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Abstract

Extending social evolution theory to the molecular level opens the door to an unparalleled

abundance of data and statistical tools for testing alternative hypotheses about the long-term

evolutionary dynamics of cooperation and conflict. To this end, we take a collection of known

sociality genes (bacterial quorum sensing [QS] genes), model their evolution in terms of patterns

that are detectable using gene sequence data, and then test model predictions using available

genetic data sets. Specifically, we test two alternative hypotheses of social conflict: (1) the

“adaptive” hypothesis that cheaters are maintained in natural populations by frequency-dependent

balancing selection as an evolutionarily stable strategy and (2) the “evolutionary null” hypothesis

that cheaters are opposed by purifying kin selection yet exist transiently because of their recurrent

introduction into populations by mutation (i.e., kin selection-mutation balance). We find that QS

genes have elevated within- and among-species sequence variation, nonsignificant signatures of

natural selection, and putatively small effect sizes of mutant alleles, all patterns predicted by our

evolutionary null model but not by the stable cheater hypothesis. These empirical findings support

our theoretical prediction that QS genes experience relaxed selection due to nonclonality of social

groups, conditional expression, and the individual-level advantage enjoyed by cheaters.

Furthermore, cheaters are evolutionarily transient, persisting in populations because of their

recurrent introduction by mutation and not because they enjoy a frequency-dependent fitness

advantage.
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Introduction

Gene sequences contain a record of the evolutionary history of a population. Some studies

have leveraged this rich source of data to test a number of evolutionary hypotheses,

including distinguishing among competing theories for the advantage of sex and

recombination (Shapiro et al. 2007; Betancourt et al. 2009) and the relative prevalence of
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positive selection compared with neutral processes in driving evolutionary change (Fay et al.

2002; Smith and Eyre-Walker 2002; Wang et al. 2006; Sabeti et al. 2007). Surprisingly, the

study of social evolution, which has an extensive theoretical literature, has yet to fully

embrace the use of gene sequence data to test competing hypotheses about the statics and

dynamics of cooperation and conflict. This is in part because of a lack of suitable data, but it

is also because of a lack of theory that is properly formulated to make predictions at the gene

sequence level. The empirical molecular genetics of sociality has been driven by the

burgeoning field of sociogenomics, which seeks to identify the genes underlying social traits

in order to enhance our understanding of the origin and evolution of sociality (Robinson et

al. 2005; Nedelcu and Michod 2006). Evolutionary inferences from this work have been

based on comparative phylogenetic methods (Robinson et al. 2005; Nedelcu and Michod

2006) or rates of sequence divergence between closely related species (Hunt et al. 2010;

Sucgang et al. 2011). To extend the study of the molecular evolution of sociality, we

demonstrate here how with a combination of within- and among-species sequence data,

along with properly formulated genetic models of social evolution, we can make use of the

vast tool set of molecular population genetics (Kreitman 2000) to test hypotheses about the

evolution of genes controlling sociality. This is the extension of “sociogenomics” into

“sociomolecular population genetics.”

The two biggest constraints to applying molecular population-genetic approaches to social

evolution are (1) the difficulty in identifying sociality genes with a well-understood

genotype-to-phenotype mapping (Robinson et al. 2005; Foster et al. 2007; Linksvayer and

Wade 2009) and (2) the scarcity of suitable gene sequence data. Bacterial quorum sensing

(QS) avoids these two constraints: QS is a widespread social trait in bacteria that has a well-

described, simple genetic basis (Miller and Bassler 2001; Lerat and Moran 2004), and

multiple population-genetic data sets for these genes are available. In this article we use

these data in conjunction with appropriately formulated social-genetic theory to test a central

question in the study of social evolution: what are the short- and longterm dynamics of

social conflict, and how is conflict maintained within populations?

The potential for conflict in social systems arises when cooperative traits are exploited by

social “cheaters,” which are genetic mutants that receive the benefits from cooperators in

their social group but do not pay the cost of contributing to the public good. Empirical study

of social conflict has typically relied on easily measurable social phenotypes, such as sex

ratios (West 2009). Yet, with the recent upsurge in availability of genetic data, there have

been a growing number of attempts to use social evolution theory to explain observed

patterns at the molecular level (e.g., Greig and Travisano 2004; Diggle et al. 2007a; Eldar

2011; Sucgang et al. 2011). However, these attempts have typically relied on verbal models

rather than formal theory, and they have often lacked quantitative estimates of genetic

variability, statistical tests for signatures of natural selection, or evolutionary null

expectations against which to test alternative, adaptive hypotheses. Indeed, most of these

studies have proposed adaptive explanations for observed patterns of social genetic variation

without considering what pattern is to be expected in the absence of adaptive evolution.

Without comparison to an evolutionary null hypothesis, one risks incorrectly inferring

adaptive mechanisms where none exist (Gould and Lewontin 1979; Kimura 1983; Currat et

al 2006; Lynch 2007; Van Dyken et al. 2011).
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Here we compare a common adaptive hypothesis for the evolutionary dynamics of social

conflict with an evolutionary null hypothesis. The adaptive hypothesis that we consider,

which we call the “evolutionarily stable cheater” (ESC) hypothesis, argues that cheaters

arise and are maintained by selection as an alternative stable strategy. This conforms to a

game-theoretic view of polymorphism, where heterogeneity is caused by the coexistence of

alternative strategies maintained by frequency-dependent selection at a stable internal

equilibrium (Maynard Smith 1982; Doebeli et al. 2004). Frequency-dependent cheating can

be mathematically formalized by the “snowdrift” game (also known as “hawk-dove” or

“chicken”; Maynard Smith 1982; Doebeli et al. 2004; Doebeli and Hauert 2005). The ESC

hypothesis has experimental support in microbes where frequency-dependent cooperation

(snowdrift game dynamics) has been measured in the laboratory (Velicer et al. 2000; Greig

and Travisano 2004; Gore et al. 2009; Ross-Gillespie et al. 2007; smith et al. 2010). These

experiments all have in common the fact that cooperation involved the secretion of public

goods in diffusion-limited environments (Driscoll and Pepper 2010; Frank 2010), such that

cooperators disproportionately received their own public goods. This allowed cooperation to

invade when rare, as rare cooperators receive more of their own benefit than their cheating

neighbors even though cooperation is vulnerable to invasion by cheaters when it is common.

