCD. Structures colored by values of the cor-
relation function of the FRI using the exponential function with κ = 0.4 and
η = 0.8 Å, which are the optimal values for 2NCD kinesin with a correla-
tion coefficient of 0.671. All three-dimensional images are rendered using
VMD.18

The correlation matrix generated for FRI is similar to a basic
Cα-Cα distance map with the benefit of a rapidly decaying
distance function. This results in more pronounced separation
between domains in the map, potentially making it easier to
identify distinct domains. Figure 6 demonstrates how domains
are identified on a Cα-Cα distance map or a FRI correlation
matrix for three proteins of increasing size and complexity.
Each protein is divided into two structural domains outlined
with red boxes for clarity.

In more complex cases, we see larger domains made up
of multiple subdomains. Figure 7 shows the HIV capsid pro-
tein (PDB ID: 1E6J) consisting of six distinct structural do-
mains. Alongside the protein’s secondary structure are the
contact matrix used in GNM and the correlation maps from
the FRI. By adjusting the distance cutoff in the GNM and cor-
relation function parameters in the FRI we arrive at similar re-
sults. The six compact structural subdomains can be identified
visually from these matrices by finding areas with high corre-
lation or large numbers of contacts in a triangular shape near
the diagonal. Some interactions between subdomains can also
be seen in the matrices. Subdomains with a significant level
of correlation or contacts between them can be considered as
single larger domain. In the example of Figure 7, there are

contacts in the matrices between five subdomains. The last
subunit (in green) shows little or no correlation or contacts to
the other subdomains and is therefor a separate domain and
expected to move fully independently. However, predicting
domain motions with the FRI requires an alternative formula-
tion, the anisotropic FRI.

B. aFRI for protein identification

Anisotropic FRI, like ANM, predicts the amplitudes and
directions of atomic fluctuations. To test the accuracy of this
new method we can compare aFRI fluctuation predictions
to experimental B-factors as we have done with FRI and
GNM. Both anisotropic rigidity based flexibility (f AR

i ) and
anisotropic flexibility based flexibility (f AF

i ) are examined for
their B-factor predictions and their average correlation coeffi-
cients are 0.602 (υ = 2 and η = 9 Å) and 0.572 (υ = 2 and
η = 18 Å) for the superset of 365 structures. This means that
aFRI is more accurate than GNM (average correlation coef-
ficient 0.565 for the superset). However, aFRI is slightly less
accurate than pfFRI (average correlation coefficient 0.626 for
the superset), which is similar to the fact that ANM is not as
accurate as GNM.

A major utility of the proposed aFRI theory is the pre-
diction of protein motions by using the anisotropic flexibil-
ity. Since aFRI is adaptive, its cluster can be as large as the
whole molecule and as small as a single particle. The com-
pletely global aFRI has a Hessian matrix of 3N × 3N elements
and produces 3N eigenmodes. Depending on symmetry, 5
or 6 modes are due to the translational and rotational mo-
tions. Therefore, the remaining 3N − 5 or 3N − 6 vibrational
modes can be obtained. To validate the proposed aFRI the-
ory for normal mode analysis, we have computed the vibra-
tional modes for a few simple molecules, namely, H2O, CO2,
and CH2O, whose vibrational modes are well-known. Our re-
sults are displayed in Figure 8. In addition to these vibra-
tional modes, appropriate translational and rotational modes
are also observed from our calculations, but are omitted in
our presentation. Therefore, the proposed aFRI works well
for the analysis of small molecular translation, rotation, and
vibration.

Having established our aFRI for small molecular vibra-
tional analysis, we are interested in examining its behavior for
macromolecules. Anisotropic normal mode analysis of large
biomolecules can be very expensive because the computa-
tional complexity of the global matrix scales as O((3N )3).
As such, the adaptive cluster analysis option provided by
the aFRI algorithm can be useful. In this work, we explore
two extreme aFRI options, i.e., the completely global cluster
and completely local clusters, for protein vibrational analysis.
Similar to the ANM, the completely global aFRI algorithm
has a Hessian matrix of 3N × 3N elements and produces 3N
eigenmodes. The motions predicted by these eigenmodes are
typically very similar to those produced by ANM. In contrast,
the completely localized aFRI has only a total of N 3 × 3
Hessian matrices and gives rise to 3N eigenmodes for N parti-
cles. We assemble these 3N eigenmodes into 3 modes for the
molecule and weight the amplitude of each eigenmode by the
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FIG. 7. HIV capsid protein secondary structures (left and middle) and contact matrix from GNM (top right) and correlation matrix from FRI (middle right and
bottom right). Secondary structure representations are colored by flexibility from FRI (left) and by domain (middle). Domain separations are highlighted in
color coded boxes in the FRI correlation matrix at bottom right. All three-dimensional images are rendered using VMD.18

