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Abstract

Intracellular signaling pathways, which encompass both biochemical reactions and second

messenger diffusion, interact non-linearly with neuronal membrane properties in their role as

essential intermediaries for synaptic plasticity and neuromodulation. Computational modeling is a

productive approach for investigating these phenomena; however, most current strategies for

modeling neurons exclude signaling pathways. To overcome this deficiency, a new algorithm is

presented to simulate stochastic diffusion in a highly efficient manner. The gain in speed is

obtained by considering collections of molecules, instead of tracking the movement of individual

molecules. The probability of a molecule leaving a spatially discrete compartment is used to create

a lookup table that stores the probability of km molecules leaving the compartment as a function of

the total number of molecules in the compartment. During the simulation, the number of

molecules leaving the compartment is determined using a uniform random number as an index

into the lookup table. Simulations illustrate the accuracy of this algorithm by comparing it with the

theoretical solutions for deterministic diffusion. Additional simulations show how spines on a

dendritic branch compartmentalize diffusible molecules. The efficiency of the algorithm is

sufficient to allow simulation of second messenger pathways in a multitude of spines on an entire

neuron.
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INTRODUCTION

Intracellular signaling pathways, which encompass both biochemical reactions and second

messenger diffusion, are critically intertwined with neuronal function, as has been

documented in several brain areas. In the hippocampus, AMPA receptors are modulated by

several kinases and phosphatases (Malinow et al. 1989, Malenka et al. 1989, Tsien et al.

1996, Abel et al. 1997) which themselves are activated by calcium influx through NMDA

receptors and voltage-dependent channels. In the striatum, several membrane channels are
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modulated by DARPP-32 signaling pathways (Surmeier et al. 1995), which activation

depends on neuronal activity. These non-linear and feedback interactions make it

exceedingly difficult to understand how neuronal activity is modulated by spatio-temporal

input patterns that occur in vivo.

Computational modeling is an innovative, yet practical method to investigate neuronal

function. On the macroscopic scale, modeling has made significant contributions regarding

the influence of morphology and channel properties on neuronal integration (e.g. Poirazi et

al. 2003a, 2003b, Migliore et al. 2004). On the microscopic scale, computational models of

cellular signaling pathways have been employed to understand neurotransmitter release and

generation of miniature endplate currents (e.g. Stiles et al.1999, 2001), as well as kinase

activation in spines (e.g. Bhalla 2004a, 2004b). However, due to computational complexity,

most current strategies for modeling neurons exclude either complex molecular interactions

or electrical membrane properties that underlie synaptic modulation. The few neuron models

that do include reaction-diffusion subsystems employ continuous, deterministic equations

(e.g. Blackwell 2004, Fink et al. 2000), which assume large numbers of molecules in each

compartment.

An intermediate approach, on the meoscopic scale, is required to adequately model the

interaction between cell signaling pathways and neuronal activity. The biochemical

reactions leading to activation of kinases and phosphatases are localized to dendritic spines

(Rosenmund et al. 1994, Westphal et al. 1998); thus these small structures must be included

in whole neuron models. A stochastic approach is required to adequately describe

bimolecular interactions among the small numbers of molecules within the spine (Gillespie

1977) because activations fluctuate greatly about the mean within such small compartments.

Similarly, diffusion of second messenger molecules out of the spines and along the thin

dendrites also must be described using stochastic equations. Thus, an effective model of

synaptic modulation requires the fusion of the complexities of neuronal membrane

physiology with highly efficient models of molecular interactions.

Though highly efficient algorithms for stochastic bimolecular reactions are available (e.g.

Gibson and Bruck, 2000, Cao et al. 2005), algorithms for stochastic diffusion are less

numerous. The simplest diffusion algorithms employ random walk with discretized space

and time. The disadvantage is that increased accuracy requires finer (and thus

computationally slower) time discretization. To integrate with biochemical reactions, only

those molecules in the same spatial location are considered for interactions. Another discrete

space approach for reaction-diffusion systems is to consider diffusion as an additional

reaction. The appropriate reaction coefficient (diffusion propensity) is calculated from the

diffusion coefficient and the geometry (compartment size). Two algorithms employ this

approach (Elf et al. 2003, Bhalla 2004a), but these algorithms track individual molecules,

and thus may not scale well for neurons. An alternative and more efficient approach is to

avoid spatial discretization and to use ray tracing to evaluate when diffusers interact (e.g.

Stiles et al. 2001, Tuerlinckx et al. 2001). Though the Monte Carlo algorithm employed by

MCell is the most computationally efficient method for creating exact stochastic simulations

of diffusion and reactions, reactions are not allowed among two diffusing species. Further

gains in speed are required for modeling diffusion and reactions in entire neurons.
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The algorithm presented below is an accelerated approximation to stochastic diffusion.