Stable coexistence may also derive from the ability of individuals to detect and respond

conditionally to their social partner’s strategy (Maynard Smith 1982; Werfel and Bar-Yam

2004; Gore et al. 2009), but there is currently no direct empirical evidence for such

conditional social expression in these systems. Notably, a number of alternative adaptive

hypotheses exist in addition to the ESC. These include an evolutionary “arms race” scenario,

where cheaters continually change strategies in order to counter the evolutionary response of

cooperators (Greig and Travisano 2004; Sucgang et al. 2011). Another is diversifying

selection favoring rapidly changing cooperative signals (Ansaldi and Dubnau 2004) in order

to prevent “eaves-dropping” (Brown and Johnstone 2001; Diggle et al. 2007b; Early 2010).

Even more elaborate adaptive models have been proposed that involve facultative cheating

with perpetual coevolution of cheaters and cheater-immune strains (Eldar 2011). We address

these alternatives in “Discussion.”

In order to test adaptive hypotheses using molecular data, one must be able to reject an

evolutionary null (i.e., nonadaptive) model (Gould and Lewontin 1979; Kimura 1983; Currat

et al 2006; Lynch 2007). That is, are the observed patterns explainable simply via drift,

mutation, and purifying selection, or must one invoke adaptive mechanisms? Here we

formulate an evolutionary null model for QS gene evolution that is based on the “kin

selection-mutation balance” (KSMB) hypothesis (Van Dyken et al. 2011). According to the

KSMB hypothesis, polymorphism at a sociality locus with linear social effects (i.e., wherein

a group with two altruists has twice the fitness benefit as a group with one altruist) is

maintained via recurrent mutation despite purifying kin selection. Under this hypothesis, the

level of standing genetic variation in a population is determined by the balance between the

rate at which mutation introduces socially deleterious (i.e., defective or impaired) “cheater”

alleles and the rate at which kin selection purges these alleles from the population (Van

Dyken et al. 2011). This process is directly analogous to traditional mutation-selection

balance, which maintains standing polymorphism at nonsocial loci and serves as an

evolutionary null hypothesis for nonsocial traits (Kimura 1983; Lynch 2007). As we show,
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our evolutionary null model predicts that QS genes should experience relaxed selection

because of nonclonality, costs of expression, and conditional gene expression, resulting in

elevated genetic diversity.

Here we test these competing hypotheses, using models and gene sequence data for bacterial

QS. QS is a wide-spread, cooperative signal-response system that is involved in the

regulatory control of a number of bacterial social traits, including virulence, antibiotic

resistance, plasmid transfer, biofilm formation, and bioluminescence (Miller and Bassler

2001). QS operates via the constitutive production of small, diffusible chemical pheromone

signals called “autoinducers” that bind to a gene regulatory protein called the “response

regulator” (Fuqua et al. 1994). The response regulator becomes activated when a threshold

concentration of the autoinducer is detected in the environment, causing it to respond by up-

or downregulating a suite of target genes such as those responsible for bioluminescence or

virulence. Autoinducer molecules accumulate in the environment in proportion to cell

density, so that genes upregulated by QS are likely to have positive density-dependent

benefits (although see Redfield 2002). QS-deficient mutants have been considered to be

“social cheaters” because they do not incur the costs of producing the autoinducers or

activating the response-regulatory apparatus (Velicer et al. 2000; Diggle et al. 2007a; Foster

et al. 2007; Sandoz et al. 2007). Thus, bacterial QS is a social trait with a well-known

underlying genetic basis, making it well suited for tests using the tools of molecular

population genetics.

Theory

Distinguishing between Hypotheses

The ESC and KSMB hypotheses make distinct predictions about the patterns of

polymorphism expected at the molecular level. First, they make different predictions for the

“site frequency spectrum” (Ewens 1972; Tajima 1989), that is, the frequency distribution of

mutations in a gene sequence. The ESC hypothesis predicts that the polymorphism

frequency distribution will deviate from random by having “fat tails,” meaning that there are

more intermediate frequency alleles segregating in the population than predicted under

neutrality. Frequency-dependent selection creates this skew in the allele frequency spectrum

by driving low-frequency cheating mutants to a stable equilibrium at a higher, intermediate

frequency, where they are maintained as cheater haplotypes distinct from cooperator

haplotypes. Selection prevents either cheaters or cooperators from extinction or fixation, and

linked neutral variation surrounding the selected polymorphism allows the detection of

haplotype blocks (i.e., a genetic “footprint”) associated with selectively balanced

polymorphisms (Kreitman and Di Rienzo 2004; Charlesworth 2006). On the other hand, the

KSMB hypothesis predicts “skinny tails” as individual cheater mutations, deleterious to the

group, are removed from the population by kin selection faster than neutral mutations are

removed by drift. As we shall see, our KSMB model for QS genes predicts that selection

against cheaters is weak due to conditional expression, so that a site frequency spectrum

close to the neutral expectation is still consistent with the KSMB hypothesis.

