
The Genetic Basis of Incomitant Strabismus: Consolidation of
the Current Knowledge of the Genetic Foundations of Disease:
The Genetic Basis of Incomitant Strabismus

Carolyn P. Graeber, MD1,3, David G. Hunter, MD, PhD1,3, and Elizabeth C. Engle, MD1,2,3,4

1Department of Ophthalmology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA

2Department of Neurology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA

3Department of Ophthalmology, Harvard Medical School, 243 Charles St, Boston, MA

4Department of Neurology, Harvard Medical School, 243 Charles St, Boston, MA

Abstract

In recent years, our understanding of the genetic foundations of incomitant strabismus has grown

significantly. Much new understanding has been gleaned since the concept of congenital cranial

dysinnervation disorders (CCDDs) was introduced in 2002, and the genetic basis of CCDDs

continues to be elucidated. In this review, we aim to provide an update of the genetic and clinical

presentation of these disorders. Disorders reviewed include Duane syndrome (DS), HOXA1 and

HOXB1 syndromes, Moebius syndrome, congenital fibrosis of the extraocular muscles (CFEOM),

and horizontal gaze palsy with progressive scoliosis (HGPPS).
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Introduction

Congenital cranial dysinnervation disorders (CCDDs) are a group of disorders that result

from the abnormal development of cranial motor nuclei and their respective cranial nerves.

Because these cranial nerves fail to appropriately innervate their intended target muscles,

these muscles often have fibrotic changes, which is now understood to be secondary to

either absent or aberrant innervation from other nearby cranial nerves.

Our understanding of the CCDDs has evolved over time. The path to understanding the

history of this is best exemplified by congenital fibrosis of the extraocular muscles

(CFEOM). Long recognized as a source of ocular pathology, elements of this disorder were

first described as early as the late 1800s, but it was not until 1956 that Laughlin first coined

the term CFEOM.1 The basis of pathology was initially thought to be the muscles

themselves, which showed fibrosis histologically and restrictive strabismus clinically.

Corresponding Author: Elizabeth C. Engle, MD, 300 Longwood Ave, Boston, MA, elizabeth.engle@childrens.harvard.edu.

NIH Public Access
Author Manuscript
Semin Ophthalmol. Author manuscript; available in PMC 2014 July 15.

Published in final edited form as:
Semin Ophthalmol. 2013 ; 28(0): 427–437. doi:10.3109/08820538.2013.825288.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Through the 1980s and 90s, however, mounting evidence showed that the underlying

pathology was the agenesis or hypoplasia of the oculomotor nerve and that the disorder was

in fact absent or aberrant innervation of these muscles that caused secondary fibrotic and

restrictive changes. Other disorders were also shown to have similar underlying

pathogenesis, including Duane syndrome (DS) and Moebius syndrome. This new

understanding prompted the reclassification of these disorders under the umbrella term

“CCDDs.”

In this review, we discuss the current understanding of the genetic underpinnings of CCDDs.

Table 1 summarizes the disorders, their clinical and radiographic findings, and the genes that

have been associated with each of them.

Methods

A literature search of PubMed (covering years 1950-January, 2013) for the following terms

was conducted: “congenital cranial dysinnervation disorders,” “Duane syndrome,” “CHN1

and Duane syndrome,” “Duane radial ray syndrome,” “CHN1 and Duane syndrome,”

“Goldenhar and Duane syndrome,” “SALL1 and Duane syndrome,” “8q12 duplication and

Duane syndrome,” “8q13 and Duane syndrome,” “Wildervanck and Duane syndrome,”

“HOXA1 and Bosley-Salih-Alorainy syndrome,” “HOXA1 and Athabascan Brain

Dysgenesis syndrome,” “Moebius syndrome,” “HOXB1 and Moebius syndrome,”

“congenital fibrosis of the extraocular muscles,” “congenital fibrosis of the extraocular

muscles and KIF21A,” “CFEOM and PHOX2A,” “CFEOM and TUBB3,” “horizontal gaze

palsy with progressive scoliosis,” and “horizontal gaze palsy with progressive scoliosis and

ROBO3.” Reference lists within pertinent articles were reviewed. Only English language

papers with relevance to ocular findings were reviewed.