Though a spatial discretization is employed, the gain in speed is obtained by considering

collections of molecules, instead of tracking the movement of individual molecules. The

efficiency of the algorithm is sufficient to allow simulation of second messenger pathways

in a multitude of spines on the dendritic trees of an entire neuron.

METHODS

Consider a structure such as a spine subdivided into spatial compartments of length Δx. The

probability that a molecule will leave the spatial compartment is proportional to the time

step, ΔT, multiplied by the diffusion coefficient, D, divided by the length of the

compartment, Δx (Elf et al. 2003, Bhalla et al 2004a):

(1)

Of the molecules that leave the compartment, half will move forward, and half will move

backward; the remaining molecules in the compartment will not leave the compartment. The

computational efficiency arises from the recognition that, given these three probabilities:

moving forward (pf=Pm/2), moving backward (pb=Pm/2) or not moving (pn=1-Pm), the

number of molecules moving forward (kf), backward (kb), or not leaving (N-kf-kb) in a

compartment can be calculated with the trinomial distribution:

(2)

Thus, if a compartment contains 20 molecules, instead of choosing 20 random numbers, it is

only necessary to choose a single random number to determine the destination of each

molecule within a compartment. Though trinomial random numbers are expensive to

generate, the use of a pre-defined lookup table, which stores cumulative probabilities as a

function of N, kf and kb, allows the algorithm to use uniform random numbers.

Two minor differences are required to apply the algorithm to diffusion in two or three

dimensions. First, the probability of leaving the compartment, pm, must account for

additional spatial dimensions, e.g. in two-dimensions:

(3)

where Δx, Δy is the size of the two-dimensional compartment. Second, the number of

particles moving, km, is calculated from the binomial:

(4)
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Similar to the one-dimensional algorithm, a pre-defined lookup table that stores cumulative

binomial probabilities allows km to be determined with a single uniform random number.

Specifically, given the random number u and total number of molecules N, a binary search

of row N in binomial table TB is used to find the binomial probability table entry, TB(N,j),

such that TB(N,j-1) < u ≤ TB(N,j). Then the number of moving molecules is read out from a

parallel lookup table, TK that stores the corresponding number of moving molecules, using

row N and index j: km = TK(N,j). After the number of moving molecules is calculated, the

destination compartment of each molecule is determined in a similar manner using a

uniform random number as index to a table which stores the probability of moving in each

compartment direction.

The algorithm is illustrated in figure 1. A flow chart of the initialization steps is portrayed in

Fig 1A. First, the geometry of the structure is defined. For a neuron, each segment of the

dendritic tree is subdivided into equal size compartments. Second, the connectivity of the

compartments is stored in an array. From the compartment size, diffusion coefficient, and

time step, the probability is calculated of a molecule moving from one compartment to any

adjacent compartment. Third, the binomial distribution (or trinomial distribution where 1D

is appropriate) is used to create the table of probabilities that km out of N molecules leaves

the compartment, for N between 1 and Nmax. Lastly, a second table is created which

enumerates the probabilities of moving in each direction (i.e. North, South, Northeast, etc).

In circumstances where the dendrites have spines, a connection array is created to map each

spine to a dendritic compartment, and the direction table is modified to include the

probability of a molecule moving into a spine.

A flow chart of steps repeated during the simulation is portrayed in Fig 1B. During the

simulation, at each time step an array is initialized for storing the cumulative number of

molecules moving to each compartment. Next, for each compartment, the number of

molecules leaving the compartment, km, is determined either with selection of a single

uniform random number as index into the lookup table (for N < Nmax), or from pm • N (for

N ≥ Nmax). Then, for 2D and 3D diffusion, the destination compartment is determined either

with a uniform random number as index to the direction lookup table for each molecule

from 1 to km (for N < Nmax) or from the product of km and each of the direction

probabilities (for N ≥ Nmax). Note that no random numbers are generated for the (N-km)

molecules which remain in the compartment. Though the deterministic equations are used

for compartments with N ≥ Nmax, fractional quantities are resolved with randomly selected 0

or 1. After the movement of molecules in each compartment has been determined, then the

number of molecules in each compartment is updated by adding the numbers in the

accumulation array.

