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Quantifying Extrinsic Noise in Gene Expression Using the Maximum
Entropy Framework
Purushottam D. Dixit*
Biosciences Department, Brookhaven National Laboratory, Upton, New York
ABSTRACT We present a maximum entropy framework to separate intrinsic and extrinsic contributions to noisy gene expres-
sion solely from the profile of expression. We express the experimentally accessible probability distribution of the copy number of
the gene product (mRNA or protein) by accounting for possible variations in extrinsic factors. The distribution of extrinsic factors
is estimated using the maximum entropy principle. Our results show that extrinsic factors qualitatively and quantitatively affect
the probability distribution of the gene product. We work out, in detail, the transcription of mRNA from a constitutively expressed
promoter in Escherichia coli. We suggest that the variation in extrinsic factors may account for the observed wider-than-Poisson
distribution of mRNA copy numbers. We successfully test our framework on a numerical simulation of a simple gene expression
scheme that accounts for the variation in extrinsic factors. We also make falsifiable predictions, some of which are tested on
previous experiments in E. coli whereas others need verification. Application of the presented framework to more complex sit-
uations is also discussed.
INTRODUCTION
Recent experiments show that the life cycle of a gene prod-
uct inside the cell is stochastic. For any gene, there exists
great cell-to-cell variation in the expression level of both
the protein and the mRNA (1–10) and changing this varia-
tion has phenotypical and fitness effects (11–14). Recently,
it was also shown that coregulated proteins have correlated
variability (15). This variation arises from

1. The intrinsic statistical mechanical fluctuations in diffu-
sion and binding of the molecules involved in gene
expression; and

2. The variation in extrinsic factors that determine the state
of the cell. Examples of extrinsic factors include the
external environment (16,17), the epigenetic state of
the cell (18,19), the time from last cell division, and
levels of molecular machines such as RNA polymerase,
ribosome, proteases, and RNases (3,4,20).

In a given population of cells, the total noise (coefficient of
variation)

hT ¼ hm2i � hmi2
hmi2 (1)

serves as a useful experimental quantification of the vari-
ability in gene expression where hmi is the mean level of
the gene product m (mRNA or protein) and hm2i–hmi2 is
the variance.

For a constitutively expressing promoter, under simpli-
fying conditions, the contribution to hT associated with
extrinsic factors, the extrinsic noise hE, can be experimen-
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tally measured separately from the intrinsic noise hI

(3,6,15,20). The decomposition experiment usually involves
expression of two identical copies of a single gene inside
cells. Variation in local effects, e.g., binding and unbinding
of transcription factors, affects the expression of the two
genes in an uncorrelated manner. On the other hand, varia-
tion in global factors such as RNAP/ribosome/RNase levels
affects them in a correlated manner. After comparing the
statistics of the joint-expression system with that of a single
gene expression system, the correlation between the two
genes is identified as the extrinsic noise. It is now known
that the extrinsic noise is the dominant contributor to gene
expression (3,15) and can change the profile of gene expres-
sion in a nontrivial manner (21). Evidently, an important
step toward the conceptual understanding of the noisy
gene expression is to quantitatively account for the effect
of variations in extrinsic factors on gene expression.

The major technical hurdle in building a comprehensive
theory for extrinsic variation originates in the multitude of
factors that contribute to it. Consequently, theoretical explo-
ration of noisy gene expression has concentrated on intrinsic
noise. Here, one generally employs the master equation
framework (9,10,22–24). Briefly, we define a set of reac-
tions R involving species G (protein, mRNA, etc.). A tran-
sition matrix for evolution of the probability distribution
of G is constructed. The transition matrix contains informa-
tion about the chemistry (rates, allosteric binding, etc.) and
the topology (feedback, loops, etc.) of the reactions. The
probability distribution P(Gjt,K) is then sought in terms of
the rate constants K ¼ {k1,k2,.} of all reactions and time
t. Because closed form solutions for the master equation
exist only for a few simple systems, much theoretical devel-
opment explores efficient ways of simplifying the solution
of the master equation (10,23,25).
http://dx.doi.org/10.1016/j.bpj.2013.05.010
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FIGURE 1 The most general case of a constitutively expressing pro-