Isolated (Non-Syndromic) Duane Syndrome

The most common CCDD, Duane syndrome (DS), has been reported to account for 1–4% of

strabismus cases.2,3 DS is characterized by congenital absence or hypoplasia of the abducens

nucleus and subsequent aberrant innervation of the lateral rectus muscle by branches of the

oculomotor nerve.2,3 Clinically, this syndrome manifests as decreased horizontal movement

of the affected eye with narrowing of the palpebral fissure and globe retraction with

attempted adduction.4

Three types of DS have been described. In type 1 DS, the affected eye has limited abduction

but preserved adduction, frequently resulting in esotropia in primary gaze. In type 2, the

affected eye has limited adduction but preserved abduction, often causing exotropia in

primary gaze. In type 3, the affected eye has limitation of both abduction and adduction. In

many patients, these types are not distinct once the eye movements have been carefully

scrutinized. The primary gaze deviation can be esotropia, exotropia, or orthophoria,

depending on the balance between the deficits of the horizontal muscles.

Most individuals with Duane syndrome are the only affected member of their family

(simplex, or sporadic, cases), but hereditary forms account for 5–10% of cases.5 Several

investigators have described bilateral DS with an autosomal dominant inheritance pattern.6,7
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Recent mapping of the phenotype of families with DS inherited as a dominant trait identified

the DURS2 locus on chromosome 2 and, subsequently, heterozygous mutations in

CHN1.5,8–12 Current evidence suggests that gain of function mutations in CHN1

hyperactivate α2-chimerin and cause disruption in the growth or guidance of cranial axons

destined to innervate extraocular muscles during development.11,12

Phenotypic variability has been recognized among individuals harboring heterozygous

CHN1 mutations.7,11,12 Many affected individuals have bilateral DS with either

manifestations of either type 1 or type 3 DS. Some have one type 1 in one eye and type 3 in

the other, but none have type 2.9 In addition, a subset also has vertical deviations associated

with DS,9,12–14 and some have vertical deviations in the absence of DS.12 Given these

features, it is reasonable for patients with bilateral DS and associated vertical motility

anomalies12,14 and patients with familial vertical deviations12 to be screened for CHN1

mutations. Individuals harboring the familial mutation do not always have clinical evidence

of disease, indicating that while phenotypic penetrance is very high, it is not complete.14,15

Demer and colleagues performed magnetic resonance imaging (MRI) on 8 family members

from two autosomal dominant DS pedigrees who harbored CHN1 mutations and compared

the findings with those of 11 control patients who had comitant strabismus. The DS patients

showed a variable endophenotype, with most participants showing markedly abnormal

lateral rectus muscles and some showing abnormalities in other extraocular muscles as well.

The only muscles that were not affected were those supplied by the inferior division of the

oculomotor nerve: the inferior rectus, medial rectus, and inferior oblique muscles. This

finding suggests that the abnormality in DS may not be limited to just the abducens nerve

but may also involve the superior branch of the oculomotor nerve. In addition, there was

evidence of superior oblique hypoplasia in half of the individuals tested, suggesting that the

trochlear nerve may also be affected in some individuals.13

It is important to note that CHN1 has not been identified as a cause of simplex DS15 nor has

it been implicated in Brown syndrome, congenital disorders of the oblique muscles, or

vertical retraction syndrome.16 CHN1 hyperactivation has, however, been associated with

deficits in supraduction in the absence of DS.12 Abnormalities in chromosomes 10 and 22

have also been implicated in the pathogenesis of DS.17 Therefore, while much information

on the genetic basis of DS has been gleaned in recent years, much more remains to be

determined.

Syndromic Duane Syndrome

While the majority of DS occurs in isolation, DS is associated with characteristic systemic

findings in about 30% of cases. In this section, we describe the clinical features and genetic

analysis to date of these syndromes.