The algorithm is written in C, compiled with the gnu C compiler, and uses the function

rannum() to generate uniform random numbers; algorithms for lookup tables, binomial and

trinomial distributions are taken from Numerical Recipes in C (Press et al. 1992). The

simulations presented below are implemented on the Redhat and Fedora Linux operating

systems. The first set of simulations demonstrates the accuracy of the trinomial (one-

dimensional) version of the algorithm. The second set of simulations illustrates the accuracy

of the binomial (multi-dimensional) version of the algorithm. The third set of simulations
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shows that both algorithms can be integrated to model diffusion in a spatially complicated

structure such as a dendritic branch with multiple spines. The results demonstrate how the

spines on a dendritic branch compartmentalize diffusible molecules.

RESULTS

All the simulations demonstrate not only the accuracy of the algorithm, but also the

fluctuations which necessitate using a stochastic diffusion algorithm for small structures.

The trinomial version of the algorithm for one dimensional diffusion is the most efficient

because both the number of molecules moving and the destination compartments of all

molecules is determined with a single uniform random number. This algorithm is assessed

using a 10 µm×0.5 µm structure, subdivided into compartments of length 0.5 µm, 0.2 µm or

0.1 µm.

Compartments are labeled with the distance of their center from the left end of the structure.

Nmax is chosen to be 100, because stochastic simulations are similar to deterministic

simulations when the number of molecules in a compartment is large (Bhalla 2004a). For

these first simulations, the leftmost compartment is initialized with 1000 molecules, thus the

deterministic equations are used for some of the compartments at early times. The

theoretical solution is calculated using the infinite series solution for a finite cable

(Haberman 1998). The solution is implemented in Matlab, and 20 terms provided sufficient

accuracy (additional terms did not significantly alter the results).

Figure 2 shows that the stochastic algorithm solution has the same dynamics as the

deterministic theoretical solution, though the stochastic solution fluctuates about the

deterministic solution. Compartments close to the initial source of molecules exhibit a

transient peak; compartments further away exhibit a slow, delayed increase toward the

steady state value of 50 molecules. The similarity between Fig 2A and 2B shows that the

simulation is very robust to the choice of time-step. Figure 2C and 2D illustrate the effect of

changing compartment size. The smaller time step is used because of the constraint (2 D

ΔT) / Δx2 < 0.2, which prevents too large a change in the number of molecules in a single

time step. The algorithm is extremely accurate for these smaller compartments, as illustrated

by the overlap between stochastic and theoretical solution. The different dynamics observed

with smaller compartments is partly due to the different initial conditions. When initial

conditions are made identical, by evenly distributing the 1000 molecules among 5 of the 0.1

µm compartments, summing the molecules in five of the smaller compartments yields the

same value as one larger compartment at all times (results not shown). Nonetheless, the

smaller compartments yield sharper transients.

To further assess the algorithm for small numbers of molecules, the left most compartment

is initialized with 100 molecules (Δx = 0.05 µm and ΔT = 0.025 ms); thus the deterministic

equations are never used for these solutions. The number of molecules in compartment 0.25

µm (Fig 3A), 1.75 µm, (Fig 3B) and 5.75 µm (Fig 3C) are illustrated for three different trials

each to further demonstrates the natural variation of the stochastic algorithm. Notice that the

number of molecules fluctuates considerably about the theoretical deterministic solution,

though averaging over multiple trials decreases the fluctuations and yields a trajectory closer
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to the theoretical (results not shown). Though the theoretical solution reaches the steady

state value of 5 molecules per compartment within 200–300 ms, the stochastic solution

continues to fluctuate; thus steady state is reached only on average. The actual fluctuations

may be larger than illustrated because the solution in this and other figures is plotted at a 0.1

ms resolution.

The binomial version of the algorithm is more general because it may be used for both two-

and three-dimensional diffusion. To illustrate the accuracy of this algorithm in the two-

dimensional case, a 10 µm × 10 µm structure is subdivided into 400 0.5 µm2 compartments.

The corner compartment (at 0.25 µm,0.25 µm) is initialized with 1000 molecules at time 0;

thus both deterministic and stochastic algorithms are utilized. The theoretical, steady state

solution for two-dimensional diffusion in a semi-infinite sheet is 2.5 molecules per

compartment; thus, comparison of the stochastic solution with the theoretical solution is

valid only for time < 100 ms. Simulations results are portrayed in Figure 4 using both ΔT=

0.05 ms and ΔT= 0.013 ms time step. Fig 4A illustrates the solution for four compartments

along one edge; Fig 4B illustrates the solution for four compartments along the diagonal. In

both cases, the theoretical solution lies within the simulated solution, but the fluctuations in

the simulated solution are relatively large, especially when the number of molecules is

small. Notice that the only difference between the 0.05 ms time step and the 0.013 ms time

step is the fluctuations, showing the robustness of the binomial algorithm to time step.

