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Targeting TLR2 for Vaccine Development
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Novel and more effective immunization strategies against many animal diseases may profit from the current knowledge on
the modulation of specific immunity through stimulation of innate immune receptors. Toll-like receptor (TLR)2-targeting
formulations, such as synthetic lipopeptides and antigens expressed in fusion with lipoproteins, have been shown to have built-in
adjuvant properties and to be effective at inducing cellular and humoral immunemechanisms in different animal species. However,
contradictory data has arisen concerning the profile of the immune response elicited. The benefits of targeting TLR2 for vaccine
development are thus still debatable andmore studies are needed to rationally explore its characteristics. Here, we resume the main
features of TLR2 and TLR2-induced immune responses, focusing on what has been reported for veterinary animals.

1. Introduction

The innate immune system senses microorganisms through
germ-line encoded receptors, the pattern recognition recep-
tors (PRRs), which include the membrane associated toll-
like receptors (TLRs) [1]. Based on the knowledge that stim-
ulation of PRRs by pathogen-associated molecular patterns
(PAMPs) has a determinant role in shaping the profile of the
subsequent adaptive immune response [2, 3], the conjugation
of antigens with PRR ligands has been extensively explored
in the last decades for the development of improved vaccines
[4–7]. For that purpose, much attention has been paid to
PRR ligands inducing strong polarized Th1 and cytotoxic
T lymphocyte (CTL) responses, for example, ligands for
TLR3, TLR7/8, or TLR9, since these are immunemechanisms
poorly induced by vaccination with nonlive, inactivated
or subunitary, vaccines. Activation through TLR2 is not
recognized as a strong polarizing stimulus, resulting in Th
responses with variable characteristics. However, TLR2 offers
unique properties to be explored in vaccine development.The
possibility to covalently attach TLR2 ligands to antigens, the
enhancement of direct- and cross-presentation of antigens
coupled to TLR2-targeting lipid moieties, the capacity to

induce balanced Th responses and even regulatory mecha-
nisms, and the mucosal imprinting properties of TLR2 stim-
ulation are characteristics that have potential to help solving
actual vaccine challenges. Here, we will review the present
knowledge on the modulation of the immune response by
immunogenic formulations targeting TLR2 and discuss its
potential for the development of immunization strategies in
the veterinary field.

2. TLR2

2.1. The Receptor. TLRs are transmembrane type I glycopro-
teins with a structure composed by three domains. The N-
terminal extracellular domain, which is involved in the recog-
nition of their ligands, consists of leucine-rich repeats (LRR)
with the conserved motif “LxxLxLxxN” with around 20 to 30
amino acids. This domain is followed by a transmembrane
region then extended intracellularly by a cytoplasmic toll/IL-
1 receptor (TIR) domain, needed for signal transduction [1, 8,
9].

Phylogenetically, TLR2 belongs to a TLR family that
includes TLR1, TLR6, TLR10, TLR14, and possibly the avian
TLR15 [10]. TLR2 is located at the surface of the cell and,
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upon binding of its ligands, dimerises with TLRs of the
same family (see below). In consequence, the juxtaposition of
the cytoplasmic TIR domains recruits the signaling adaptors
MyD88 and TIRAP, initiating a signaling pathway that leads
to activation of NF-𝜅B transcription factor andMAPKwhich
activate the AP-1 transcription factor [8, 11, 12].

Like other TLRs, TLR2 evolved under strong selection
pressure, being preserved in all the vertebrate species tested
so far [10, 13]. Sequence information on TLR2 is available for
the generality of domestic animals, including cattle, sheep,
goat, buffalo, horse, pig, chicken, dog, and cat [14–18].

Species-specific variations in TLR2 have been reported,
mainly at the extracellular domains, possibly reflecting adap-
tation to different microbial environments [19]. Peculiarities
in chicken TLRs include the existence of two types of TLR2
(TLR2a and TLR2b) and of TLR1 (TLR1La and TLR1Lb),
originated by gene duplication, and the absence of TLR6 [13].
TLR15, apparently unique to avian species, is phylogenetically
related to the TLR2 family [13].

2.2. Cells and Tissue Expression. TLR2 expression has
been reported in antigen presenting cells (APCs), namely,
macrophages, monocytes, and dendritic cells (DCs), includ-
ing CD8𝛼+, CD8𝛼−, and plasmacytoid DCs in the mouse
and interstitial and Langerhans DCs but not plasmacytoid
DCs in humans [20]. TLR2 immunomodulatory influence
can also be exerted directly onB cells, CD4+ andCD8+ Tcells,
Treg cells, 𝛾𝛿 T cells, natural killer (NK) cells, neutrophils,
basophils, and some epithelial cells [21, 22].