moter. An inactive gene (black) is turned into an active gene (and vice

versa). The active gene (blue and green) is transcribed into an mRNA

(red), which is then translated to a protein (red ellipse). The mRNA and

the protein are also degraded. Various rate constantsK govern the time evo-

lution of P(g,m,pjK), the joint probability distribution of g (number of acti-

vated genes), results for m (number of mRNA molecules), and the

parameterization of p (number of protein molecules).
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The chemical reactions are carried out by molecular
machines such as RNA polymerase, ribosomes, and en-
zymes, among others. Moreover, these chemical reactions
also depend on the chemical state of the cell, such as, for
example, the time from cell division, the chromatin structure
of DNA, the presence of DNA binding proteins, RNA de-
gradation by small RNAs, and the presence of RNA binding
proteins. All these variables differ from cell to cell and as a
function of time. Hence, the rate constants K depend on the
state of the cell and are themselves stochastic variables. This
makes gene expression a doubly stochastic process (26,27).
In the theoretical analysis, we interpret the variability in
K—which represents the variability in global factors—as
the extrinsic variability. The theoretical decomposition will
faithfully represent the experimentally quantified one if:

1. The underlying model of intrinsic noise is an accurate
description of gene expression; and

2. If the effect of within-cell variation in the parameters on
gene expression is negligible at timescales relevant for
gene expression.

Due to the very large number of affectors, it is impos-
sible to model the extrinsic variability from first principles.
Consequently, the theoretical treatment has either assumed
a small extrinsic contribution resulting in a linear suscepti-
bility-like analysis (20) or assumed an ad hoc structure for
the distribution of extrinsic factors (21,28). Here, instead of
accounting for all the extrinsic contributors ab initio, we
develop a maximum entropy framework to estimate
P(K), from limited information about the gene expression
profile. We successfully test our results on a simplified nu-
merical scheme for mRNA production that explicitly incor-
porates the variability in molecular machinery. Most
importantly, we show that extrinsic factors can qualita-
tively and quantitatively affect the experimentally observed
histogram of the gene expression product (protein or
mRNA).
THEORY

For concreteness, consider a constitutively expressing pro-
moter in a bacterial setting (see Fig. 1). Later, we will sub-
stantially simplify this example. Here, an inactive gene is
converted to an active gene with rate constant k1 and vice
versa (rate constant k�1). An mRNA molecule is transcribed
from the active gene at a rate constant k2. A protein is trans-
lated from the mRNA at a rate k4. The mRNA and the pro-
tein are degraded at rates k3 and k5, respectively. The
number of activated genes g, the number of mRNA mole-
cules m, and the number of protein molecules p represent
G. The time from last division is itself a stochastic variable
for a heterogeneous population (29) and can be included as a
parameter with the reaction rate constants. We assume that
the conditional distribution P(GjK) is known. Here,
G ¼ {g,m,p} and K ¼ {k1,k�1,k2,k3,k4,k5}.
Biophysical Journal 104(12) 2743–2750
The maximum entropy framework

We now estimate the distribution of K using the maximum
entropy (ME) framework (30). A brief introduction to ME
can be found in the Supporting Material. Note that each
point in the multidimensional K-space represents a proba-
bility distribution in the G-space. Consequently, the distribu-
tion whose entropy should be maximized is not P(K) but the
joint distribution P(G,K) of species and rates (26,31).

The entropy S[P(G,K)] of the joint distribution P(G,K) is
given by

S½PðG;KÞ� ¼ �
X
G;K

PðG;KÞ log PðG;KÞ (2)

¼ S½PðKÞ� þ
X

SðGjKÞPðKÞ: (3)

K

Here,

PðKÞ ¼
X
G

PðG;KÞ; (4)

S½PðKÞ� ¼ �
X

PðKÞ log PðKÞ; (5)

K

and
SðGjKÞ ¼ �
X
G

PðGjKÞ log PðGjKÞ (6)

is the entropy of the conditional distribution P(GjK).

If we constrain the mean values of the rate constants hk1i,

hk2i,., the ME framework predicts that the joint distribu-
tion maximizes the entropy S[P(G,K)] subject to the con-
straints. To find the distribution, we introduce Lagrange
multipliers a1, a2,. corresponding to rate constants k1,
k2,. and g for normalization. The modified objective func-
tion is
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(8)

Note that the mean values of the rate constants are not
directly observable from experiments. Employing them as
constraints is a departure from the canonical understanding
of the ME framework wherein probability distributions are
predicted from moments calculated from experimental
data. Yet, the ME framework can also be seen as an infer-
ence tool (26,31,32): ME predicts the logically consistent
probability distribution if mean values of certain important
parameters of an experiment are fixed.