To demonstrate diffusion in a sheet when only the stochastic algorithm is employed, the

compartment 0.25 µm,0.25 µm was initialized with only 100 molecules at time 0. In this

case, the stochastic solution is comparable to the theoretical semi-infinite solution for all

time because the theoretical steady state value is < 1 molecule per compartment. Fig 5A-D

show three different trials in (A) compartment 0.25 µm, 0.25 µm, (B) compartment 0.25 µm,

0.75 µm, and (C) compartment 1.25 µm, 1.25 µm. The number of molecules decreases very

quickly with distance from the corner, and, a mere 2 µm from the corner, the theoretical

solution does not exceed 2 molecules per compartment. In contrast to the theoretical

solution, the simulation demonstrates considerable variation among the different trials in all

compartments, and, e.g. at time = 7 ms ranges from 0 to 6 molecules when the theoretical

solutions is ~2 (Fig 5C, arrow). These fluctuations are important because they can produce

significant differences in the activation of downstream molecules.

These algorithms may be used to simulate diffusion within neuronal dendrites. In this case,

the one dimensional trinomial algorithm is integrated with the multi-dimensional binomial

algorithm to model diffusion in a spatially complicated structure. As an example, a dendritic

segment is modeled as 10 µm in length by 2 µm in diameter. The dendrite is segmented into

2D rings of width 0.5 µm and length 0.5 µm, resulting in 40 circumferentially homogeneous

compartments. Five spines, 0.5 µm diameter by 1.5 µm in length and segmented into 3 1D

compartments of length 0.5 µm, are evenly spaced along the dendrite. For this type of

simulation, additional lookup tables are created to store the connections between one

dimension structures (spines) and two dimensional structures (dendrites). Also, the direction

lookup tables are modified to include movement into the spine from the dendrite, which is

proportional to the contact area between spine and dendrite.
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Figure 6 evaluates the effect of spines and molecule source on the number of molecules in

the dendrite (in the outer ring at the base of the spine). Three conditions are illustrated: (1)

2000 molecules are placed at one end of the dendritic segment (Fig 6: light gray traces); (2)

2000 molecules are placed at one end of the dendritic segment, but there are no spines (Fig

6: black traces, mostly covered by light gray traces); (3) each of the spines is initialized with

400 molecules in the spine head (Fig 6: medium gray traces). Comparison of conditions 1

and 2 evaluates whether the presence of spines modifies the number of molecules in each

dendritic compartment. As observed in Fig 6, the presence of spines does not decrease the

number of molecules in the dendrite compartment, either for the ring shaped compartment at

1.75 µm (close to the source, thus an initial transient elevation in molecules is seen) or the

ring shaped compartment at 7.75 µm (far from the source, thus the number of molecules

rises slowly to steady state). Comparison of the first and third cases illustrates how the peak

number of molecules adjacent to the spine head depends on the initial source of the

molecules. When molecules originate in the spine head, the number of molecules in the

adjacent dendritic ring rises very quickly (within 100 ms) to its steady state value, with no

overshoot. Also, the effect of distance is eliminated; thus the number of molecules is

independent of spine location (though there is variation due to the stochastic algorithm).

Consequently, in ring 1.75 µm, which had an initial transient elevation, the peak value is

significantly smaller when molecules originate in the spine. The stochastic variation can be

seen by comparing Fig 6A with 6B: the number of molecules reaches 100 within ~10 ms in

ring 7.75 µm, but only reaches ~60 during the same time frame in ring 1.75 µm, and then

slowly increases to steady state.

The spatio-temporal distribution of diffusion molecules is displayed in Fig 7 in a format

analogous to the line scans used with calcium imaging: the abscissa indicates time and the

ordinate indicates compartment. As portrayed in Fig 7E, compartment 0 is the spine head;

compartments 1 and 2 are the spine neck; compartment 3 is the submembrane dendritic ring;

and compartment 4 is the cylindrical inner core of the dendrite. In order to compare these

different sized compartments, the concentration of molecules (calculated by dividing moles

by compartment volume) is illustrated (see color scale in 7F) for the spine and adjacent

dendrite located 1.75 µm from the origin (Fig 7A,B) and for the spine and adjacent dendrite

located 7.75 µm from the origin (Fig 7C,D). Fig 7A,C (two different spines) illustrates that

the concentration in both spines is very high (>0.3 µm) for the first 10 ms when the molecule

source is the spine head. In contrast, the number of molecules in the dendrite remains low

during this initial period. As the molecules diffuse out of the spine, the number of molecules

in the dendrite increases, but never reaches a high concentration. This is not due to an

explicit diffusional barrier, nor to buffering (not included in the simulation), but simply due

to dilution of the molecules by the larger dendritic volume. Fig 7C,D illustrate the number of

molecules in the same compartments when the molecules are initialized in the dendrite. In

this case, the concentration in the spine reflects that in the dendrite. In the compartments at