A spectrum of overlapping disorders that include DS with radial limb abnormalities, facial

asymmetry, hearing deficits, ear abnormalities, anal stenosis, and cardiac and renal

abnormalities have been associated with mutation in SALL4.19,20 Individuals with SALL4

mutations have also been found in radial limb anomalies without DS.18 Disorders on this

spectrum include Duane radial ray (Okihiro) syndrome, Holt-Oram syndrome, and acro-
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renal-ocular syndrome, all of which have been shown to have links to SALL4 mutations.19 A

SALL4 mutation has also been identified in a man previously thought to have thalidomide

embryopathy who then had a daughter with similar limb deformities.19 MRI analysis of a

family with a heterozygous SALL4 mutation resulting in Duane radial ray syndrome

revealed hypoplastic to absent abducens nerves with normal intracranial oculomotor and

optic nerves. In some subjects, a branch of the oculomotor nerve was shown to be proximal

to the lateral rectus muscle, implying that it may partially innervate this muscle.13 SALL4

mutations have not been identified in patients with simplex DS.21,22 Table 2a summarizes

the clinical differences among SALL4 disorders.

Townes-Brocks syndrome is an autosomal dominant condition that is associated with

mutations in SALL1.20 This syndrome is characterized by ear, limb, anal, and renal

anomalies but has rarely been associated with DS.21

Abnormalities on chromosome 8 have been observed to co-segregate with DS. A reciprocal

balanced translocation in chromosome 8q13 implicated CPAH as a possible etiology of

simplex DS.22 Three other patients with disruption of this gene locus have exhibited DS

with various other systemic associations.23–25 Chromosome 8q12 duplications have also

been reported to produce a combination of DS with sensorineural deafness, cardiac defects,

hypotonia, and developmental delay.26 Duplications in this chromosome locus can also

produce developmental delay and particular facial features, including full cheeks, a specific

lip shape, and horizontal and flared eyebrows, with or without DS.27,28 The duplicated

region of 8q12 includes CHD7, implying that abnormal dosage of the transcribed protein

may be a factor.26,27

Wildervanck syndrome (also known as cervico-oculo-acoustic syndrome) is characterized

by Duane syndrome, Klippel-Feil deformity of the spine (congenitally fused cervical

vertebrae), and hearing loss. This syndrome has a female predominance, suggesting a

possible defect on the X chromosome that is lethal in hemizygous males.29 Genetic

evaluation of a simplex case in an affected male revealed a microdeletion on chromosome X

involving only a single gene: Fibroblast Growth Factor Homologous Factor 13

(FGFHF13).30

Goldenhar syndrome,31 which occurs in as many as 3% of DS patients,32 has been

associated with deletions in chromosome 22q11.2.33,34 While some DS has been linked to

chromosome 22, the exact locus responsible for the association of these two disorders is, as

yet, unknown. DS has been linked to numerous other defined conditions in isolated case

reports (e.g., Marfan syndrome),33 but to date, these do not have an identified genetic basis.

HOXA1 Syndromes

Recessive, homozygous HOXA1 mutations have been reported to cause horizontal gaze

palsy, facial weakness, and sensorineural hearing loss sometimes associated with

developmental delay and hypoventilation.34 Initially, two syndromes, Bosley-Salih-Alorainy

Syndrome (BSAS) and Athabascan Brain Dysgenesis syndrome (ABDS), were described.

BSAS was described in the Middle Eastern population and included bilateral type 3 DS,

sensorineural hearing loss, malformation of the cerebral vasculature, and autism in select
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patients.34 MRI findings showed grossly normal orbits and extraocular muscles. The internal

carotid artery, however, was hypoplastic or absent in all individuals, and a few patients had

duplication of the vertebral artery. The abducens nerve appeared to be absent bilaterally in

one patient.35 The second variant, ABDS, was reported in the Native American population.

These individuals had horizontal gaze restriction, facial weakness, hearing impairment,

cerebral vasculature malformation, cardiac malformations, central hypoventilation, and

intellectual disabilities.34,36

Despite some initial differences noted between BSAS and ABDS, overlapping features

between the two populations were noted at the outset.34 Subsequently, members of a BSAS

family were reported to also have cardiac anomalies (a feature more in line with ABDS),

and members of the ABDS family had mild cognitive changes more consistent with BSAS.