Because we know the functional form of P(GjK), in Eq. 8
we have summed over all possible values of G at a given
value of K. Setting the derivative of Eq. 8 with respect to
P(K) equal to zero and solving, we get

PðKÞfexp

 
SðGjKÞ �

X
j

ajkj

!
: (9)

Equation 9 is the maximum entropy estimate of the distribu-
tion of K if we constrain only the mean values of the rate
constants. Note that in addition to the usual exponentials
(see the Supporting Material), the distribution also depends
on the entropy S(GjK) of the conditional distribution
P(GjK).
Estimating P(K) in an N-reporter experiment

Experimental advances allow us to construct more than one
identical reporter for a gene inside a single cell (3,15).
Mathematically, instead of generating samples of G from
the distribution P(GjK) for a fixed value of K, we can
conceive an experiment where we can sample N identical
experiments of the same species G from the joint distribution
P(G1,G2,.,GNjK) at a fixed value of K. Note that the vari-
ability in the extrinsic factors respecting the distribution
P(K) bears no relation to the number of reporters employed
in a particular experiment. Consequently, we require the ME
framework-predicted P(K) to be independent of N (31).

If we assume that the N experiments are sampled inde-
pendently of each other—this is a crucial assumption in
N-reporter experiments (3,15)—we can write
PðG1;G2;.;GNjKÞ ¼
YN
n¼ 1

PðGnjKÞ: (10)

Similar to the considerations above, to estimate P(K)
from this N-reporter experiment, we maximize the entropy
of the joint distribution P(G1,G2,.,GN,K) constraining the
mean values of the rate constants hk1i,hk2i,.. The entropy
of the joint distribution can be simplified using the indepen-
dence in Eq. 10 as

S½PðG1;G2;.;GN;KÞ�¼S½PðKÞ�þN
X
K
SðGjKÞPðKÞ: (11)

The modified objective function is given by (see Eq. 8)
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Consequently, the ME framework estimates the distribution
P(K) as

PðKÞfexp

 
NSðGjKÞ �

X
j

ajkj

!
: (13)

Interestingly, the estimate of the variability P(K) depends
on the number of reporters (see Eq. 9 and Eq. 13) used in the
experiment. This problem will be alleviated if we introduce
the average entropy of a given experiment hS(GjK)i as an
additional constraint. This additional constraint is not an
experimentally observable constraint but merely a require-
ment of consistency in the prediction over multiple experi-
ments (26,31,33). Introducing the additional constraint
hS(GjK)i in the objective function by introducing a La-
grange multiplier mN, we write the modified objective func-
tion as

S½PðKÞ�þN
X
K

SðGjKÞPðKÞ�
X
j

aj

 X
K
PðKÞkj�

�
kj
�!

þg

 X
K

PðKÞ � 1

!
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 X
K

SðGjKÞPðKÞ � hSðGjKÞi
!
:

(14)

Writing N þ mN ¼ m and maximizing with respect to P(K),
we get

PðKÞfexp

 
mSðGjKÞ �

X
j

ajkj

!
: (15)
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Equation 15 is the main theoretical result of this work.
Briefly, if we know that the rate constants K vary from
cell to cell and as a function of time, and if, rather than pre-
cisely knowing them, we constrain only their mean values,
the ME framework predicts the distribution P(K) as Eq.
15. Note that in addition to the usual exponentials, the dis-
tribution also depends on the conditional entropy S(GjK).
Similar results have been obtained for thermodynamic sys-
tems (26,33) and in estimating prior distributions in
Bayesian inference (31).
Experimentally observed distribution of chemical
species

The experimentally observable distribution P(G) is obtained
by summing over all possible variations in K. We get

PðG;m;a1;a2;.Þf
X
K

PðGjKÞ$exp

�
 
mSðGjKÞ �

X
j

ajkj

!
:

(16)

Note that the distribution in Eq. 16 is parameterized by m

and a1, a2,.. Each ai corresponds to one rate constant ki
whereas m governs the extrinsic variability. In short, the
ME framework predicts extrinsic variability only with one
additional parameter m. Note that Eq. 16 provides a func-
tional form for the P(G) distribution. The parameters m

and {ai} can be fit to suitable experimental measurements
such as the moments of the distribution. Below, we will
work out in detail the noise in the production of mRNAmol-
ecules from a constitutive promoter.
The distribution of mRNA copy numbers

Consider the simplified reaction scheme

DNA/
g

mRNA/
d

f (17)

of transcription and degradation of mRNA molecules of a
particular gene. The value g is the rate of transcription
and d is the rate of degradation.

