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Sleep Apnea: A Redox Edge with Aging?
Commentary on Dalmases et al. Brain tissue hypoxia and oxidative stress induced by obstructive apneas is different in young and aged rats. 
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Almost as inevitable as death and taxes, sleep deteriorates with 
aging, and common sleep disorders increase in prevalence. 
So the results of a study by Dalmases and colleagues1 in this 
issue of SLEEP come as a welcome surprise that there may be 
some advantage to aging in the brain’s physiological responses 
to obstructive apneas. Specifically, the researchers found that 
older, relative to young adult, rats showed a greater increase 
in anti-oxidant enzymes and evidenced less oxidative stress 
in the brain in response to acute obstructive apneas.1 An addi-
tional finding was that brain tissue oxygenation changed across 
repeated apneas differentially for the two age groups. These 
intriguing findings support the concepts that physiological 
responses to obstructive sleep apnea can vary with age and 
suggest that a given severity of obstructive sleep apnea may 
not be as damaging in older as in younger subjects. To more 
accurately interpret the findings and relate the work to clinical 
obstructive sleep apnea, however, requires several consid-
erations, including whether the oxidative stress response is 
actually detrimental; determining the significance of varied 
brain oxygenation patterns across time; and whether similar 
responses are anticipated in humans with sleep apnea.

Over the past two decades, a great deal of insight into the 
mechanisms underlying sleep apnea neural injury has been 
gained through study of animal models. With limited avail-
ability of animals with spontaneous obstructive sleep apnea, 
compartmentalized models of physiological disturbances 
observed in obstructive sleep apnea have been used to advance 
mechanisms of injury. One of the models most extensively used 
is intermittent hypoxia in mice and rats. Exposure to severe 
(> 30 events/h), long-term (> 2 weeks) intermittent hypoxia 
induces oxidative stress injury in the brain, neurobehavioral 
impairments, and with longer exposure, loss of neurons.2-7 
Oxidative stress is essential for the intermittent hypoxia-
induced loss of neurons and cognitive impairments, while 
transgenic models and pharmacological agents that minimize 
the availability of reactive oxygen and nitrogen species prevent 
neuronal injury.6,8,9 Of note, models implementing mild inter-
mittent hypoxia for brief exposures have shown beneficial 
effects on neuronal responses and on neural repair following 
injury.10,11 Thus, oxidative stress is not always harmful. In fact, 

in the models of mild intermittent hypoxia, reactive oxygen 
species are essential for both neuronal plasticity and repair.11-14 
In the study reported by Dalmases et al.,1 young rats exposed to 
3 hours of obstructive apneas demonstrated a small increase in 
oxidized glutathione and lipid peroxidation in frontal cortical 
brain tissue samples. Both of these redox modifications are 
reversible and can be involved in healthy signaling.15,16 Thus, 
further studies are needed to examine neuronal injury in this 
new model in young and older animals and to examine the 
reversibility and roles of oxidative stress in the model. Longi-
tudinal or chronic studies would be helpful to delineate adap-
tive versus injurious or detrimental responses. If the oxidative 
stress in young rats represents neuronal injury, then repeated 
exposures should result in additive or synergistic injury. If this 
is an adaptive response, less injury will be evident across time. 
As obstructive sleep apnea is typically detected and managed as 
a chronic condition, the long-term observations in this model 
and the role of oxidative stress will be important to determine.

Arguably, the most striking age-dependent finding in the 
report of Dalmases et al. is that the effect of time into apnea 
induction on oxygen tension in the brain varies with age, 
despite no age differential for arterial oxygenation.1 The 
authors propose that the increase in brain tissue oxygenation 
in young rats across time may contribute to the higher oxida-
tive stress in young animals. But without modulating the brain 
oxygen partial pressure, their hypothesis cannot be confirmed. 
Similarly, mechanisms for the steady rise in brain oxygen 
tension have not yet been delineated. This particular apnea 
model induces complete apneas resulting not only in intermit-
tent hypoxia, but also in hypercapnia and hemodynamic swings. 
The research team previously showed that acute intermittent 
hypoxia alone does not progressively increase brain oxygen 
tension in young adult rats.21 Increased brain oxygen tensions, 
relative to arterial oxygenation, can occur as a consequence 
of increased blood flow within the cortex from hypercapnia, 
greater hemodynamic changes, or reduced neural oxygen utili-
zation. The authors correctly point out that the vasodilatory 
response to hypercapnia can diminish with aging, and this is 
true not only in similarly aged rats, but also in humans.17,18

The steady increase in brain oxygen tension with time 
would suggest a linear increase in hypercapnia across time. 
This can be easily examined in the model. Alternatively, age-
related changes in astrocyte responses to apneas could be at 
play. Astrocytes regulate numerous homeostatic responses to 
neuronal activity, and may also increase blood flow accord-
ingly.19 Through adenosine signaling in response to hyper-
capnia, astrocytes can also modulate local blood flow.20 The 
change in brain oxygen tension in this model has only been 
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observed for one hour as the effect of anesthesia may then wear 
off. The group previously developed a similar chronic obstruc-
tive sleep apnea model21; this model will be important to better 
understand chronic oxygenation responses to obstructive sleep 
apnea and the importance of the age-dependence in response.

Overall, it remains uncertain whether older age confers resis-
tance to apnea oxidative stress, or whether clinical studies will 
find less vulnerability to neural damage from untreated sleep 
apnea in older adults. These speculations seem unlikely since 
sympathetic activity increases in response to oxidative stress 
in sleep apnea,22 yet the AHI predicts sympathetic activity 
similarly in young and older adults.23 Most importantly, older 
individuals can derive improved health outcomes for cardio-
vascular disease and mortality and for cognitive function when 
treated with continuous positive airway pressure for sleep 
apnea,24-27 suggesting that treating sleep apnea is important in 
older individuals. There is an old Swedish proverb, “The after-
noon knows what the morning never suspected.” Wisdom, it 
seems, may be the truest and perhaps the only advantage of 
aging.
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