Tissue and cell distribution of TLR2 expression in domes-
tic animals follows in general terms what has been described
for mice and humans (for comprehensive reviews, see [14,
15]). Most of the information available, summarized in
Table 1, has been obtained by reverse transcription (RT)-PCR
and data on distribution and levels of the protein itself is
sparse due to the lack of characterized specific antibodies for
domestic animals. However, in the last few years, efforts have
beenmade to fill this gap and anti-TLR2 antibodies have been
used to assess TLR2 expression in different species, namely,
bovine and ovine [23], porcine [17, 24, 25], chicken [26], and
dogs [27].

In the bovine, differences in TLR2 expression on mono-
cytes, macrophages, and DCs were found by RT-PCR.
Monocytes and monocyte-derived macrophages have shown
a higher signal, alveolar macrophages and bone marrow-
derived DCs an intermediate signal and monocyte-derived
DCs, as well as CD172a+ and CD172a− DC subsets of afferent
lymph, have shown weaker signals [28]. These differences
were later confirmed by flow cytometry using anti-TLR2
antibodies [23]. Expression of TLR2 on ovine and bovine
peripheral blood mononuclear cells (PBMCs) was detected
only in CD14+ monocytes [23]. No differences were observed
comparing different sheep breeds [23].Das et al. [29] analysed
TLR2 sequences from nilgai, buffalo, sheep, and goat and,
interestingly, found that nilgai immune cells and tissues
express more TLR2 transcripts than buffalo.

Studying the expression of TLR2 in gut-associated lym-
phoid tissues from adult swine, Tohno et al. [30] showed that

TLR2 mRNA was preferentially expressed in the mesenteric
lymph nodes and Peyer’s patches in levels higher than that
of spleen, and Western blotting confirmed the high TLR2
expression in these structures. Beside immune cells, like T
and B cells, TLR2 expression was also detected in membra-
nous cells (M cells). Its detection in the apical membrane
of the pocket-like M cells suggests a possible role in ligand-
specific transcytosis and transport in these cells.

After raising a panel ofmonoclonal antibodies for porcine
TLR2, Alvarez et al. [24] could demonstrate TLR2 expression
in monocytes, macrophages, and granulocytes but not on
peripheral blood lymphocytes. TLR2 expression was also
detected in nonimmune cells lining body entry sites like
tracheobronchial and intestinal epithelial cells, bile ducts in
the liver, renal tubules, and basal layer of the epidermis [24].
Expression of TLR2 and TLR6 was demonstrated in porcine
alveolar macrophages by Western blot and using antibodies
against these receptors, their relevance in the sensing of
Mycoplasma hyopneumoniae was shown [17]. Also in the
horse, TLR2 expression was detected by RT-PCR in alveolar
macrophages [31], as well as in respiratory epithelia [32] and
PBMCs [33].

Expression of chicken TLR2a and TLR2b was detected
in high levels by Western blot in heart, liver, gizzard, and
muscle [26] andwas also identified byRT-PCR in heterophils,
monocytes, macrophages, and B and T cells [34, 35].

Ishii et al. [18] studied the mRNA expression of canine
TLR2 in different dog tissues and found it in blood mononu-
clear cells, lymph node, lung, liver, spleen, bladder, pancreas,
small intestine, large intestine, and skin. Bazzocchi et al. [27]
found that TLR2 mRNA is constitutively expressed in canine
blood neutrophils and, by flow cytometry, it was detected
on the blood neutrophils, monocytes, and, at lower levels,
lymphocytes.

For the cat, TLR2 expression was reported in lymphoid
tissues (spleen and thymus), in lymphocytes (CD4+ and
CD8+ Tcells and, in higher levels, CD21+ B cells) [36], in bone
marrow-derived DCs [37], and in the oral mucosa [38].