The ESC and KSMB hypotheses also make distinct predictions about relative levels of

sequence divergence between closely related species. The stable maintenance of cheaters by
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selection prevents fixed differences from arising between closely related species, because

rare mutant advantage prevents any one type from sweeping to fixation (McDonald and

Kreitman 1991; Kreitman and Di Rienzo 2004; Charlesworth 2006). Put differently, the

active maintenance of polymorphism by selection reduces the rate of gene substitution, not

just for the target of selection but also for neighboring neutral variants (base pairs).

Furthermore, cheaters of large effect, which are predicted by the ESC hypothesis (see

below), cannot fix in a species that is QS+. If a cheater of large effect fixes, then that species

will no longer possess functional QS. Thus, as long as both species in our two-species

comparisons are QS+, the ESC hypothesis predicts that sequence divergence between

species will be significantly lower than polymorphism within species. The statistical

significance of this difference can be determined using the McDonald-Kreitman (MK) test

(McDonald and Kreitman 1991). Alternatively, kin selection-mutation balance creates

transient but not stable polymorphisms (Van Dyken et al. 2011), so that segregating

variations may fix stochastically in proportion to the strength of selection and the effective

population size. As a consequence, KSMB theory predicts either equal rates of

polymorphism within species and divergence between them or, as a result of positive

selection favoring better cooperators, greater sequence divergence between species than

polymorphism within them. Unlike the ESC hypothesis, superior cooperators are not

prevented from sweeping to fixation.

Another difference between the two hypotheses, although one that is perhaps less

straightforward to test, is a difference in predictions about the effect sizes of segregating

cheater mutations. The ESC hypothesis predicts that cheaters in nature will typically have

large fitness effects, as cheaters with the most extreme phenotypes will be favored most

strongly when rare. In fact, cheaters used in laboratory experiments are typically complete

loss-of-function mutants (Strassmann et al. 2000; Velicer et al. 2000; Foster et al. 2007).

Thus, under the ESC hypothesis, we predict that intermediate-frequency cheater variants

would be disproportionately characterized by large insertions/deletions (indels), frame shifts,

or premature stop codons. On the other hand, the KSMB hypothesis predicts stronger

purifying kin selection against such large effect mutations but weaker selection against

mutations with small effects. Thus, on average, segregating cheating variants are predicted

by the KSMB hypothesis to have small cheating effects, as the frequency obtained by a

deleterious mutation is inversely proportional to the strength of selection against it. As we

note in “Discussion,” this prediction is difficult to test.

Model

Here we present the KSMB model in order to demonstrate that purifying kin selection and

mutation are sufficient to generate high levels of within- and among-species genetic

diversity at both the signal and the response loci of QS systems. Expression of the QS

phenotype gives a total possible benefit of bR. The R subscript denotes the fitness benefit

contributed by “responder” cells. The expression of the signal comes at a cost cS, and the

expression of the suite of downstream genes regulated by QS comes at a cost cR.

Because the response regulator is activated only when cells reach a sufficient density, QS is

a conditionally expressed trait. We let ϕ be the average proportion of generations over an
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interval where the QS phenotype is activated, which is approximately equivalent to the

proportion of the population in any one generation that expresses QS (Van Dyken and Wade

2010). In the next section, we derive a model for the evolution of the response-regulator and

signaling loci of bacterial QS systems. The models are then translated into predictions for

levels of sequence polymorphism and divergence at these loci.

The expected level of sequence polymorphism at a locus is defined as

(1)

(Tajima 1983) where L is the number of nonsynonymous nucleotides at the locus and the

sum is taken over all nonsynonymous nucleotides. We are assuming that the population is at

equilibrium between mutation and selection, so that q̂ is the equilibrium frequency of the

mutant allele in the population at the kin selection-mutation balance.

The fixation process determines the level of sequence divergence among species. The

probability of fixation of a mutant allele is given by

(2)

(Kimura 1962) where G(x) = exp (−∫ 2M/V), M is the mean change in allele frequency over

a generation due to directional processes (i.e., selection and mutation), and V is the variance

in allele frequency change per generation due to random genetic drift. M is obtained by

using standard population-genetic theory for the change in allele frequency in an infinite

population due to selection and mutation (see below), while V = pq/Ne, where Ne is the

effective population size. For social evolution models, Ne is explicitly a function of

population structure. Expressions for Ne have been worked out for a number of different

population structures (Whitlock and Barton 1997; Whitlock 2003). For applications of

Kimura’s equation to social traits, see studies by Whitlock (2003), Rousset (2006), Demuth

and Wade (2007), and Linksvayer and Wade (2009).

Polymorphism and Divergence at the Signaling Locus

We consider two KSMB models of evolution at the signaling locus, one where signal cost is

reduced along with signal function (signal cheaters) and the other where signal function is

reduced but cost remains unaffected (signal noncheaters). In both models, we assume that

the population is fixed for a functional allele at the response locus but is polymorphic at the

signaling locus. This assumption greatly simplifies the model but should be relaxed in future

investigations.