1.75 µm, the number of molecules in both dendrite and spine compartments are transiently

elevated during the first 25 ms; however, in the compartments at 7.75 µm, the number of

molecules remains near zero until 40 msec. The other notable difference is that spine

concentration fluctuates significantly more than the dendritic concentration. After the first

100 ms, the dendrite concentration has a coefficient of variation of 0.1, whereas the spine
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concentration has a coefficient of variation of 0.4 (mean concentration = 0.1 µm for both).

Thus, the source of diffusing molecules has a dramatic effect on the concentration of

molecules in the spine head and this will greatly affect activation of enzymes.

The efficiency of the algorithm is sufficient to allow simulation of second messenger

pathways in a multitude of spines on the dendritic trees of an entire neuron. One application

would be to investigate the effect of anchoring proteins on synaptic plasticity. Such a

simulation requires both a model of the entire neuron to achieve the correct electrical

activity, and the detailed second messenger pathways within spines. In addition, sufficiently

small spine compartments are required to allow the anchoring proteins to be localized at the

post-synaptic density. To evaluate the scalability of the algorithm for such a model, the

simulations of dendrite plus spines are repeated using a longer dendrite, more spines and

smaller compartments, of a size appropriate to address the function of anchoring proteins.

As expected, the simulation time (table 1) scales with the number of compartments and time

steps, and is still very fast for this structure. More importantly, the simulation time does not

scale with the number of molecules: the simulations using 1000 molecules were only

slightly longer than simulations using 100 molecules for the one dimensional structure.

Part of the algorithm’s efficiency is in the use of uniform random numbers to lookup the

number of moving molecules in a table filled with binomial or trinomial random numbers.

Thus, efficiency is related to how often the table entries are re-used, and how many table

entries must be searched to find the number of moving molecules. Fig 8A shows a histogram

of how many entries in the trinomial distribution table are used with a particular frequency.

During a simulation of 1000 molecules diffusing in a one dimensional, 10 µm long structure

(20 compartments) for 1000 ms (ΔT=0.003 ms), ~7700 entries are used once or not at all,

and ~1100 entries are used two or more times. Fig 8B shows a use histogram of the binomial

distribution table entries for a 1000 ms simulation in a two dimensional, 10 µm × 10 µm

structure (400 compartments). Only 1600 entries are used zero or one time, and the

remaining 700 entries are used two ore more times. As expected, the fractional use of the

table entries equals the probability of the table entry for both the binomial and the trinomial

(Fig 8C). Note that not all entries are searched each time step, either for the binomial or

trinomial. Each row of the table is indexed by the number of molecules in the compartment,

N; thus, during each time step, only the entries corresponding to N molecules are searched.

The number of entries searched is further reduced by defining a minimum probability to

store in the table. For the simulations presented here, if the probability of an event is less

than 1e-15, it is considered too unlikely to store; consequently, a maximum of 136 entries

are searched for the trinomial, and even fewer for the binomial.

To improve the efficiency of the algorithm, the number of unused entries can be reduced by

increasing the minimum probability stored. For example, when a minimum probability of

1e-9 is used for the two dimensional simulation (ΔT=0.025), the number of unused table

entries decreases to 659 out of a total of 1110 table entries, without a change in the results.

On the other hand, for longer simulations of larger structures, the number of unused entries

will decrease without changing the minimum probability stored. For example, in a 2000 ms

simulation of a 20 µm long × 2 µm diameter dendrite with 20 spines, using ΔT=25 µs,

Δx=0.5 µm, and 5,000 molecules, only 1308 of the 3093 binomial table entries are unused,
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and more of the low probability table entries are used with a higher frequency as compared

to Fig 8B.

DISCUSSION

A stochastic diffusion algorithm was derived for use in simulating second messenger

pathways within neurons. Simulations in one and two dimension were compared with the

theoretical solution to the deterministic diffusion equation for finite and semi-infinite

structures. The solutions were found to fluctuate around the theoretical solution, thereby

validating the algorithm, and also illustrating how stochastic simulations can produce results

that differ from deterministic solutions. A simulation of stochastic diffusion within a

dendrite with attached spines illustrated the potential of the algorithm for simulating second

messenger pathways within neurons, and demonstrated that spines compartmentalize

molecules by virtue of their small volume relative to the dendrite.

