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Abstract

Objective—Palatal anomalies are one of the identifying features of 22¢q11.2 deletion syndrome
(22911.2DS) affecting about one third of patients. To identify genetic variants that increase the
risk of cleft or palatal anomalies in 22q11.2DS patients, we performed a candidate gene
association study in 101 patients with 22q11.2DS genotyped with the Affymetrix genome-wide
human SNP array 6.0.

Methods—~Patients from Children's Hospital of Philadelphia, USA and Wilhelmina Children's
Hospital Utrecht, The Netherlands were stratified based on palatal phenotype (overt cleft,
submucosal cleft, bifid uvula). SNPs in 21 candidate genes for cleft palate were analyzed for
genotype-phenotype association. In addition, TBX1 sequencing was carried out. Quality control
and association analyses were conducted using the software package PLINK.

Results—Genotype and phenotype data of 101 unrelated patients (63 non-cleft subjects (62.4%),
38 cleft subjects (37.6%)) were analyzed. A Total of 39 SNPs on 10 genes demonstrated a p-value
<0.05 prior to correction. The most significant SNPs were found on FGF10. However none of the
SNPs remained significant after correcting for multiple testing.

Conclusions—Although these results are promising, analysis of additional samples will be
required to confirm that variants in these regions influence risk for cleft palate or palatal anomalies
in 22911.2DS patients.

© 2012 Elsevier Ireland Ltd. All rights reserved.
"Corresponding author at: Postbox 5800, 6202 AZ Maastricht, The Netherlands, Tel.: +31 433875400.

Appendix A. Supplementary data: Supplementary data associated with this article can be found, in the online version, at http://
dx.doi.org/10.1016/j.ijporl.2012.10.009.
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1. Introduction

The 22911.2 deletion syndrome (22g11.2DS) is a common microdeletion syndrome that
occurs in between one in 4000 and 6000 live births [1,2]. It encompasses the phenotypes
previously known as DiGeorge syndrome, velocardiofacial syndrome, conotruncal anomaly
face syndrome, many cases of the autosomal dominant Opitz G/BBB syndrome, and Cayler
cardiofacial syndrome (asymmetric crying facies). Patients with 22q11.2DS have a range of
findings, including palatal abnormalities (overt cleft palate, submucosal cleft palate (SMCP),
bifid uvula, velopharyngeal insufficiency, and vascular ring), conotruncal heart disease,
characteristic facial features, immune deficiency, psychiatric problems, and learning
difficulties. Structural palatal abnormalities are found in approximately one third of patients
with 22g11.2DS [3]. About 16% percent have a submucosal cleft, 11% have an overt cleft,
and 5% have a bifid uvula.

The 22911.2DS is a contiguous gene deletion syndrome, which can be inherited in an
autosomal dominant manner. However, over 90%o0f patients have a de novo deletion. The
majority of individuals have a similar 3 megabase deletion on 22g11.2. Remarkable inter-
and intra-familial clinical variability complicates genotype— phenotype correlations [4].
Possible mechanisms causing phenotypic variability may be modifier genes on the
remaining allele of 22g11.2, elsewhere in the genome, epigenetic events, or chance.

Currently a large study is being carried out by the international 22q11.2 Consortium in an
attempt to identify genetic modifiers of the 22g11.2DS phenotype. The study is using a
genome wide single nucleotide polymorphisms (SNPs) association scan of 1000 DNA
samples. The present analysis describes a search for potential modifiers of palatal features
using a candidate gene approach in 107 samples selected from the larger study. Possible
association between SNPs in these candidate genes and palatal features was investigated.