In Eq. 17, we have neglected the activation states of the
DNA molecule e.g., promoter fluctuations (4,5,10). Pro-
moter fluctuations are thought to occur from (among other
things) chromatin remodeling and binding and unbinding
of transcription factors (11,18,19). The chromosome of the
DNA of a bacteria like E. coli is structured in ~100–500 nu-
cleoids (34). It is very likely that the chromatin structure ex-
tends locally to 10–50 genes around the gene studied and
affects the transcription of all genes in a local region. Conse-
quently, in a hypothetical dual-reporter experiment to study
noise in mRNA production similar to Elowitz et al. (3), pro-
moter fluctuations due to chromatin remodeling are likely to
Biophysical Journal 104(12) 2743–2750
affect the expression of all genes localized in a given region
on the DNA in a correlated fashion and will contribute to the
extrinsic noise. On the other hand, promoter fluctuations
arising due to noisy binding of transcription factors will
act in an uncorrelated fashion in a hypothetical dual-reporter
experiment. The contribution to mRNA noise due to noisy
transcription factor binding will contribute to the intrinsic
noise. Noisy transcription factor binding will result in a non-
Poissonian process of mRNA production and will result in
mRNA distributions that are wider than the Poisson statis-
tics (18,19). In what follows, we neglect the contribution
of noisy transcription factor binding to promoter fluctua-
tions and effectively treat them as one of the local albeit
extrinsic contributor to the variation in the effective rate
of synthesis for the given gene. Below, we briefly discuss
how to further parse the variability in the effective rate of
synthesis into a contribution from promoter fluctuations
and a contribution from other global extrinsic factors.

The solution of the reaction scheme at any time t and at
steady state is a Poisson distribution

PðmjkÞ ¼ e�kkm

m!
(18)

of mRNA copy number m with effective synthesis rate k ¼
g/d(1�e�dt) (24).
The effective synthesis rate k depends, in a complicated
manner, on various factors including chromatin remodeling
(11,18,19), the states of many molecules in the cell
including the components of RNA polymerase, the dy-
namics of assembly of the RNA polymerase holoenzyme,
various RNase molecules, and other competing genes
(3,20). Consequently, it varies from cell to cell and as a
function of time from the start of the cell cycle. Thus, while
studying gene expression in a population, instead of fixing a
particular value of the effective synthesis rate k, we need to
consider P(k) the probability distribution of k. P(k) quan-
tifies the extrinsic contribution noisy gene expression.

For a given gene, experimentally assessing the variability
in k is nontrivial—P(k) has to be inferred from limited
experimental information in respect to mean expression
level, variation in gene expression level, etc. From Eq. 15,
we see that the distribution P(k) is given by

PðkÞfexp½ðma� 1ÞSðkÞ � ak�: (19)

Here, S(k) is the entropy of the conditional distribution
P(mjk), a Poisson distribution. Unfortunately, S(k) does

not have a closed form but S(k) ~ log k. Thus,

Pðk;m;aÞfkma�1e�ak: (20)

In Eq. 20, m is the mean expression level and a ¼ h1/hE is
the ratio of the intrinsic and the extrinsic noise. The joint

distribution P(m,k) is then given by

Pðm; kÞ ¼ PðmjkÞPðkÞfe�akkmþma�1

m!
: (21)
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The experimentally accessible histogram P(m) is obtained
by summing over all variations in k, i.e., summing over
the variation in extrinsic factors,

PðmÞ ¼
X
k

Pðm; kÞf
X
k

e�akkmþma�1

m!
: (22)

We estimate P(m) to be the negative binomial distribution

(the discrete version of the g-distribution),

PðmÞf 1

ð1þ aÞm � G½mþ am�
m!