Model 1: Mutations Reduce Signaling Cost—In model 1, the mutant allele reduces

both the functionality of the signaling molecule and the cost of expressing the signal (Diggle

et al. 2007a; Sandoz et al 2007). We assume two alleles at the signal locus: S and s. The S

genotypes are wild-type cells that constitutively express a fully functional signal, while the s
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genotypes either do not express the signal or have diminished signal production. The s

genotype is a “cheater,” as it does not experience the cost of expressing the signaling

molecule (cS) but nonetheless receives the benefit produced by others. The fitnesses of

genotypes S and s are

(3)

where pS, i is the frequency of S genotypes in the ith group (which donate a benefit to both

genotypes) and ϕ is the fraction of generations in which the density is sufficiently high that

there is a response to the signal and creation of the subsequent benefit, bR. Note that the S

genotype always bears the cost of the signal, whether the benefit is expressed. In the fraction

of generations when the group is at low density (1 − ϕ), the response locus is not expressed,

and so individuals do not receive the benefit of the response phenotype. Nevertheless, the

signaling locus is constitutively expressed, so that its cost is still manifest even at low

density. Despite not producing a signal, cheaters nonetheless receive the benefit (bR) of the

expression of the response phenotype from group members in the fraction of generations, ϕ,

after the density is sufficient to trigger the response.

Given the fitness model described by equation (3), the change in global allele frequency of

the mutant (s) allele at the signaling locus is

(4)

(see app. A for derivation), where r is the kin selection coefficient of relatedness and W̄ is

the global mean fitness. In order for QS to evolve (i.e., in order to prevent cheaters from

spreading), the following condition must be satisfied:

(5)

Compare this with the condition for the spread of a constitutively altruistic allele, which is

given by Hamilton’s rule: br − c > 0 (Hamilton 1964). Equation (5) is more restrictive than

this because the conditionality of the expression ϕ < 1 weakens the benefit of acting

altruistically (i.e., expressing QS). That is, the group does not experience the benefit in those

generations when the gene is not expressed.

Let μ be the per-nucleotide, per-generation rate of one-way mutation from S alleles to s

alleles. Then, using equations (1), (3), and (4), we find that the expected level of

polymorphism at the signal locus at equilibrium between selection and mutation is

approximately (to first order in q)

(6)
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(app. A). Unfortunately, estimates are not available from natural populations for any of the

parameters in equation (6). Until these estimates are available, there can be no exact

quantitative prediction for levels of standing polymorphism. However, there are clear

qualitative predictions relative to other nonsocial genes that can be drawn from equation (6).

In particular, note that the level of polymorphism is inflated by the conditional expression ϕ

< 1, by interactions in nonclonal groups (r < 1), and by a high cost of signaling (cS > 0; fig.

1A). These three factors show that, all else being equal, the signaling molecule will have

greater sequence polymorphism relative to a constitutively expressed, nonsocial gene with

selective advantage bR (see also Linskvayer and Wade 2009; Van Dyken and Wade 2010;

Van Dyken et al. 2011).

We now wish to determine how cheating under the KSMB hypothesis affects the divergence

of gene sequences between species. To do so, we must substitute values for M and V into

equation (2), which is the equation giving the rate of gene substitution. M is the mean

change in the frequency of a mutant allele due to deterministic forces such as selection,

which we simply take from equation (4), setting W̄ = 1 because we assume weak selection in

a continuous model (Kimura 1962). As stated previously, V is the variance in allele

frequency change due to drift, which for haploids equals pq/Ne. By making these

substitutions in equation (2) and taking the integral and simplifying, we find that the

probability of fixation of the mutant allele at the signal locus under model 1 is

(7)

where Ne depends on population structure (Whitlock and Barton 1997; Whitlock 2003) and

p0 is the initial frequency of the mutation in the population (for new mutations p0 = 1/N,

where N is the census size of the population). Just as with polymorphisms, the KSMB

hypothesis predicts that divergence at the signaling locus will be inflated by low ϕ and r and

high cS (fig. 2A).

Figures 2 and 3 demonstrate one of the primary consequences of linear fitness for selection

on cheating: cheaters behave as deleterious mutations when relatedness is high (greater than

the threshold for satisfying Hamilton’s rule) but behave as beneficial mutations when

relatedness is low. Cheaters are neutral when the inclusive fitness effect equals 0, such that

their probability of fixation equals their initial frequency in the population, p0 = 1/N. Note

that cheaters have a nonzero fixation probability even when relatedness is high, because

slightly deleterious mutations can become fixed by random genetic drift in a population

(Kimura 1962). Note also that, in the regions of low r where cheater mutations are

beneficial, mutations are not guaranteed to fix. For example, when r = 0, cheaters act as

beneficial mutations and have a probability of fixation of P ≈ 2cS, which is the classic result

for the probability of fixation of a beneficial mutation at nonsocial loci (Haldane 1927;

Kimura 1962).

The transition from deleterious to beneficial also occurs by modulating the frequency of the

expression of QS, ϕ. When populations undergo many generations before expressing QS-
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controlled phenotypes (ϕ ≪ 1), cheaters have a greater probability of fixing in the

population. This happens because the individual fitness benefit of not expressing the signal

(cS) exceeds the group benefit of the response (ϕbRr). Indeed, a QS system can be lost by

mutational meltdown if it is too infrequently expressed (see also Van Dyken and Wade

2010).

Note the shape of the fixation curve in figures 2 and 3. The curve is relatively flat and

increases slowly in the region where cheaters are deleterious. When cheating becomes

beneficial, the curve is steep and quickly approaches the maximum probability of fixation of

P = 2c.