2. Materials and methods

2.1. Study subjects

The DNA samples described in this paper were obtained from studies concerning
22011.2DS at the Children's Hospital of Philadelphia, USA and the Wilhelmina Children's
Hospital in Utrecht, The Netherlands. The presence of the 22q11.2 deletion, prior to
enrollment in this study, was confirmed using fluorescence in situ hybridization (FISH) or
multiplex ligation-dependent probe amplification (MLPA) [5]. The current study was
approved by the Institutional Review Board (IRB) at both centers, as well as by the Albert
Einstein College of Medicine IRB in New York where genotyping was carried out
(Genomics Core).
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2.2. Phenotype data

Information on the presence of palatal abnormalities was obtained through database and
chart review from both the Department of Clinical Genetics and the Department of Plastic
Surgery at the Children's Hospital of Philadelphia and the Department of Medical Genetics
at the Wilhelmina Children's Hospital in Utrecht. A total of 223 charts were reviewed (177
from Philadelphia and 46 from Utrecht). If no reliable clinical data could be obtained (i.e.
when specialists did not agree, or when insufficient data was available) patients were
excluded from analysis. Patients from both hospitals were stratified into two groups based
on phenotype: “non-cleft” and “cleft” (overt cleft palate, submucosal cleft palate, bifid
uvula).

2.3. Selection of candidate genes

One of the important genes in the typically deleted region is TBX1. Animal models of Thx1,
specifically those homozygous for a null allele, have shown a role of TBX1 in many of the
physical anomalies that are found in 22g11.2DS, including cleft palate [6— 9]. This implies
that variants in the single copy of TBX1 that is present in patients with 22q11.2DS may have
an effect on the development and/or severity of palatal abnormalities. Consequently, TBX1
was chosen as the first candidate gene to examine as a modifier of the palatal phenotype.

Recently, studies in mice demonstrated a possible role for Bmp antagonism and the chordin
(CHRD) gene as interacting genetically with Thx1 in mouse models [10]. As a result,
CHRD was added as a candidate gene in our study. Other potential genetic modifiers outside
of the deleted region in 22q11.2DS were selected based on research providing evidence of
linkage or association between a genetic variant and cleft palate in humans. These were
interferon regulatory factor 6 (IRF6) [11], transforming growth factor a (TGFA) [12],
SATB homeobox 2 (SATB?2) [13], small ubiquitin-like modifier 1 (SUMOZ1) [14], muscle
segment homeobox (MSX1) [15,16], estrogen receptor 1 (ESR1) [17], poliovirus receptor-
related 1 (PVRL1) [18], and transforming growth factor 3 (TGFB3) [19].

Impaired fibroblast growth factor signaling has been associated with orofacial clefting [20].
Thus, the following genes were included as possible candidate genes: fibroblast growth
factor 2 (FGF2),fibroblast growth factor 3 (FGF3), fibroblast growth factor 7 (FGF7),
fibroblast growth factor 10 (FGF10), fibroblast growth factor receptor 1 (FGFR1), fibroblast
growth factor receptor 2 (FGFR2), and fibroblast growth factor receptor 3 (FGFR3). Lastly,
because studies have shown that the risk of facial clefts may be influenced by maternal
folate intake [21] common SNPs in genes involved in the folate-homocysteine metabolic
pathway were also investigated, namely methylene tetrahydrofolate reductase (MTHFR),
methionine synthase (MTR), methionine synthase reductase (MTRR), and cystathionine beta
synthase (CBS).

2.4. Genotype data

Genome wide data for all subjects was acquired using the Affymetrix genome-wide human
SNP array 6.0. Genotyping was carried out in the Genomics Core in the Department of
Genetics of the Albert Einstein College of Medicine, New York. The array allows for the
detection of 906,600 SNPs across the genome. As we used a candidate gene approach, we
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investigated the SNPs located in the 21 genes described above including SNPs located 5 kb
on either side of each gene (for the total list of SNPs see supplement I).