: (23)

Noise decomposition of experimental data

We estimate the total noise hT from Eq. 23 (see the Support-
ing Material for details) as

hT ¼ 1

m

�
1þ 1

a

�
¼ 1

m

�
1þ hE

hI

�
R

1

m

and

hI ¼ 1

m
;

hE ¼ hT �
1

m
:

(24)

The greater-than-Poisson relationship between hT and the
mean mRNA copy number m (see Eq. 24) is sometimes
attributed to nonPoissonian dynamics such as promoter
fluctuations, chromatin remodeling, and mRNA synthesis
bursts, among other causes (4,5,7,10,18,19). These effects
themselves are thought to arise from cell-to-cell and
dynamic variability in chromatin state and the state of
DNA binding molecules (11,18,19). Additionally, we
suggest that the cell-to-cell variation in other extrinsic fac-
tors (3,20) also contributes to the greater-than-Poisson
relationship.

The ME framework predicts that Eqs. 23 and 24
completely determine the histogram of mRNA copy
numbers from experimentally measured mean expression
level m and total noise hT. Moreover, hT is always >1 and
hI and hE can be estimated from the histogram alone. Impor-
tantly, the framework estimates the hitherto elusive effect of
extrinsic factors on gene expression regarding the distribu-
tion P(k) of the effective synthesis rate k.

The joint distribution Eq. 21 also allows us to estimate
potentially interesting moments; for example, we predict
that the Pearson correlation coefficient

rmk ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
1þ a

p ¼
ffiffiffiffiffi
hE

hT

r
(25)
between effective mRNA synthesis rate and the mRNA copy
number is the square-root of the ratio of extrinsic and total
noise. These are some of the falsifiable predictions of the
development presented here.
RESULTS AND DISCUSSION

Numerical validation of the ME-predicted
distribution

We analyze a simple numerical scheme for the synthesis of
rGene, the mRNA of a constitutively expressed gene. In the
scheme, the variability in the effective synthesis rate k arises
from the stochasticity in the production and degradation of
the machinery (RNAP and RNase). We show that the ME-
predicted distribution (Eq. 23) describes very accurately
the numerically predicted distribution of mRNA copy num-
ber for different strengths of extrinsic noise (see Fig. 2 for a
cartoon and the Supporting Material for details).

Let [X] denote the concentration of species X. In the
model, the rate of synthesis g ¼ g0[RNAP] and the rate of
degradation d ¼ d0[RNAse] of rGene, the mRNA of the
gene under consideration, both depend on the concentration
of the cellular proteins that carry out those reactions for
[RNAP] (a proxy for the RNA polymerase complex) and
[RNase] (a proxy for RNase), respectively. Both the proteins
are themselves are stochastically synthesized and degraded.
The variation in the proxies mimics the cell-to-cell varia-
tions in extrinsic factors. The effective synthesis rate k is
directly proportional to the ratio [RNAP]/[RNase]. We
implement the Gillespie algorithm (35) to estimate the
steady-state distribution of [rGene], the mRNA copy num-
ber. The correlated dynamics of production of rGene,
RNAP, and RNase play an important part in determining
the dynamics of the variability in [rGene]. The steady-state
joint distribution [RNAP] and [RNase] completely deter-
mines the steady-state distribution of [rGene] if the dy-
namics of synthesis and degradation of RNAP and RNase
are not too fast compared to that of rGene. The parameters
chosen for the simulation make sure that the timescale of
synthesis and degradation of RNAP and RNase is of the
same order as that of rGene. We only sample the distribution
of mRNA copy numbers at long times ensuring that the
steady state has been reached (see the Supporting Material
for details). To clearly elucidate the effect of extrinsic fac-
tors on gene expression profile, in Fig. 3, we show the his-
togram of mRNA copy numbers for three different levels
of noise, quantified by

hkh
hk2i � hki2

hki2 ¼ hE; (26)

the coefficient of variation in k, keeping the mean expres-
sion constant. The equality hk ¼ hE is a consequence of
Biophysical Journal 104(12) 2743–2750



FIGURE 2 A cartoon of the simplified

scheme of mRNA production that takes into

account extrinsic factors in gene expression

levels (see the Supporting Material for details).

In the scheme, RNAP serves as the proxy for

the RNA polymerase holoenzyme complex and

RNase is the proxy for RNA degradation

machinery. The rate of synthesis of rGene, the

RNA of a given gene, is directly proportional

to the concentration [RNAP] of the protein

product of the RNAP gene. Similarly, the rate of degradation of rGene is directly proportional to the concentration [RNase], the protein

product of RNase gene. RNAP and RNase themselves are synthesized and degraded stochastically.
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the underlying single-step process and will not hold true for
other cases.