2.3. The Natural TLR2 Ligands. TLR2 is usually described
as the TLR recognizing the largest range of ligands. These
include components from bacterial cell walls such as
lipoproteins, peptidoglycan (PGN), lipoteichoic acid (LTA),
lipopolysaccharides (LPS) from some bacterial species (e.g.,
Porphyromonas gingivalis), porins from Neisseria, lipoarabi-
nomannan from mycobacteria, and zymosan and phospho-
lipomannan from yeast cell walls, among others [6, 8, 39].
The recognition of such a variety of ligands is attributed
to the formation of heterodimeric structures with other
membranemolecules, like TLR1, TLR6, CD36, CD180/RP105,
or dectin-1 [8]. This is however a controversial issue, since
some authors argue that bacterial lipoproteins are the only
ligands recognized by TLR2 at physiological concentrations
[40]. In addition, TLR2 stimulation by most of other ligands
was attributed to contamination with lipoproteins [40–42].

Lipoproteins are membrane structural components of
bacteria with diverse molecular structure but with a common
lipidic modification at an N-terminal cysteine [43, 44].
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Table 1: (a) TLR2 expression; (b) specificities reported for veterinary species.
(a)

Human and mouse Reference
Antigen presenting cells: macrophages, monocytes, and DCs (CD8𝛼+, CD8𝛼−, and
plasmacytoid DCs in mouse; interstitial and Langerhans DCs but not plasmacytoid
DCs in humans)

[20]

Lymphocytes: B cells, CD4+, and CD8+ T cells, Treg cells, 𝛾𝛿 T cells, and NK cells
Granulocytes: neutrophils, basophils [21, 22]
Some epithelial cells

(b)

Species Cells and tissues reported to express TLR2 Methoda Information on the level of
expression Reference

Bovine

Monocytes RT-PCR/FC Strong

[23, 28]

Monocyte derived-macrophages RT-PCR/FC
Alveolar macrophages RT-PCR/FC Intermediate
Monocyte derived-DCs RT-PCR/FC

WeakCD172+ DCs RT-PCR/FC
CD172− DCs RT-PCR/FC
CD21+ B cells RT-PCR No signal [28]

Ovine CD14+ monocytes from PBMCs FC [23]
Nilgai and
Buffalo PBMCs, monocytes, DCs, testes, skin RT-PCR Higher in Nilgai than Buffalo

[29]
Buffalo Kidney, endometrium, bone marrow, trachea RT-PCR Higher in endometrium and

bone marrow

Swine

Mesenteric lymph nodes and Peyer’s patches RT-PCR, IHC, FC Higher than in spleen by RT-PCR

[30]
Heart, thymus, lung, kidney, skeletal muscle,
small intestine RT-PCR Lower than in spleen

M cells IHC, FC
T and B cells FC Higher in T cells than in B cells
Monocytes, macrophage, and granulocytes, but
not on peripheral blood lymphocytes FC

[24]Epithelial cells lining body entries (Lung,
jejunum, kidney, liver) IHC

Alveolar Macrophages WB [17]

Equine
PBMCs RT-PCR [33]
Alveolar macrophages RT-PCR [31]
Respiratory epithelial tissues RT-PCR [32]

Chicken
Heart, liver, gizzard, muscle RT-PCR, WB Strong [26]
Spleen, caecal tonsil, bursa, liver RT-PCR Strong [34]
Heterophils, monocytes, macrophages, B and T
cells RT-PCR [34, 35]

Canine

Blood mononuclear cells, lymph node, lung, liver,
spleen, bladder, pancreas, small intestine, large
intestine, and skin

RT-PCR [18]

Blood neutrophils RT-PCR
[27]

Blood neutrophils, monocytes FC Higher levels
Lymphocytes FC Lower levels

Feline

Spleen, thymus RT-PCR
[36]CD4+ T cells, CD8+ T cells, CD21+ B cells RT-PCR Higher in B cells than in T cells

BM-DCs RT-PCR [37]
Palatoglossal mucosa RT-PCR [38]

aRT-PCR: reverse transcription-PCR; FC: flow cytometry; IHC: immunohistochemistry; WB: Western blot.
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In the diacylated specimens, that is, lipidated with two fatty
acid residues, the modification consists in a di-O-acylated-
S-(2,3-dihydroxypropyl) cysteine. The triacylated specimens
have a third fatty acid, bound through an amide link to
the same N-terminal cysteine. Examples of diacylated forms
are the M161Ag lipoprotein of Mycoplasma fermentans from
which the macrophage-activating lipopeptide (MALP)-2 is
derived [45, 46], the LP44 lipoprotein from Mycoplasma
salivarium from which the fibroblast-stimulating lipopep-
tide (FSL)-1 is derived [47], and the synthetic lipopeptide
di-palmitoyl-S-glyceryl cysteine (Pam