To evaluate the coverage of the candidate genes that was provided by the SNPs available on
the array, data was downloaded for the same gene regions in the Centre d'Etude du
Polymorphisme Humain from Utah (CEU) samples from the HapMap database release 22
(http://www.hapmap.org/index/html). This data was analyzed using the Tagger procedure
implemented in the Haplo-view software [22]. Table 1 shows the number of SNPs tested for
each candidate gene, as well as the number of SNPs in the same regions in the HapMap
database with a minor allele frequency >0.05 in the CEU population, the percentage of these
SNPs tagged by our genotyped SNPs with an r2 > 0.8, and the average r? value between the
genotyped SNPs and the tagged SNPs.

2.5. Data analysis

As the means of sample quality control, all individuals with a genotype call rate (defined as
the percentage of successful genotyping across the genome) less than 95% were intended to
be excluded. However, as none of our samples failed this criterion, none had to be removed.

In order to implement SNP data quality control before statistical analysis, all SNPs with an
individual call rate of less than 90% were removed. In addition, SNPs that failed the Hardy—
Weinberg Equilibrium (HWE) test at a significance threshold of p < 0.0001 and SNPs with a
minor allele frequency below 5% were also removed. The total number of SNPs remaining
after these quality control measures was 654,469. Out of these markers, the number
available for each candidate gene is shown in Table 1. Two genes (CHRD and TBX1) could
not be tested for association as there were few SNPs on the array for either locus and after
ruling out these, no test SNPs remained after quality control.

2.6. TBX1 sequencing

As TBX1 could no longer be studied using data from the whole genome analysis, Sanger
sequencing on TBX1 coding exons and evolutionary conserved non-coding regions within
the gene locus was carried out on a subset of patients at the Venter Institute. The sequence
of the gene included 5 kb upstream and downstream of the first and last exons, respectively.
This generated information on SNPs in selected regions within TBX1 allowing for a more
detailed analysis of the gene. The goal was to identify SNPs that alter amino acid sequence
or affect splicing or a transcriptional regulatory region.

2.7. Statistical analysis

Genotyping data was exported into a text file format suitable for association analyses using
the software package PLINK v1.06 [23] (http://pngu.mgh.harvard.edu/purcell/plink/). One
degree-of-freedom chi-square tests of association were performed by comparing SNP allele
frequencies among patients with and without palatal anomalies. Empirical p-values were
calculated by permutation tests for all SNPs in each gene separately, thus providing an
effective correction for multiple tests based on the number of SNPs in each gene.
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3. Results

3.1. Study population

Genotype and phenotype data were obtained on 107 unrelated patients (Table 2). Most of
these were from the Children's Hospital of Philadelphia (94 samples). The remaining 13
samples came from the Wilhelmina Children's Hospital in Utrecht. Six of the subjects with a
self-reported ethnicity other than Caucasian (2 Hispanic, 2 African American, 1 Asian, 1
North African) were excluded from statistical analysis. Of the 101 remaining subjects, 38
had a form of palate anomaly (overt cleft palate, submucosal cleft palate, bifid uvula) while
63 subjects did not (for details see Table 2). None of the subjects had cleft lip with or
without cleft palate.

3.2. Genetic association analysis

A total of 39 SNPs on 10 genes demonstrated an asymptotic p-value <0.05 (Table 3). These
were CBS, ESR1, FGF3, FGF10, FGFR2, IRF6, MTRR, PVRL1, SATB2, and TGFA. Of
these SNPs, 11 SNPs remained significant after correcting for multiple testing for the
number of SNPs in each gene by means of permutation analysis. However, this significance
was not retained when multiple testing for all genes was accounted for using the Bonferroni
correction (threshold for experiment-wise significance p < 0.002).

3.3. TBX1 resequencing

TBX1 sequence data was obtained for 80 patients from the Children's Hospital of
Philadelphia. Of these, 53 had a normal palate (66.3%) and 27 had a cleft phenotype (6 overt
cleft, 15 SMCP, 6 bifid uvula; total 33.8%). Twelve SNPs on the TBX1 gene with an MAF
> 0.05 were tested for significant differences in allele frequencies between cleft and non-
cleft subjects. None of the SNPs demonstrated a p-value <0.05.