Model 2: Mutations Do Not Reduce Signal Cost—In model 2, we assume that

mutants at the signal locus impair signal function but not its cost of expression. Unlike in

model 1, such mutants are not considered cheaters. We thus have the following fitness

model, where both genotypes have the same fitness because both express the signal cost and

gain the same benefits when the QS system is activated:

(8)

The change in frequency of the signal mutant is

(9)

(app. A). Interestingly, despite both alleles having the same fitness function (eq. [8]), there is

still a response to selection. This is because the s and S alleles experience different expected

frequencies of cooperators in their group due to relatedness, so that E[pS, i] will differ for

each allele. Relatedness, r, quantifies this difference. The response to selection, then, is

entirely among groups, as selection favors groups with a greater proportion of QS-proficient

cells. Because mutants experience the same signaling cost as wild-type cells, cS, mutants are

not cheaters, as they gain no relative fitness advantage over cooperators within groups. As

long as ϕbRr > 0, such a signal mutant will be opposed by kin selection.

The expected level of polymorphism at the signal locus under this model is

(10)

The value of equation (10) is always less than that of equation (6) for the same parameter

values (fig. 1). This is because signal-deficient mutants under model 2 are not cheaters, and

so among-group selection against them is not mitigated by an opposing within-group fitness

advantage. The net result is that total selection against impaired signalers is stronger than it

is against nonsignalers, thus reducing standing variation at the locus at the equilibrium kin-

selection-mutation balance.
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The probability of fixation of a mutation that impairs signal function under this model is

(11)

Unlike in model 1, modifying relatedness does not change the direction of selection.

Mutations are uniformly deleterious, and selection against signal-defective mutants simply

becomes weaker as relatedness decreases (fig. 2). As relatedness and/or frequency of

expression decrease, the probability of fixation of deleterious mutations increases toward a

limit at neutrality, where P = 1/N. Thus, the possibility of cheating (model 1) greatly

increases the diversity at a sociality locus, particularly when relatedness is high (fig. 1).

Polymorphism and Divergence at the Response-Regulator Locus

Unlike in the cases above, mutations at the response locus always reduce both the

functionality of the QS system and the cost of expressing the QS phenotype, so that there is

only one model to consider. At the response locus, the genotypic fitnesses are

(12)

Note that both alleles experience an equal cost of expressing the QS signal, as we have

assumed that both are signal proficient. From this model, we find that the change in allele

frequency at the response-regulator locus is

(13)

(app. A). Note that there are two differences between equation (13) and model 1 of the

signaling locus (eq. [4]). First, with our model of the response-regulator locus, both

genotypes bear the cost of signaling, so the term cS does not appear in equation (13) whereas

it does in equation (4). Second, with the response-regulator locus, conditional expression (ϕ)

weakens total selection and not just the among-group component as with model 1 of the

signal locus (eq. [4]). This occurs because both the cost and the benefit of the QS response

are expressed only under high density, whereas the cost of producing the signal is expressed

under both high and low densities. This means that response-deficient mutants are cheaters

whose fitness advantage is conditional: they gain a cheating advantage only in those

generations where the QS phenotype is expressed. Signal cheaters, on the other hand, gain a

cheating advantage in every generation because the signal is constitutively expressed,

regardless of whether there is a response.

For QS to evolve, the following condition must be true:

(14)
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Unlike in model 1 of the signaling locus, conditional expression (ϕ) does not influence the

direction of evolution. Following the approach above, we find that the replacement site

polymorphism at the response-regulator locus is approximately

(15)

(app. A). The level of standing genetic variation at the response-regulator locus is sensitive

to the frequency of expression (ϕ). If QS is expressed only half of the time, the sequence

diversity (standing polymorphism) doubles; if QS is expressed only a third of the time, the

level of sequence diversity triples. In general, polymorphism at the response-regulator locus

will increase as the frequency of expression (ϕ) and relatedness (r) decrease and as the cost

of expression of the response phenotype (cR) increases.

The probability of fixation of a mutation at the response locus is

(16)

Similar to model 1 of the signal locus but unlike model 2, diminution-of-function mutations

at the response locus are deleterious at high relatedness but beneficial at low relatedness.

However, unlike both models of the signal locus, conditional expression per se does not alter

the direction of selection. When the frequency of expression is low (small ϕ), “deleterious”

mutants (at high r) have a greater probability of fixation compared with constitutively

expressed traits (high ϕ), while “beneficial” mutants (at low r) have a reduced probability of

fixation. This makes sense, because response-regulator cheaters gain an advantage only

when QS phenotypes are expressed: it is then that they gain a fitness advantage by not

experiencing the cost of expressing the response phenotype. Thus, selection against cheaters

at high relatedness is weakened, allowing them to accumulate to a higher frequency in the

population, while selection favoring cheaters at low relatedness is likewise weakened,

impairing their ability to spread.

Which Should Be More Diverse, a Signal or a Response Locus?

A comparison of equations (6) and (15) provides a prediction for the relative diversity of the

signaling locus compared with the response locus. For model 1 of the signal locus, we find

that, πR >πS when ϕcR > cS (see also fig. 1). Thus, sequence diversity at the response-

regulator locus will be greater than that at the signaling locus when the frequency of

expression times the cost of responding (ϕcR) is greater than the cost of signaling (cS).

Laboratory studies have found that the cost of signaling is typically less than the cost of

responding (cS < cR) because the signaling molecule is small and relatively inexpensive to

synthesize, while the response phenotype is often more complex and likely to be more

expensive (Diggle et al. 2007a; Sandoz et al. 2007). However, if the threshold density for

expression is high, then ϕ will be small and the response locus will be more diverse than the

signaling locus. That is, cost alone is not sufficient to determine the relative diversity of the

two loci because the cost of response is mitigated by ϕ, the frequency of expression.
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On the other hand, if model 2 is operating—that is, if mutants at the signal locus experience

the same cost of expressing the signal as the wild type—then, πR > πS when cR > 0, which is

always true by definition. Thus, under model 2, the response locus will always be more

diverse than the signal (see fig. 1). Put differently, because of the relationship between

polymorphism and gene frequency, we can say that under many conditions, response

cheaters will be more common than nonsignaling cheaters.