2
C) SK

4
. The Braun’s

lipoprotein from Escherichia coli is the prototype of the outer
membrane triacylated lipoproteins from Gram-negative bac-
teria and some synthetic lipopeptides used as TLR2 stimula-
tors, for example, tri-palmitoyl-S-glyceryl cysteine (Pam

3
C)

SK
4
, have a lipid modification analogue to this lipoprotein

[48–50]. Other examples of triacylated lipoproteins are OspA
from Borrelia burgdorferi [51] and the 19 kDa lipoprotein
from Mycobacterium tuberculosis [52, 53]. The capacity to
stimulate through TLR2 of both diacylated and triacylated
lipoproteins is conferred by the lipidic N-terminal moiety
[54, 55]. The initial studies pointed that diacylated lipopro-
teins are signalized through TLR2/6 heterodimers, while the
triacylated molecules do so through TLR2/1 heterodimers
[52, 56–58]. However, later studies suggested that lipopeptide
activation through TLR2 may occur independently of TLR1
and TLR6 [59].

In 2007, Jin and collaborators determined by crystallog-
raphy the structure of the complex TLR1-TLR2-lipopeptide,
allowing a structural comprehension of the heterodimerisa-
tion induced by the ligand [60].The binding of the triacylated
lipopeptide (Pam

3
CSK
4
) induces the formation of an “m”

shaped heterodimer of the TLR1 andTLR2 ectodomains.This
dimerisation occurs by the insertion of the two ester-bound
fatty acids in a pocket in TLR2 and the insertion of the amide-
linked fatty acid in a hydrophobic channel in TLR1 [60].
The role played by the three lipid chains thus explains the
incapacity of the diacylated peptide Pam

2
CSK
4
to dimerise

TLR2 and TLR1. On the other hand, Kang et al. [61] showed
that TLR2/6 heterodimer has a reduced affinity for triacylated
lipopeptides because TLR6 lacks a proper binding site for
the amide-bound lipid chain. They also showed that, in the
TLR2-TLR6-diacylated lipopeptide complex, the increased
hydrophobic area found in the interface of the two dimerised
receptors appears to compensate the absence of interaction
between a lipid chain and TLR6. For TLR2 ligands with-
out patent hydrophobic regions for TLR2 binding, such as
PGN and zymosan, a structural support for the receptor
dimerisation is lacking [61]. TLR10 is nonfunctional in the
mouse, but in the human, it was shown to form dimers
with TLR2, recognizing triacylated lipopeptides and other
microbial components [62]. However, this receptor fails to
activate typical TLR-induced signaling and its role remains
elusive.

In general terms, TLR2 ligands are the same across dif-
ferent vertebrate species; however, some species specificities
have been reported. For example, by cotransfection of bovine
TLR1 and TLR2 in HEK293 cells, Farhat et al. [63] showed
that the ester-bound acid chains of triacylated lipopeptides

need to have at least 12 carbon atoms to activate the bovine
heterodimer, contrasting with the murine heterodimer that
could already be activated by lipopeptides with fatty acids
of only 6 carbon atoms. Willcocks et al. [64] showed that,
for some TLR2 ligands, bovine primary macrophages or cells
transfected with bovine TLRs respond at lower levels than
humans.

Irvine et al. [65] cloned equine TLR2, TLR1, and TLR6
and addressed their responses to classical TLR2 ligands.
Functionality of TLR2/1 and TLR2/6 heterodimers was
demonstrated, with LTA inducing responses similar to those
observed with human heterodimers. Pam

2
CSK
4
activation of

TLR2/6 was identical for receptors of both species, while, in
opposition to what is observed in human, Pam

3
CSK
4
was

less potent than Pam
2
CSK
4
in activating the equine TLR2/1

heterodimer.
Different studies addressed the ligand recognition by both

types of chicken TLR2 and TLR1 [26, 66, 67]. Together,
these studies show that the avian TLR2a and TLR2b form
heterodimers with the avian TLR1La and TLR1Lb, allowing
the recognition of the same range of ligands that bind
the mammalian TLR2 heterodimers, including Pam

3
CSK
4
,

MALP-2, FSL-1, and PGN.