The computationally efficient stochastic diffusion algorithm is derived from a random walk

model of diffusion by allowing multiple diffusion events to occur within a single time

interval. This approach is similar to that used to derive the computationally efficient tau-leap

algorithm for stochastic biochemical reactions (Gillespie, 2001), and requires the number of

molecules leaving a compartment to produce a relatively small change in molecule

quantities at each time step. Under these conditions, the movements of individual molecules

can be considered independent, and thus binomial or trinomial probability distributions can

be used to calculate the number of moving molecules. In a long thin structure, in which it is

appropriate to consider one-dimensional diffusion only, a single random number determines

not only the number of molecules leaving the compartment, but their direction. For two and

three dimensional diffusion, after determining the number of molecules leaving the

compartment, additional random numbers are required to determine the destination

compartments only for the molecules leaving. Thus, the gain in speed is obtained by

considering collections of molecules, instead of tracking the movement of individual

molecules.

The computational efficiency of the algorithm derives from the following properties: (1) The

probabilities pm, pf, pb and pn are independent of the number of particles, and depend only

on the time step and compartment size, thus they can be pre-computed for each

compartment. (2) The probabilities for each combination of N, kf, kb (or N, km for the

binomial) are pre-computed because these equations are used only for compartments in

which the number of particles is sufficiently small that deterministic algorithms are

inaccurate, e.g. for N < 100. (3) A table lookup stores the pre-computed binomial or

trinomial probabilities mapped to the unit number line, thus table lookup requires uniform

random numbers, instead of binomial or trinomial random numbers. (4) Since most of the

molecules remain in the compartment, random number generation is not required for a

majority of the molecules in the simulation. In summary, the proposed algorithm is efficient

because it minimizes the number and type of random numbers used.

Second messenger pathways include not only diffusion but also biochemical reactions;

therefore, simulation of second messenger pathways requires that this stochastic diffusion
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algorithm be integrated with an equally efficient algorithm for stochastic biochemical

reactions. To maintain the efficiency achieved by considering collections of molecules, it is

logical to integrate the stochastic diffusion algorithm with the tau-leap algorithm (Gillespie,

2001), or one of the later modifications of the algorithm (e.g. Cao et al. 2005). The tau-leap

algorithm determines the number of molecules that participate in each reaction at each time

step. In the original implementation, a Poisson random number was used to determine the

number of reaction events for each reaction. The non-zero probability of choosing a random

number greater than the number of substrate molecules allowed molecule populations to

become negative. Subsequent versions of the algorithm implemented techniques to prevent

negative populations. One method is to use the exact stochastic algorithm (Cao 2005), when

the number of substrate molecules is very small, e.g. below 5 or 10. Another method is to

use the binomial distribution to calculate the number of reaction events for each reaction

(e.g. Tian and Burrage 2004, Chatterjee et al. 2005), which limits the number of reaction

events to the number of substrate molecules. The selection of the particular tau-leap

algorithm to integrate with the present stochastic diffusion algorithm requires careful

consideration to maintain efficiency and accuracy. An integrated algorithm would calculate

the number of molecules either reacting or diffusing during each time step; and provisions

would be made to ensure that the total of all reaction and diffusion events for each molecule

type neither appreciably changes molecule quantities during a single time step, and nor

produces negative molecule quantities.

The purpose of this integrated algorithm is to emulate the dynamics of diffusion and

biochemical reactions, which are components of second messenger pathways, within the

extensive and complicated geometrical structure of entire neurons. The number of molecules

within neurons requires that the algorithm excludes details often included in exact stochastic

simulations in order to minimize the number of calculations and the generation of random

numbers. In particular, in small structures such as spines, intracellular organelles such as

mitochondria and non-linear geometry may be obstacles to diffusion. An increase in the

number of collisions with these structures produces a longer path length than predicted by

the diffusion coefficient measured without such obstacles. Furthermore, if some of these

collisions are with binding proteins, anomalous diffusion may be observed (Saxton 2001).

The stochastic diffusion algorithm by itself cannot account for these effects; however, the

algorithm integrated with the tau leap algorithm or other stochastic biochemical reaction

algorithms can simulate reaction diffusion systems. Further investigation is required to

determine if such anomalous diffusion can be modeled by including reactions with binding

proteins and, if necessary, decreasing the diffusion coefficient to account for an increase in

path length.