Empirical Results

With the theory above, we can test the predictions of the ESC and KSMB hypotheses using

QS gene sequence data gathered from GenBank. Our data were obtained by searching the

PopSet database of GenBank for known QS gene homologues (both signal and response

loci) based on those identified by Lerat and Moran (2004). At the time of analysis, this

search returned 11 population data sets for known QS genes. We also obtained population

sequence data for the Escherichia coli QS homologue sdiA from available fully sequenced

E. coli genomes, using a BLAST (Altschul et al. 1997) search of these genomes. No other

species with a known QS homologue had enough fully sequenced genomes (eight or more)

at the time of analysis to conduct statistical tests.

To estimate within-species sequence polymorphisms, we first controlled for variation in

mutation rates and effective population size among genes by taking the ratio of non-

synonymous to synonymous site nucleotide diversity (πA/πS) as our measure of within-

species polymorphism. For comparison with QS genes, polymorphism data for a random

sample of bacterial genes were obtained from a study by Hughes (2005). The 149 genes in

this data set were sampled randomly with respect to sociality or conditionality of expression.

Genes with πS < 0.10 were eliminated from the analysis in order to reduce the error in the

πA/πS estimate and to ensure that genes have had time to reach the mutation-selection

equilibrium. The resulting data set has N = 65, with a median πA/πS of 0.0898 and a mean of

0.1858 (±0.0266 SE). By this criterion, one QS gene was also eliminated from the analysis

(agrA in Staphylococcus aureus), giving N = 11 for QS genes with a median πA/πS of

0.2514 and mean of 0.3286 (±0.0626 SE). The median and mean levels of polymorphism of

the QS genes are significantly higher than those of the random sample of bacterial genes

(one-tailed t-test with unequal variances on log-transformed data: P < .001; one-tailed t-test:

P = .017).

For gene divergence between species, we take the ratio of nonsynonymous to synonymous

site divergence (dN/dS) to control for variation in mutation rates and effective population

sizes among genes. QS genes had a median divergence of 0.272 and a mean of 0.316

(±0.0898 SE). When conservatively excluding the largest data point because of the high

standard error of its estimate, the QS mean is 0.2293 (±0.0316 SE). We used the data set

from Ochman et al. (1999) as a representative sample of all bacterial genes. These data were

collected randomly with respect to gene identity, except that ribosomal genes were omitted,

again making our comparison more conservative, as ribosomal genes have very low

divergences. The median dN/dS value for this data set is 0.1342 (N = 101). The median

divergence for the QS genes is 0.2722, which is more than two times that for the random

sample of genes (one-tailed t-test with equal variances on log-transformed data: P = .017).
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Eleven out of 12 QS genes ranked above the 49th percentile of divergence in the data of

Ochman et al. (1999; P < .001).

We tested each QS gene to detect the signature of natural selection. McDonald-Kreitman

tests (McDonald and Kreitman 1991) were performed on 11 of the 12 data sets (a BLAST

[Altschul et al. 1997] search failed to return a sequence with significant homology for the

Lactococcus lactis comX gene, so an MK test could not be conducted for this gene). Of these

tested genes, nine of 11 failed to show a significant deviation from neutrality, while two of

the 11 showed a weak signature of positive selection (table 1).

The signature of positive selection, where divergence is higher than polymorphism, is the

opposite of the pattern predicted by the ESC hypothesis, under which within-species

polymorphism exceeds between-species divergence owing to frequency-dependent

selection. In order to increase the power of our analysis to maximize the chances of seeing a

significant deviation from neutrality, an MK test was conducted on the pooled sample of all

QS genes. This pooled test failed to reject the null hypothesis of neutral evolution (χ2 =

0.023, P = .881, df = 1).

To test the QS genes for departure of the allelic site-frequency spectrum from neutral

expectation, we used Tajima’s D test (Tajima 1989). None of the 11 QS genes showed a

significant deviation from neutrality, which is consistent with the KSMB model predictions

of relaxed selection but inconsistent with the ESC model of frequency dependence (table 1).

We lack the statistical power to determine whether the signal or the response locus has

greater variation, and so we are unable to adequately test theoretical predictions on this

front. Clearly, more data will allow us to test this and other hypotheses.

Discussion

Understanding the origins, maintenance, and dynamics of social cooperation and conflict in

nature is one of the principal aims of the study of social evolution. Here we have shown how

kin-selection theory based in population genetics can be extended to make predictions about

gene sequence polymorphism and evolutionary divergence (see also Linksvayer and Wade

2009; Van Dyken et al 2011). These predictions can then be tested using the tools of

molecular population genetics (e.g., Kreitman 2000; Barker et al. 2005; Cruickshank and

Wade 2008).

Stable polymorphisms of cheaters, which arise when there are nonlinear social interactions

(Queller 1985; Doebeli et al. 2004; smith et al. 2010), should create a genetic signature of

balancing selection typified by inflated polymorphism but diminished among-species

sequence divergence and significantly positive Tajima’s D (Mead et al. 2003; Kreitman and

Di Rienzo 2004; Charlesworth 2006). We do not see this signature in our data for QS genes.