The study also found that not all patients harboring a homozygous HOXA1 mutation had

horizontal gaze limitation or deafness.37 These findings further blurred the distinction

between the two entities and widen the HOXA1 human phenotype.

Homozygous HOXA1 mutations result in phenotypes that overlap with type 3 DS and

Moebius syndrome (see section on Moebius syndrome below). Evaluation of HOXA1 in DS

and Moebius patients, however, did not reveal any mutations, indicating that HOXA1

mutations are not a major cause of simplex DS38 or Moebius syndrome.39 Table 2b

summarizes the clinical differences between ABDS and BSAS.

Moebius Syndrome

Moebius syndrome is a nonprogressive, congenital facial paralysis with limited abduction of

the eyes; it can be associated with hearing impairment and other cranial nerve dysfunction,

as well as other developmental abnormalities.40 The syndrome occurs in simplex cases and

is more likely to occur in children exposed to misoprostol in utero.41 While some mutations

have been identified in patients with atypical forms of Moebius syndrome, no mutations

have been observed in patients with typical findings. The genetic basis of this syndrome, if

one exists, remains elusive.

Carta and colleagues45 evaluated a large cohort of patients with this syndrome to identify

their clinical characteristics. Three different patterns of eye movements were identified. The

most common motility pattern, identified in half of the patients, was a large esotropia with

almost complete abduction deficit but relatively conserved adduction. These patients utilized

cross-fixation to compensate for their duction deficits. The next most common ocular

motility pattern was orthotropia in primary gaze with deficits of abduction and adduction,

requiring large head movements to look to either side. Vertical ductions were preserved.

Finally, the smallest number of patients (less than 10%) exhibited a large angle exotropia

with absence of convergence. These patients also had limited vertical gaze accompanied by

torticollis.42

HOXB1

Identified in a conservative German American population, a single homozygous HOXB1

mutation has been associated with comitant strabismus, bilateral facial palsy, and hearing
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impairment in two families. While affected individuals had facial palsy and esotropia, they

did not meet criteria for Moebius syndrome, as they had full abduction of both eyes. The

mutation is predicted to result in loss of HOXB1 function.43

Congenital Fibrosis of the Extraocular Muscles

Congenital fibrosis of the extraocular muscles (CFEOM) is a congenital, non-progressive

restrictive ophthalmoplegia and ptosis that has been shown to have a neurogenic basis.

Three phenotypes have been described: CFEOM1, 2, and 3.

CFEOM1, the most common of the three phenotypes, is defined by the combination of non-

progressive, bilateral infraduction of the eyes in resting position, limited vertical eye

movements with the inability to elevate either eye over the horizontal midline, and bilateral

ptosis with a compensatory “chin up” head posture (Figure 1). Many individuals have been

noted to have “A pattern” strabismus.44 Pupil size and response are normal. Autopsy and

radiographic studies have shown hypoplasia or agenesis of the oculomotor nerve, in

particular its superior division.46,47 These studies support the hypothesis that the primary

pathology of CFEOM is dysinnervation, with secondary fibrosis of the target muscles.45

Inheritance of CFEOM1 is autosomal dominant. Mutations in KIF21A on chromosome 12,

which encodes a kinesin motor protein, have been identified in most individuals with

CFEOM1.46,47 Rare CFEOM1 patients harbor mutations in TUBB3,48 and other genes not

yet identified are likely to be responsible for CFEOM1 in a minority of individuals.49 In

addition, in rare individuals, mutations in KIF21A result in clinical findings most consistent

with CFEOM3 (see description below).50

Individuals with CFEOM2 have profound ptosis, exotropia, and small, poorly reactive

pupils.51 The condition was found to result from homozygous mutations in PHOX2A,52

which encodes a homeodomain transcription factor. To date, there has been no evidence of

PHOX2A mutations in patients with CFEOM1 or 3,53,54 indicating that this is a genetically

distinct entity.

Clinical evaluation of patients with PHOX2A mutations found ptosis often with

compensatory chin-up position, pupils that were unreactive to light but that retained

response to pharmacologic agents, and large angle exotropia with compensatory head turn

away from the fixing eye.55 Convergence and abduction were also almost absent.