3. Immunogenic Formulations Targeting TLR2

As occurred with other TLR ligands, the use of lipoproteins
and lipopeptides of bacterial origin as adjuvant molecules
is well prior to the knowledge of their receptors and mode
of action. Soon after the pioneer studies describing and
characterizing a lipoprotein present in the cell wall of E. coli,
published by the groups of Braun and Inouye around 1970 [50,
68–75], it was demonstrated that this lipoprotein, then called
Braun’s lipoprotein, presentedmitogenic properties in mouse
B cells [76].The study of the fragments obtained by hydrolysis
of the native lipoprotein enabled Bessler et al. [77] to attribute
its mitogenic capacity to the N-terminal triacylated moiety
and this was confirmed soon later through the chemical syn-
thesis of lipopeptideswith structure analog to the lipidmoiety
of that region [49]. Following these works, the adjuvant
properties of the lipid moiety were tested in vivo. The mice
inoculation with synthetic lipopeptides covalently bound to
a nonimmunogenic peptide of the epidermal growth factor
receptor led to the induction of specific antibodies two weeks
later after one single administration [78] and the inoculation
of guinea pigs with synthetic peptides from the foot-and-
mouth disease virus (FMDV) conjugated with the Pam

3
CSS

lipopeptide resulted in the induction of neutralizing antibod-
ies and protection against viral infection [79]. At the end of
the 1980s, it was reported that the lipopeptides stimulated in
vitro not only lymphocytes but also human monocytes and
mouse macrophages [80] and Deres et al. [81] demonstrated
the possibility of inducing in vivo CTL responses, restricted
to MHC class I, by the inoculation of mice with synthetic
lipopeptides conjugated with epitopes from the influenza
virus nucleoprotein. Based on theseworks, as well as in earlier
demonstrations of the immunomodulatory effect of protein
lipidation [82–85], many studies using synthetic lipopeptides
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in different disease and immunization models were carried
out.

However, it was only at the end of the 1990s that,
shortly after the publication describing the cloning and
characterization of the human receptor homolog to the
Drosophila toll [86], different studies reported that TLR2 is
a receptor for bacterial lipoproteins [48, 54, 87, 88]. This
definitely contributed to understand the adjuvant properties
of lipopeptides and lipoproteins and drove a renewed interest
in their use as adjuvants. Meanwhile, many other molecules
have been claimed to bind TLR2, including nonlipidated
molecules, and, although their interaction with the receptor
is not entirely elucidated, some have also been used exper-
imentally as adjuvants (e.g., [89, 90]). Among the strategies
proposed to explore TLR2 stimulation for the modulation of
immune responses, the different systems allowing covalently
link lipid moieties to proteic antigens present the most
promising applications in vaccinology.

3.1. Recombinant Bacterial Lipoproteins Expressed in Fusion
with Heterologous Antigens. The first plasmidic vectors for
the expression of proteins in fusion with bacterial lipopro-
teins in E. coli aiming at vaccine development were reported
in the 1990s. Some of these works had the single objective
of exhibiting antigens at the surface of the host bacteria
[91, 92], but others were developed also with the purpose of
making use of the adjuvant properties of the lipid moiety
for the induction of immune responses against heterol-
ogous antigens [93, 94]. These vectors consist in partial
or complete sequences derived from bacterial lipoprotein
genes followed downstream by coding sequences for the
heterologous antigens. Among the lipoproteins used as part-
ners in these chimeric structures or used as sources of the
lipidation signals are the colicin E2 lysis lipoprotein from
an E. coli colicinogenic plasmid [94], OprI lipoprotein from
Pseudomonas aeruginosa [93], Braun’s lipoprotein from E. coli
[95, 96], 26 kDa lipoprotein (Rv1411) from Mycobacterium
tuberculosis [97], Wza lipoprotein from Vibrio anguillarum
[98], Ag473 lipoprotein from Neisseria meningitidis [99],
and OMP19 lipoprotein from Brucella abortus [100]. Apart
from theRv1411 lipoprotein fromMycobacterium tuberculosis,
all the mentioned lipoproteins are originally from Gram-
negative bacteria where they are found anchored to the
outer membrane. These molecules are first expressed in
the cytoplasm as prolipoproteins with an N-terminal signal
peptide and are then translocated by the Sec translocon
across the inner membrane to the periplasmic side where
the processing takes place [101]. The initial lipidation step
consists in the binding of a diacylglycerol group through a
thioether linkage to the cysteine residue located at the N-
terminus of the mature sequence, followed by the cleavage
of the signal peptide. The third acyl chain is then attached
to the amine group of the same cysteine residue through an
amide linkage. Mature lipoproteins are finally transported
and anchored on the outer membrane by the Lol System
[101, 102]. Due to this maturation process, triacylated forms
of the recombinant lipoproteins are only present in the outer
membrane of the expression hosts and purification strategies
were developed to purify these fully mature forms from

the outer membrane [103]. In the cases in which lipoproteins
are purified from whole bacterial cell lysates, immature
forms, including diacylated lipoproteins, are also present in
the final formulations [104, 105].