4. Discussion

This report rules out common SNPs in the most promising candidate genes as being major
modifiers of the palatal phenotype in 22q11.2DS. It does provide tentative evidence for
modest modifiers and suggests a relationship between a number of cleft palate candidate
genes and the development of palatal anomalies in 22q11.2DS. The gene with the most
significant SNPs associated with cleft palate in our data set is FGF10. A number of studies
have shown a role for fibroblast growth factors including FGF10 in orofacial cleft
development [20].

In embryology, the formation of the pharyngeal arches plays a central role in the
development of the face and neck. The genetic regulation of this craniofacial myogenesis,
however, remains relatively unknown [24]. Orofacial musculature can be divided into
branchiomeric and non-branchiomeric muscles. Branchiomeric muscles include the
masticator muscles, derived from the first arch; muscles of facial expression, derived from
the second arch; and muscles of the pharynx and larynx, derived from the third and fourth
arches. Non-branchiomeric head muscles include extra-ocular muscles, derived from the
anterior mesoderm; and tongue muscles, derived from the hypoglossal cord. A recent study
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by Kelly et al. [25] demonstrated that Thx1 is an important regulator in the onset of
branchiomeric myogenesis and pharyngeal muscle development in the mouse. It is
hypothesized that Thx1 is required for the transcriptional activation of myogenic
determination genes as it showed that Thx1 regulates the expression of Fgf10 in the core of
the first pharyngeal arch. Mutations in Thx1 resulted in down-regulation of Fgf10 expression
which affected the patterning of cells in the mandibular arch and thus resulted in defects in
branchiomeric myogenesis in mice [25].

Another study examining the role of FGF10 in orofacial development was that of Harada et
al. that showed the Fgf10 null mice exhibited a reduction in cell proliferation in dental
epithelium; an effect which could be reversed by adding exogenous FGF10 [26]. Rice and
colleagues showed that FGF10 is crucial in mediating tissue-tissue interactions during palate
development [27]. Mice lacking Fgf10 did show initial palatal shelf buds but they did not
undergo palatal extension and growth. Finally, Hosokawa and colleagues recently
demonstrated how FGF10 signaling in cranial neural crest cells controlled the development
of myogenic progenitor cells in tongue formation, a vital structure in palate development
[28].

These studies of animal models illustrate both the important role of FGF10 in palate
development and the important interaction between FGF10 and TBX1. Unfortunately, the
SNPs that were tested in FGF10 in the current report did not retain significance after
correction for multiple testing. This may be a due to a number of possible limitations, such
as the number of selected SNPs being too low to achieve full gene coverage and/or the small
number of analyzed patients.

In summary, in this research report we investigated the association of development of palatal
anomaly in 22g11.2DS with variants in known cleft palate genes. Despite the small sample
size, some variants showed nominal significance and might act as moderate genetic
modifiers. However, although 11 SNPs retained statistical significance after correcting for
the number of SNPs tested in each individual gene, none of these were significant after
correcting for the total number of genes tested. As this project is part of a larger study being
performed by the International 22q11.2 Consortium, additional DNA samples should
provide more data in the future. The results from these additional samples will be required to
confirm the findings in this report.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Characteristics of study subjects. USA: patients from Children's Hospital of Philadelphia, USA. NL: patients
from Wilhelmina Children's Hospital, Utrecht, the Netherlands.

Study subjects

USA(n=94) NL (n=13) Total (n=107)

Male 48 4 52 (48.6%)
Female 46 9 55 (51.4%)
Caucasian 89 12 101 (94.4%)
Non-Caucasian 5 1 6 (5.6%)
Non-cleft phenotype 59 8 67 (62.6%)
Cleft phenotype 35 5 40 (37.4%)
Overt cleft palate 6 1 7 (6.5%)
Submucosal cleft palate 22 3 25 (23.4%)
Bifid uvula 7 1 8 (7.5%)
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