FIG. 8. Validation of the completely global aFRI for the vibrational anal-
ysis of three small molecules (υ = 2). First row: three vibrational modes
for H2O (η = 1 Å); second and third rows: four vibrational modes for CO2
(η = 1 Å); last two rows: six vibrational modes for CH2O (η = 2 Å). All
three-dimensional images are rendered using VMD.18

corresponding B-factor for the particle. Due to the non-local
correlation built in the aFRI matrices, these three modes of
motion obtained by the completely local aFRI algorithm are
often similar to certain low-order modes calculated by ANM
for a protein. The first three modes of motion for the HIV cap-
sid protein are shown in Figure 9 for two aFRI algorithms and
ANM. It is seen that three eigenmodes obtained from the com-
pletely global aFRI resemble those calculated by the ANM.
Although three modes produced by the completely local aFRI
algorithm show different motions, it is amazing to note that
there is much collective motion in these modes.

Figure 10 depicts three modes for phosphate active trans-
port receptor protein generated by using two aFRI algorithms
and ANM. Once again, we see a good similarity between
eigenmodes calculated by using the completely global aFRI
algorithm and those computed by using the ANM. How-
ever, the modes generated with the completely localized aFRI
demonstrate somewhat different motions. In each method, the
relative motion of two domains can be clearly identified. The
domain relative motions in the eigenmodes of the completely
global aFRI and the ANM exhibit a better synergistic effect
in general. Whereas, modes from the completely local aFRI
are slightly less collective. Since there is no standard answer
to domain fluctuations, it is difficult to say which one is right
or wrong. An interesting observation is that although aFRI
matrices can be completely local, they have built in non-local
correlation and thus are able to simulate highly collective pro-
tein motions.
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FIG. 9. Comparison of modes for HIV capsid protein (PDB ID: 1E6J). The
top row is generated by using the completely local aFRI with υ = 2 and
η = 50 Å. The middle row is generated by using the completely global aFRI
with υ = 2 and η = 50 Å. The bottom row is generated by using the ANM
with ProDy v1.56 using default settings. All three-dimensional images are
rendered using VMD.18

V. CONCLUDING REMARKS

The fundamental challenges that hinder the current quan-
titative understanding of biomolecular systems are their
tremendous complexity and excessively large number of de-
grees of freedom. A multiscale approach, CEWAR, provides

FIG. 10. Comparison of modes for phosphate active transport protein (PDB
ID: 2ABH). The top row is generated by using the completely local aFRI with
υ = 2 and η = 60 Å. The middle row is generated by using the completely
global aFRI with υ = 2 and η = 35 Å. The bottom row is generated by us-
ing the ANM with ProDy v1.56 using default settings. All three-dimensional
images are rendered using VMD.18

a new method for the reduction of the number of degrees of
freedom in biomolecular systems.46 The performance of the
CEWAR method relies on the accurate and efficient evalu-
ation of a continuous atomic rigidity function. The FRI is
proposed as a potential algorithm for such an evaluation. The
underlying assumption of the FRI is that protein interactions
uniquely determine the protein structure which, in turn, deter-
mines the protein functions, such as stability and flexibility.
Therefore, one just needs the structural information to predict
protein B-factors without reconstructing the protein interac-
tion Hamiltonian. In particular, we assume that biomolecular
flexibility and rigidity are local structural properties. There-
fore, the flexibility at an atom is completely determined by its
local environment, namely, local geometry and local topolog-
ical connectivity. We treat the (local) flexibility as an inverse
of the (local) rigidity. As a consequence, we do not need to
solve the (global) eigenvalue problem of the Hamiltonian. The
first step of the FRI method is to measure protein topologi-
cal connectivity from the distance geometry via smooth and
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monotonically decreasing radial basis functions. The atomic
rigidity index is then associated with the total connectivity or
interaction strength at each residue. Consequently, the atomic
flexibility index, which is the inverse function of the atomic
rigidity index, is associated with protein B-factors.

Protein flexibility is an intrinsic property that strongly
correlates with protein functions. The analysis of protein flex-
ibility is a crucial task in computational biophysics. Many es-
tablished methods, including NMA7, 15, 23, 39 and ENM41 such
as Gaussian network model,4, 5, 12 have been developed in the
past. These approaches typically depend on the Hamiltonian
mechanics of elastic interactions and matrix decomposition
of the interaction Hamiltonian. The present work examines
the performance of the proposed FRI for protein flexibility
analysis in a comparison with some cutting edge methods,
specifically, GNM and NMA.