The present algorithm assumes that electrical fields are not present or that the diffusing

molecules are not charged. Though this assumption may be true for electrically neutral

molecules such as inositol triphosphate, it is not true for ionic species such as calcium

diffusing in the electrically charged environment of excitable neurons. This assumption of

electrical neutrality is implicit in most diffusion algorithms (Bhalla 2004a,b, Blackwell and

Kotaleski 2002, Elf and Ehrenberg 2004, Stiles et al. 2001, Schaff 1997, Slepchenko et al.

2003), in part because biochemical reactions with other molecular species are considered to

be more significant effects. Nonetheless, it may be necessary to include electric field effects
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in future versions of the diffusion algorithm, after it has been integrated with a stochastic

biochemical reaction algorithm.

This stochastic diffusion algorithm integrated with the tau-leap algorithm presents an

approach rather different than other approaches for simulating stochastic reaction-diffusion

systems. One other approach uses a grid-free stochastic diffusion method, in which

molecules move a random distance in a random direction. MCell (Stiles et al. 2001) is the

paragon of such approaches, and achieves computational efficiency by using table lookup

for distance and direction, bit-level random numbers, and ray tracing to identify possible

biochemical reactions. This exact method for stochastic reaction-diffusion has been used to

investigate aspects of synaptic physiology (Stiles et al. 1999). The algorithmic difference

with the present approach has its source in the different objectives of the two approaches.

MCell seeks to reproduce interactions at the nanoscale level, and may be used to understand

e.g. how details of spine geometry influence calcium influx through synaptic channels. In

contrast, the stochastic diffusion algorithm described herein is designed for mesoscopic level

modeling, and may be used to understand how processes in spines influence and are

influenced by ionic channels in the dendrite. Such an approach is ideal for investigating

synaptic plasticity, where electrical activity will determine the level of activation of second

messengers and down stream enzymes, and the phosphorylation of ionic channels by those

enzymes will modulate electrical activity.

Another approach extends exact stochastic reaction algorithms, e.g. the next reaction method

(Gibson and Brook, 2000) or the first reaction method (Gillespie 1977), to systems with

multiple spatial compartments; thus these are grid-based approach similar to the present

algorithm. In both the spatial next reaction algorithm (Elf et al. 2003, 2004) and the newest

Kinetikit algorithms (Bhalla 2004a, 2004b), diffusion is treated as an additional reaction,

and each “reaction event” is either reaction or diffusion. The propensity for diffusion is

calculated from the diffusion coefficient divided by the squared length of the compartment,

and thus is similar to equation 1, which defines the probability of a molecule leaving a

compartment. Despite their differences, both of these approaches are exact and, because

calculations are applied to individual molecules, scale with the number of molecules in the

system. The latter characteristic is what interferes with these approaches being applied to

entire neurons. On the other hand, the Kinetikit algorithm switches to a deterministic

algorithm for compartments with large numbers of molecules, thus it also may be capable of

simulating second messenger pathways in entire neurons.

The computationally efficient stochastic diffusion algorithm paves the way to a new class of

neuronal model, one that integrates the information obtained from biochemical,

pharmacological, and molecular biology experiments with the more traditional multi-

compartmental models of neurons. The resulting integrative model provides insight into

mechanisms underlying neuromodulatory effects and the functional consequences of

neuromodulators with respect to neuronal activity. Such models will be useful for

investigating questions such as the mechanism whereby lack of dopamine produces deficits

in neuronal function observed in Parkinson’s Disease.
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Figure 1.
Algorithm for computationally efficient stochastic diffusion. (A) Flow chart of the

initialization steps. (B) Flow chart of steps repeated during the simulation. See text for

details.
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Figure 2.
Trinomial algorithm produces results similar to that predicted by theoretical deterministic

solution, independent of time step ΔT and compartment size Δx. Initial number of molecules

= 1000 in left-most compartment (center is 0.25 µm from end) of 10 µm long structure.

Results for different compartments are offset by 100 for illustration purposes. For all panels,

gray lines show the theoretical solution; black lines show simulations. The algorithm

seamlessly switches from deterministic to stochastic equations when the molecules in a
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compartment drops below 100. (A) Δx = 0.5 µm, ΔT = 0.05 ms, (B) Δx = 0.5 µm, ΔT =

0.003 ms, (C) Δx = 0.2 µm, ΔT = 0.003 ms, (D) Δx = 0.1 µm, ΔT = 0.003 ms.
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Figure 3.
With small numbers of molecules, the trinomial algorithm solution has the same dynamics

as the deterministic theoretical solution, though the fluctuations in number of molecules are

considerable. Initial number of molecules = 100 in left-most compartment (center is 0.25 µm

from end) of 10 µm long structure. Three different trials are overplotted with the theoretical

solution for compartments with centers at (B) 0.25 µm, (C) 2.25 µm, and (D) 6.25 µm. Note

different scales in each graph.
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Figure 4.
Binomial algorithm produces results similar to that predicted by theoretical solution to

deterministic case. Initial number of molecules = 1000 in corner compartment (center is 0.25