Alternatively, the KSMB model of QS evolution predicts high levels of polymorphism

matched by high levels of divergence due to the fact that the selective benefit of QS (bR) is

diluted by low relatedness (Linksvayer and Wade 2009), conditional expression (Van Dyken

and Wade 2010), and the within-group fitness benefit gained by “cheater” mutants (Van

Dyken et al. 2011; ϕ, r < 1, c > 0). These three factors have been considered independently
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in previous work (Linksvayer and Wade 2009; Van Dyken and Wade 2010; Van Dyken et

al. 2011) but are here united in a single model. Conflict, conditional expression, and

nonclonality of social groups all weaken the strength of kin selection, allowing slightly

deficient QS mutants to accumulate both within and between populations, enhancing

sequence polymorphism and divergence relative to nonsocial, constitutively expressed genes

without causing a positive Tajima’s D. These predictions are supported by our QS data.

The fact that our alignments do not show any evidence of segregating total loss-of-function

mutations (e.g., premature stop codons, large insertions and/or deletions, frame shifts, etc.)

is also consistent with the KSMB prediction that the increased variation found in QS genes

is due to the accumulation of point mutations of minor effect. On the other hand, the ESC

hypothesis, which predicts that cheating mutants will be of large effect, is inconsistent with

our data. However, it is important to recognize that the degree of functionality, and hence

the attendant fitness costs and benefits of mutations, cannot be mapped uniquely onto the

nature of the mutation. As a consequence, this result is provisional but intriguing

nevertheless.

Of course, the failure of the data to reject our null hypothesis is not itself proof that QS

cheater dynamics are explained primarily by KSMB theory. In fact, our finding of high

within- and among-group variation may also be consistent with an “arms race” scenario

(Greig and Travisano 2004; Eldar 2011; Sucgang et al. 2011) or the action of selection

favoring rapid diversification of signal and response molecules (Ansaldi and Dubnau 2004).

These hypotheses predict rapid genetic diversification within and among species, without

stable cheater maintenance. Thus, as currently formulated, their predictions are

indistinguishable from those of our evolutionary null hypothesis and so do not currently

offer the possibility of a test. One of the goals of our analysis was to demonstrate a much

more parsimonious, nonadaptive explanation for observed patterns. Indeed, these hypotheses

were proposed post hoc as explanations for observed “high” levels of genetic variation at

sociality loci, including QS loci (Ansaldi and Dubnau 2004; Eldar 2011). Rather than

considering the possibility that these patterns resulted from nonadaptive processes (namely,

relaxed purifying selection due to non-clonality and conditional expression), elaborate

adaptive explanations were proposed instead. Because KSMB is a much more parsimonious

explanation for the available data, relying, as it does, simply on mutation, drift, and

purifying selection, we believe that these adaptive alternatives should be treated with

skepticism until they can be shown to make predictions distinguishing them from KSMB

and from one another.

Importantly, tests of the site-frequency spectra are subject to bias due to sampling effects,

the age of mutations, and population demography (Kreitman and Di Rienzo 2004;

Charlesworth 2006). The divergence data are less ambiguous about the importance of

balancing selection, as they are less sensitive to sampling and demographic artifacts. Stable

polymorphisms increase within-species genetic diversity and diminish the accumulation of

fixed differences between species, leading to the phenomenon of “ancient polymorphisms”

shared across closely related species (Hittinger et al. 2010). Our data are not consistent with

this prediction, as both within- and among-species variation is inflated, consistent with the

KSMB models developed above. It is possible that future studies employing more
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sophisticated statistical tests and sampling protocols designed specifically to detect stable

cheating will obtain different conclusions.

In any case, we believe that alternative selective explanations for evolutionary signals at

sociality loci should remain in question until the more parsimonious evolutionary null

hypothesis (KSMB) is rejected. As it stands, currently available theory and data support the

inference that QS “cheaters” are evolutionarily transient and high levels of variation in QS

genes result from relaxed selection. Sociomolecular evolution promises to provide a

powerful avenue for investigating the action of social evolution in nature. However, before

the field can advance further, much more theory and data are required.
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APPENDIX A. Derivation of Allele Frequency Recursions and Expected

Polymorphism

Here we show how the allele frequency recursions given in the main text can be derived and

then how this leads to an expression for the expected level of polymorphism at a locus. We

follow the procedures used by Van Dyken (2010) and Van Dyken et al. (2011). With

selection in a population structured into social groups, such as bacterial biofilms or host-

associated microbial collectives, the change in frequency of an allele over a single

generation of selection is given by the multilevel Price equation (Price 1972; Hamilton

1975; Wade 1985; Rice 2004). The multilevel Price equation can be written as

(A1)

The first term on the right-hand side is the change in allele frequency over a single

generation due to selection among groups, and the second term is change due to selection

within groups. Cov( ) denotes covariance, and E[ ] denotes expected value. Wi is the mean

fitness of individuals comprising the ith group, while Wij is the fitness of individual j in

group i. Rewriting this equation into its equivalent regression coefficient form (Wade 1985)

gives

(A2)

where βWi, qi and βWij, qij are the partial regression coefficients of group and individual allele

frequency on group and individual fitness, respectively (Wade 1985; Frank 1998; Rice

2004). Vb is the variance in allele frequency among all groups and Vw is the average within-
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group variance in individual allele frequency (i.e., Vw = E[Varw (pij)]). Values for these

variance components are given for neutral alleles by Wright (1951, 1965), and their sum

gives the total genetic variance in the population (Vw + Vb = Vt). The ratio of among-group

genetic variance to total group variance is, by definition, the kin selection coefficient of

relatedness (Vw/Vt = r; Michod and Hamilton 1980; Falconer and Mackay 1996; Frank

1998).