We calibrate the accuracy, reliability and computational
efficiency of the FRI method by using GNM and NMA on
three sets of proteins, including the relatively small-sized,
medium sized, and large sized structures employed by Park
et al.28 in a recent study. Additional calibration with the GNM
is carried out on extended set. As a result, a total of 365 pro-
teins is studied in the present comparative study. As an inter-
nal validation, the FRI method is realized by using three fam-
ilies of correlation functions. Correlation functions of gener-
alized exponential type and Lorentz type are found to deliver
better results. In particular, correlation functions of Lorentz
type are simple and can be made parameter free, which is de-
sirable for general use. Although GNM and NMA may out-
perform the proposed FRI method on certain proteins in terms
of the accuracy of the B-factor prediction, the FRI method is
able to improve on the average correlation coefficient of GNM
and NMA on all three sets of proteins. Additionally, the FRI
is found to significantly outperform the GNM on the extended
superset of 365 structures as well.

A possible reason for the FRI to outperform the exist-
ing methods is that GNM and NMA are essentially global
methods in a sense that they rely on the solution of the global
eigenvalue problem to predict local atomic properties, e.g.,
B-factors. In contrast, the FRI is a local method and utilizes
the local geometric information to predict local atomic prop-
erties. In parallel, there are (global) band theory of solids and
(local) atomic orbital model of solids. The former is good for
describing many global physical properties, such as electrical
conductivity and thermal lattice motions in terms of excita-
tions, while the latter is more powerful for explaining local-
ized chemical reactivity and catalysis of solids.

The GNM is known for its superb computational
efficiency.48 The matrix diagonalization is of O(N3) in com-
putational complexity, where N is the number of residues. The
computational complexity of our original FRI is of O(N2).
In the present work, we propose a fast FRI (fFRI) algorithm,
which further reduces the computational complexity of FRI to
O(N ). Both FRI and fFRI do not involve the time consuming
matrix decomposition. As a result, it takes less than 30 s for
the fFRI to predict the B factors of a HIV virus structure with
more than three hundred thousands of residues, which other-
wise requires many years for the GNM to compute. Addition-
ally, both the exponential based parameter-free fFRI and the

Lorentz based parameter-free fFRI are about 10% more accu-
rate than the GNM in the B-factor prediction of 365 proteins.

Anisotropic motions between protein domains are known
to correlate with protein functions. To describe protein
anisotropic fluctuations, we introduce anisotropic FRI (aFRI)
algorithms. We introduce an adaptive aFRI method which par-
titions the molecule into many clusters with variable sizes.
We specifically examine two extreme cases, i.e., a one-cluster
partition and N-cluster partition, which result in a completely
global 3N × 3N Hessian matrix and N completely localized 3
× 3 Hessian matrices, respectively. The computational com-
plexity of aFRI varies from O(N3) to O(N ). Although aFRI
Hessian matrices can be completely local, they still contain
non-location correlation. As such, all of three protein modes
predicted by the completely local aFRI exhibit highly collec-
tive global motions. The eigenmodes obtained from the com-
pletely global aFRI closely resemble those of the ANM.3, 6

However, modes constructed from the completely local aFRI
show different collective motion patterns. Since there is no
analytical solution for collective motions, it is not possible to
judge whose collective motions are more correct. In general,
the eigenmodes of ANM and the completely global aFRI ex-
hibit a slightly better synergistic effect than modes generated
by using the completely local aFRI.

The proposed FRI has a few visual applications. First,
the correlation maps of the FRI are capable of revealing both
short- and long-distance interactions or connectivities. Since
correlation map elements are directly related to the original
distances by a known radial basis function, the distances can
be labeled on the map as well. Additionally, the predicted
B-factors can be plotted as the radii of residues to visual-
ize the amplitude of thermal fluctuations. This plot becomes
even more interesting when atomic spheres are colored with
the electrostatics.46 The close correlation between flexibil-
ity and large electrostatic potentials can be unveiled, which
sheds light on protein intrinsic structural properties. More-
over, the predicted B-factors can be plotted with secondary
structures to have an overall picture of structural flexibility.
Finally, as continuous functions, the atomic rigidity function
and atomic flexibility function can be projected onto protein
molecular surfaces or other surface representations to analyze
flexibility.

Another application of FRI and aFRI is the analysis of
protein domains. Existing methods, such as GNM and ANM,
are well known for domain analysis. The present FRI provides
a clear correlation map for domain identifications. It is found
that aFRI gives rise to highly collective domain motion pat-
terns, although not all parts of a domain move uniformly in
our aFRI representations.
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