µm, 0.25 µm) of 10 µm by 10 µm structure; Δx = Δy = 0.5 µm in all panels. For all panels,

gray lines show the theoretical solution; black lines show simulations. Results for different

compartments are offset by 20 for illustration purposes. (A) Compartments along edge

(center =0.25 µm in x direction, with y distance indicated in µm to right of trace). A1 uses
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ΔT = 0.05 ms; A2 uses ΔT = 0.013 ms. (B) Compartments along diagonal (x distance=y

distance in µm indicated to right of trace). B1 uses ΔT = 0.05 ms; B2 uses ΔT = 0.013 ms.
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Figure 5.
Results of binomial algorithm when 10 µm × 10µm structure is initialized with 100

molecules in corner compartment. In all panels, the smooth black line indicates theoretical

solution, thin fluctuating lines show three simulation trials. An arrow points to the time

when the theoretical solution is 2 molecules in the compartment, yet the simulated solution

ranges between 0 and 6 depending on the trial.
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Figure 6.
Effect of spines and molecule source on the number of molecules in a dendritic

compartment at the base of a spine. (A) Ring shaped compartment located at 1.75 µm, (B)

Ring shaped compartment located at 7.75 µm. Both panels compare three different

conditions: (1) 2000 molecules are placed at one end of the dendritic segment (light gray

traces); (2) 2000 molecules are placed at one end of the dendritic segment, but there are no

spines (black traces); (3) each of the spines is initialized with 400 molecules in the spine

head (medium gray traces). Light gray traces almost completely cover black traces,
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indicating that the presence of spines does not affect number of molecules in the dendrite,

because their volume is so small. When molecules are initialized in spines, the number of

molecules in the dendrite rises more uniformly and reaches its steady state value more

quickly. When molecules are initialized at the end of the dendrite, a transient peak appears

in the compartment close to the dendrite end, but not in the more distal compartments.
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Figure 7.
Dendritic spines permit high local molecule concentrations. (A-D) Concentration (gray

shade) vs time (x axis) and compartment (y axis). (A,B) Spine and attached dendrite 1.75

µm from end. (C,D) Spine and attached dendrite 7.75 µm from end. (A,C) Molecule source

is spine head (compartment 0 of spine). (B,D) Molecule source is dendrite end (0 µm).

When molecule source is spine head, the spine concentration is very high (> 0.3 µm) for the

first 10 ms, yet dendrite concentration never exceeds 0.1 µm. When the molecule source is

the dendrite, concentration of the proximal spine reaches 0.3 µm briefly, but concentration
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of the more distal spine never exceeds 0.1 µm. (E) Geometry of dendrite and attached

spines. The cylinder is subdivided radially into an outer ring of 0.5 µm width and an inner

core of 0.5 µm radius, and subdivided lengthwise into 0.5 µm long compartments. Spines are

evenly distribut4ed along the length. The inset shows the geometry of one spine and part of

attached dendrite. Numbers indicate compartments visualized in A-D. (F) Color scale used

for panels A-D.
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Figure 8.
Histogram showing frequency of use of table entries during stochastic simulations. The

number of unused entries, which is significant for these short simulations, decreases as the

simulation time increases. Minimum probability stored = 1e-15. (A) Frequency of use of

trinomial tables during 1000 ms simulation with ΔT=0.003 ms (B) Frequency of use of

binomial tables during 1000 ms simulation with ΔT=0.003. (C) The frequency of use of each
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table entry (normalized by the total number of times a table row was used) equals the

fractional probability for that table entry.

Blackwell Page 26

J Neurosci Methods. Author manuscript; available in PMC 2014 July 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Blackwell Page 27

Table 1

User time on a Dell Precision 350 Workstation with 1 GB of 400 MHz (FSB) RDRAM for the simulations

presented in the results. Both the number of compartments and size of each compartment is listed under

“compartment”.

Simulation Time step compartments User Time

1D 25 µsec 20, 0.5 µm 0.320s (1000 mol)
0.290s (100 mol)

2D Cartesian 25 µsec 400, 0.5 µm 2.25s (1000 mol)
0.63s (100 mol)

10 µm Dendrite+5 spines 25 µsec 65, 0.5 µm 1.36s (2000 mol)

20 µm Dendrite+20 spines 6.25 µsec 440, 0.25 µm 13.30s (2000 mol)
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