Neuroimaging revealed large lateral rectus muscles consistent with the exotropic eye

position, with all other rectus muscles comparatively small. These studies suggest that the

clinical findings in CFEOM2 are the result of isolated but complete dysinnervation of targets

of the oculomotor and trochlear nerves, with preservation of all other cranial nerves.

CFEOM3 is a third phenotype that has variable clinical findings that include varying degrees

of ptosis and ophthalmoplegia, ranging from mild to complete. In the severest form, these

patients have profound ptosis and abducted and infraducted position of the globes with

severe restriction of motility (Figure 2). In mildly affected individuals, the only deficit is

decreased supraduction with the globes in a normal position in primary gaze. Findings can

Graeber et al. Page 6

Semin Ophthalmol. Author manuscript; available in PMC 2014 July 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



be unilateral or bilateral. Some of these individuals resemble CFEOM1 or CFEOM2

phenotypes. Familial transmission is autosomal dominant with variable penetrance.

CFEOM3 can result from heterozygous missense mutations in TUBB3, which encodes a β-

tubulin isotype that is a component of neuronal microtubules.48 While some TUBB3

mutations result in isolated CFEOM3, other specific mutations cause dysfunction of

additional cranial and spinal nerves, and social and intellectual disabilities accompanied by

maldevelopment of the corpus callosum and morphologic changes in the basal ganglia.48

One specific TUBB3 mutation results in an E410K amino acid substitution and results in

what is now referred to as the TUBB3 E410K syndrome.39 Clinical overlap exists between

atypical Moebius syndrome and the TUBB3 E410K syndrome. Seven of the eight subjects

found to have this mutation previously had a diagnosis of Moebius syndrome until genetic

evidence showed de novo heterozygous missense TUBB3 mutations.39 These individuals

clinically had ptosis and limited upgaze, more consistent with CFEOM3 than with typical

Moebius syndrome.

MRI findings in patients with TUBB3 mutations reveal structural correlations with the

clinical phenotypes. In individuals with severe phenotypes that clinically resemble

CFEOM1, there is hypoplasia of the superior rectus, medial rectus, and levator palpebrae

superioris muscles. In some cases, the inferior oblique muscle is also hypoplastic. Aberrent

branches of the oculomotor nerve suggest misinnervation of the lateral rectus muscle.

Individuals with milder phenotypes also had fewer abnormalities on MRI imaging, with

relatively less hypoplasia of the subarachnoid portion of the oculomotor nerve and its

targeted extraocular muscles.56

Recently, a homozygous missense TUBB2B mutation was found to be associated with

CFEOM and polymicrogyria. To date this is the only mutation in TUBB2B that has been

associated with a CFEOM.57 In addition, rare individuals meeting CFEOM3 criteria harbor

KIF21A mutations.53,58,59

While the above genes account for the majority of families with CFEOM, additional

mutations causing the disorder are likely yet to be identified and characterized. One

mutation-negative pedigree exhibits the phenotype of CFEOM3 and has a translocation that

implicates a locus on chromosome 13q12 (FEOM4) as the source of pathogenesis.60

Additional autosomal recessive forms of CFEOM also appear to exist. A consanguineous

Turkish family with autosomal recessive transmission of a unilateral, non-progressive

ophthalmoplegia and hand abnormalities mapped to chromosome 21;61 however, forced

ductions were reportedly normal in this family, suggesting an atypical presentation for a

CFEOM. In one Lebanese family, affected members had unilateral ptosis and restrictive

strabismus but were found to have no identifiable linkage to the CFEOM1, -2, or -3 locus

and had no mutation in KIF21A or PHOX2A genes.62 The full spectrum of mutations that

can give rise to CFEOM phenotype, therefore, remains to be elucidated.
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Horizontal Gaze Palsy with Progressive Scoliosis