In the left panel of Fig. 3, we show the histogram of
mRNA copy numbers when the coefficient of variation hk
is low (hk z 5 � 10�5). Observe that the histogram of
mRNA copy numbers (red circles) is well described by a
Poisson distribution (black dashes), as is expected. If we in-
crease the variation in k (hk z 2.5 in the middle panel and
hk z 3.8 in the right panel), the histogram of mRNA
copy numbers gets broader and is best described by P(m)
(Eq. 23, solid blue) rather than Poisson distribution (black
dashes). Thus, even though the mRNA synthesis and degra-
dation is governed by a Poisson process with an effective
synthesis rate k, the variation in the rate itself makes gene
expression a doubly stochastic process (26,27) and leads
to a histogram of mRNA copy numbers that is not Pois-
son-distributed and is best described by a Gamma-like
distribution.
Interpreting experiments

Fig. 4 shows the best fit to the histogram of mRNA copy
numbers for the E. coli gene TufA (7). The Poisson distribu-
tion does not capture the mRNA histogram whereas Eq. 23
describes it well (for a comparison with numerical simula-
tions, see the right panel of Fig. 3). Also, recently, So
et al. (18) showed that the distribution of mRNA copy
numbers in E. coli is well described by a negative binomial
distribution.
FIGURE 3 The histogram of mRNA copy numbers (red dots), the Poisson dist

see Eq. 23) for three different scenarios in the numerical simulation. The mean

extrinsic factors (hk z 5� 10�5) results in a histogram of mRNA copy numbers

extrinsic factors (hk z 2.5) broadens the histogram of mRNA copy numbers. T

variation in extrinsic factors (hk z 3.8). Again, note that the histogram of mR

distribution P(m) fits the simulation well.
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In Fig. 5, we show the measured total noise and the pre-
dicted log-binned average trends in the decomposition of the
total noise into its intrinsic and extrinsic components. The
components are estimated from Eq. 24 for ~130 genes, as
reported in Taniguchi et al. (7). The noise decreases as
mean expression level increases and both intrinsic and
extrinsic components contribute significantly to the total
noise. The total noise and the extrinsic noise saturate at
high expression levels that are sometimes referred to as
the ‘‘extrinsic limit’’ (4,7,8,15). Importantly, our framework
also allows us to directly estimate the variation P(k) of the
effective synthesis rate k.
Incorporating promoter fluctuations explicitly

The mRNA histogram from a slightly involved model that
captures the activation state of the DNA molecule
(10,18,19) results in a distribution identical to Eq. 23. In
that model, the deviation from Poisson distribution is
ascribed entirely to promoter fluctuations. As mentioned
above, promoter fluctuations arise, among other things,
from chromatin remodeling (11,19) and are likely to affect
the local region around the given gene (34). Within our
framework, the variation in mRNA synthesis rate due to pro-
moter fluctuations is treated as extrinsic and is automatically
incorporated in the distribution of the effective synthesis
rate.

We can further separate the variability in k due to pro-
moter fluctuations from the variability due to other extrinsic
ribution fit (dashed black lines), and the marginal distribution fit (solid blue,

mRNA copy number m z 4.4 for all three cases. (Left) Small variations in

that is well described by a Poisson distribution. (Middle) Higher variation in

he marginal distribution P(m) (see Eq. 23) fits the data well. (Right) High

NA copy numbers is wider than a Poisson distribution and the marginal



FIGURE 4 (Dashed black lines). Our results predict that the experimen-

tally measured mRNA copy number histogram is described by Eq. 23 (solid

blue). hk z 0.7 is the estimated coefficient of variation of the effective syn-

thesis rate k.
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factors. The presence of other extrinsic factors can be tested
in a number of ways. For example, if promoter fluctuations
are the major contributor to the variation of effective synthe-
sis rate, it can be shown that the experimentally estimated
skewness

g1 ¼ hm3i � 3hmihm2i þ 2hmi3�hm2i � hmi2�3=2 (27)

of the distribution of mRNA numbers will be roughly equal
to twice the square-root of the total noise hT. In the presence
of other extrinsic noise, this relationship is somewhat modi-
fied (see the Supporting Material for details).