The among-group partial regression coefficient, βWi, qi, is obtained by first computing the

mean fitness of the group, Wi, from the allelic fitness functions provided in the main text

(eqq. [3], [8], [12]). For example, the mean fitness for model 1 of the signal locus is

obtained by calculating Wi = qiWs, i + (1 − qi)WS, i, where Ws, i and WS, i come from

equation (3). Next, we take the derivative of Wi with respect to qi, giving βWi, qi. The within-

group partial regression coefficient βWij, qij is simply the difference in the within-group

fitness of each allele (βWij, qij = (Ws, i − WS, i); Rice 2004). By making these substitutions,

we obtain equations (4), (9), and (13) in the main text.

To make predictions about sequence polymorphism, we must first find the expected value of

the allele frequency at equilibrium between selection and mutation. Mutation introduces

variation into the population at a rate equal to the mutation rate m times the frequency of

alleles that are subject to mutation (pμ), while selection removes this variation at a rate equal

to Δq. At equilibrium, the rate in equals the rate out. The equilibrium allele frequency is

found, then, by solving the following equation for q:

(A3)

where the expression for Δq is given by equations (4), (9), and (13) in the main text.

Finding the expected polymorphism at a locus requires substituting the solution of equation

(A3) into the definition of polymorphism, given as equation (1) in the main text. To simplify

the solution, we make a few reasonable assumptions. First, we assume that mutation occurs

at an equivalent rate across all L nucleotides of a gene. Second, we assume that the strength

of selection is averaged over all nucleotides. Finally, we assume that individual mutant

alleles are rare enough that q2 is much smaller than q (technically, this is a first-order

approximation in q). These assumptions and approximations lead from a solution to equation

(A3) to the expressions for expected polymorphism given in the text (eqq. [5], [10], [14]).
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Figure 1.
Expected polymorphism at quorum sensing (QS) loci. Curves represent expected

polymorphism as a function of relatedness, r, and frequency of QS expression, ϕ. Note that

in every case, polymorphism increases as relatedness and the frequency of expression

decrease. The unimodal curve results from the fact that polymorphism has a maximum at π

= 0.5. When allele frequency is greater than 0.5, the polymorphism begins to decrease

toward 0 (see eq. [1]). The sharp drop in polymorphism at low relatedness after the peak

corresponds with fixation of the mutant allele, which eliminates polymorphism and creates a

fixed difference between species. Comparison of these plots shows that we would expect

greater polymorphism for the signal locus than the response regulator under model 1 but

lower polymorphism of signal than the response regulator if model 2 holds. Furthermore, the

response regulator can maintain lower mutation load at low frequency of expression, ϕ, than
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can the signal locus under model 1, where infrequent expression allows cheaters to spread

rapidly. Parameter values are as follows: cR = cS = 0.01, bR = 0.10, μ = 10−4, and N = Ne =

1,000.
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Figure 2.
Relatedness can reverse the dynamics of spread of a newly arisen “cheating” mutation. The

curve shows the probability of fixation of a newly arisen cheating mutation at the signal

locus (under model 1, where signal mutants do not pay the cost of signaling). The dashed

vertical line indicates neutrality, that is, the point where the inclusive fitness effect of the

cheating mutant equals 0. The probability of fixation at neutrality equals the frequency of

the mutant, which is for 1/N a new mutation. The direction of selection depends on

relatedness. Cheaters act as deleterious mutants (in which the probability of fixation is less

than that for neutral mutations) when relatedness is high but beneficial mutants (in which the

probability of fixation is greater than that for neutral mutations) when relatedness is

sufficiently high. The curve has a maximum value at r = 0 of P = 2c, corresponding to the

fixation probability of a beneficial mutation at a nonsocial locus, where c is the cost of

producing the quorum sensing signal. Parameter values are as follows: c = 0.01, bR = 0.02,

N = Ne = 1,000, and ϕ = 1.
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Figure 3.
Fixation probability of quorum sensing (QS) mutants. Note the sensitivity of fixation

probability in all cases to relatedness, r, and the frequency of QS expression, ϕ. A, Signal

mutants under model 1 behave as deleterious mutants when r and/or ϕ are high but become

advantageous when r and/or ϕ are sufficiently low, peaking at a maximum of P = 2cS, which

is twice the maximal benefit of cheating (see also fig. 2). B, Note the change in scale from

model 1, where fixation probabilities are much higher in general. Unlike model 1, the sign

of fitness does not change with model 2 (see fig. 2): cheating mutants always act as

deleterious mutants in model 2. Infrequent expression and low relatedness relax selection
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against mutants, increasing their probability of fixation to a maximum at the neutral fixation

probability of P = 1/N. C, Fixation probability of mutations at the response-regulator locus.

As with signal mutants under model 1, response-regulator mutants can act as either

beneficial or deleterious, depending on relatedness. Note that the effect of conditional

expression reverses when relatedness reaches the Hamiltonian threshold at neutrality

(vertical dashed line), so that rarely expressed mutants (small ϕ) have a lower probability of

fixation than frequently expressed mutants (large ϕ) when relatedness is low but a greater

fixation probability when relatedness is high. This reversal corresponds to the transition

from beneficial (at low relatedness) to deleterious (at high relatedness). The maximum

fixation probability occurs at r = 0 and is equal to the standard probability of fixation for a

beneficial, nonsocial mutation, P = 2cR. Parameter values are as follows: c= 0.01, bR = 0.02,

N = Ne = 1,000, and ϕ = 1.
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