First described in 1975, horizontal gaze palsy with progressive scoliosis (HGPPS) is a rare

autosomal recessive disorder that features lateral gaze limitation and scoliosis (Figure 3) as

key clinical findings.63 It was not until 2004, however, that the pathogenesis was linked to

mutations in ROBO3 in consanguineous families with autosomal recessive inheritance

pattern of the disease.64 This gene is necessary for hindbrain axons to appropriately cross

the midline. Corresponding defects in MRI imaging of the hindbrain were identified in

affected individuals, including a characteristic anterior flattening and midline cleft now

referred to as a butterfly configuration on axial cuts (Figure 4).64 HGPPS can also result

from compound heterozygous mutations in non-consanguineous families.65 Presenting signs

in these patients were plagiocephaly and torticollis, both of which developed before

scoliosis. Therefore, infants and children presenting with plagiocephaly or torticollis in

addition to lateral gaze palsy would benefit from genetic testing for ROBO3 mutations.65

Because of the ophthalmologic and molecular cues that can help diagnose HGPPS, patients

can be diagnosed from an early age and screened for the onset of scoliosis,66 the most

debilitating clinical sequela of this disorder.

Discussion

Over the past decade, an explosion of evidence has reinforced the neurogenic etiology of the

CCDDs. The identification of specific gene mutations as the pathogenesis for these disorders

has increased our knowledge of the importance of the normal protein products of these

genes in the normal development of ocular cranial motor neurons and guidance of their

axons to the appropriate end muscle targets. The combination of clinical findings, MR

imaging, and gene product characterization has led to a greater understanding of the cascade

of events that leads ultimately to the clinical presentation of these patients. This cascade

starts as a gene mutation coding for an abnormal protein that leads to changes in the normal

development of the nervous system that then results in structural abnormalities that

culminate in anatomical dysfunction. The effort to gather this knowledge has spanned

continents and has involved much collaboration among institutions.

Despite the advances in our understanding, much remains to be learned about these

conditions. The variable expression pattern of patients with known mutations reveals the

potential importance of additional genetic variation and environmental factors on the end

phenotype. The high number of simplex CCDD patients with no identified gene mutation

again highlights that environmental factors or somatic mutations may cause disruptions in

development that result in a clinical presentation similar to that of underlying germline

mutations. In many pedigrees there is little or no genetic data to point to the identity of the

mutation. For these reasons, much work is still needed to obtain a better understanding of

the environmental and genetic mechanisms that lead to dysinnervation in the CCDDs.
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FIGURE 1.
Motility of a patient with a KIF21A mutation. He also has aberrant innervation causing a

Marcus Gun jaw wink. Reproduced with permission from Yamada, Hunter, et al., “A novel

kif21a mutation in a patient with congenital fibrosis of the extraocular muscles and Marcus

Gunn jaw-winking phenomenon,” Arch Ophthalmol. 2005;123(9):1254–1259.
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FIGURE 2.
(A–E) and (G, H) Eye manifestations of patients with CFEOM3 and TUBB3 mutations. (F)

and (I) Concomitant deformities of the extremities in two patients. (J) MRI of the brainstem

at the level of the oculomotor nerve. (K–L) MRI of posterior orbit of a patient with TUBB3

mutation (K) compared with a normal posterior orbit (L). Reproduced with permission from

Tischfield MA, Baris HN, Wu C, et al., “Human TUBB3 mutations perturb microtubule

dynamics, kinesin interactions, and axon guidance,” Cell. Jan 8 2010;140(1):74–87.

153×207mm (300×300 DPI).
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FIGURE 3.
Motility of a patient with horizontal gaze palsy and progressive scoliosis. MRI of spine

revealing profound scoliosis below. Reproduced with permission from Jen JC, Chan WM,

Bosley TM, et al., “Mutations in a human ROBO gene disrupt hindbrain axon pathway

crossing and morphogenesis,” Science. Jun 4 2004;304(5676):1509–1513.
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FIGURE 4.
MRI studies comparing normal subjects (A–C) with patients with HGPPS (D–F) at similar

anatomical levels. CC – corpus callosum, P - pons, M - medulla, * - fourth ventricle.

Reproduced with permission from Jen JC, Chan WM, Bosley TM, et al., “Mutations in a

human ROBO gene disrupt hindbrain axon pathway crossing and morphogenesis,” Science.

Jun 4 2004;304(5676):1509–1513. 368×235mm (72×72 DPI).
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