If promoter fluctuations are explicitly modeled, the distri-
bution of mRNA copy numbers is characterized by at least
two parameters (10,18). The development presented here
will add one additional parameter to characterize the
extrinsic variability beyond promoter fluctuations. Thus,
the resulting distribution will be characterized by three pa-
FIGURE 5 The experimentally measured total noise hT (red dots) is al-

ways higher than what is expected from a Poisson distribution (black

line, see Eq. 24). Our framework also allows us to predict the extrinsic noise

hE and the variation in the effective synthesis rate hk. (Blue line) Log-

binned average of hE (also equal to hk). Note that as opposed to proteins,

for most mRNAs, intrinsic noise dominates the total noise for mRNAs.

At higher mRNA numbers, the hE dominates hT. Within the ME framework,

we can explicitly estimate the hitherto inaccessible variation in the effective

synthesis rate as well.
rameters. Analyzing the reported experimental measure-
ments of total noise to predict extrinsic noise beyond
promoter fluctuations will consequently be an overfit. Yet,
we note that if experimental measurements reliably estimate
the third moment of the mRNA distribution, the presented
framework will be able to parse the total noise into its
extrinsic and intrinsic (which will include promoter fluctua-
tions) contributions without the assistance of a two-color
experiment (see the Supporting Material for details).
CONCLUDING REMARKS

Measurements of the cell-to-cell variation in protein
numbers show that the extrinsic contributions play a domi-
nant role (3). Yet, much of the theoretical development in
understanding noise in gene expression has focused on the
effect of intrinsic contributors on statistical mechanical fluc-
tuations in binding and diffusion of molecules. The limited
treatment extrinsic noise has received (7,20,28) employs the
linear fluctuation-dissipation like susceptibility analysis
(20) or ad hoc assumptions about the nature of variation
in extrinsic parameters (7,28).

To the best of our knowledge, for the first time, we have
presented a framework that systematically estimates the
static variation in the rate parameters of gene expression.
In the context of the model, the extrinsic noise in gene
expression arises solely because of the variation in the pa-
rameters, allowing us to separate the intrinsic and the
extrinsic contributors to noisy gene expression from limited
information about the gene expression profile. Conse-
quently, a weakness of the presented framework is that the
decomposition of the total noise in its intrinsic and extrinsic
contributions depends on the accuracy of the gene expres-
sion model. We conclude that extrinsic factors can change
the experimentally accessible histogram of mRNA copy
numbers quantitatively and qualitatively. More importantly,
the framework allows us to directly estimate the hitherto
elusive variation in global extrinsic factors.

Specifically, we show that even if mRNA synthesis and
degradation is described by a simple Poisson process, owing
to the variation in the effective synthesis rate k, the experi-
mentally accessible histogram of mRNA copy numbers is
broader and we estimate it to be the negative binomial dis-
tribution (see Eq. 23). Consequently, we find that variation
in the effective synthesis rate k contributes to the greater-
than-Poisson relationship between noise hT and the mean
mRNA copy number hmi (see Eq. 24). We also predict
that, in contrast to proteins (3), intrinsic and extrinsic factor
variations both contribute significantly to the noisy expres-
sion of mRNA. Moreover, we directly probe the variation
in effective mRNA synthesis rate k and show that the coef-
ficient of variation hk saturates at high expression levels (see
Fig. 5, bottom).

Arguably, biologically interesting situations where noise
is important are not limited to production of mRNA
Biophysical Journal 104(12) 2743–2750
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molecules. One would like to know how noise affects the
regulation of internal circuits, response to external stimuli,
and fitness and evolution. It is clear that once the distribution
of G is known as a function of K, the application of the pre-
sented framework is, in principle, straightforward. Unfortu-
nately, the conditional distribution P(GjK) is known for very
few simple cases (similar to the one discussed in this work).
We propose the following algorithm to overcome this
difficulty.

Even though the entire distribution P(GjK) is almost al-
ways analytically inaccessible, the first two moments
{hGiiK} and {hGiGjiK} can be estimated very accurately as
analytical functions of K for a number of complicated situ-
ation using the well-known U expansion (9). Moreover, un-
der the assumption of linear noise, the entropy S(GjK) can
itself be approximated as S(GjK) ~ log det S, whereP

ij ¼ hGiGji � hGiihGji is the covariance matrix. From
here onwards, it is a straightforward exercise to compute
P(K) using Eq. 15. The intrinsic and extrinsic components
can then be separated out analytically. We will implement
the proposed program for protein synthesis and networks
in the future.
SUPPORTING MATERIAL

Supporting analysis including equations and one table are available at
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