In some of these cloning and expression systems,multiple
cloning sites were included downstream of the lipoprotein
gene offering a flexible platform for the cloning of heterolo-
gous antigens and were even proposed for shotgun cloning
viral genomes and screening for T cell antigens [106]. In
some cases, C-terminal hexahistidine tails were also added to
enable the purification of the fusion proteins by metal affinity
chromatography.When the lipidmoietieswere characterized,
palmitic acid was the predominant fatty acid found, although
other fatty acids, including unsaturated, were also present
[103, 107].

It is worth mentioning here that there are also examples
of vaccine formulations using lipoproteins as homologue
antigens, extracted from their native hosts or produced in
other expression hosts (e.g., [108, 109]).The classical example
is OspA from Borrelia burgdorferi for vaccination against
Lyme disease [110].

3.2. Synthetic Lipopeptides. The chemical synthesis of pep-
tides linked to lipid moieties is another widely used strategy
to produce self-adjuvant formulations. Epitopes extended by
Pam
3
C or Pam

2
C mimic tri- and diacylated bacterial lipid

moieties, but many different variations to this structure have
also been developed. These include single-chain palmitoyl-
peptides and the more complex lipid core peptide (LCP)
and multiple antigen lipophilic adjuvant carrier (MALAC)
systems. The covalent attachment of TLR2 agonists to intact
proteins has also been reported [111]. Their description and
the relations between their structural characteristics and
activity have been extensively discussed in detailed reviews
(see, e.g., [112–114]) and thus we will not focus on that.
However, it is important to stress that differences in the
lipid moiety structure, such as the length of the fatty acids
and chirality of the glyceryl modification, affect the TLR2-
activating properties and this may reflect on the immune
response elicited.

Another important point to consider is that some of
these synthetic ligands have peptidic and lipid structures
very different from the typical bacterial TLR2 ligands and, in
certain cases, the dependency on TLR2 activation for their
immunomodulatory properties remains to be elucidated.
However, for monoacetylated lipopeptides and some other
lipoamino acid based lipopeptides the activation through
TLR2 is documented [115–117].

4. Immunomodulation by Formulations
Targeting TLR2

A rational use of adjuvants in the development of better
subunit vaccines relies on the understanding of how stimuli
exerted at vaccination are translated in specific immune
mechanisms, including their magnitude, profile, persistence,
and localization. The innate activation through PRRs plays a
central role in this shaping of the adaptive immunity and here
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we resume what has been reported, mainly based on mouse
and human studies, concerning TLR2 and TLR2-targeting
immunogenic formulations (Table 2).

4.1. Modulation of APC Migration and Antigen Internal-
ization. TLR activation has been implicated in the several
steps that culminate in the development of specific immune
responses, including APC migration. Recently, addressing
different adjuvants on influenza subunit vaccines, a role for
TLR2 activation in leukocyte migration to inflammation
foci was suggested [118]. Pam

3
CSK
4
was shown to be more

efficient than CpG and resiquimod, respectively, TLR9 and
TLR7/8 ligands, at inducing an early recruitment of CD11b+
blood cells, mainly neutrophils, at the injection site and this
observation correlated with the higher capacity of Pam

3
CSK
4

to enhance antibody responses against influenza antigens
[118]. TLR ligands were shown to transiently reduce the
motility of DCs at the inflammatory sites, allowing for an
extended contact between DCs and the antigen at the site of
inflammation [119, 120]. However, the DC activation through
TLRs downregulates receptors for inflammatory chemokines
and upregulates CCR7 promoting their subsequentmigration
through lymphatic vessels and localization in the T cell
areas of the regional lymph nodes [4, 121–123], and this was
reported for TLR2 agonists as well [124, 125].

Internalization of pathogens is also regulated by TLR
activation at the inflammatory sites. An initial transitory
increasing in the internalization of antigens in response to
TLR ligands occurs and is followed by the characteristic
reduction in the endocytic capacity of mature DCs, which
is congruent with a phenotype specialized in processing and
presentation of antigens [126–129].

The above-mentioned transitory reduction in DC motil-
ity and the enhancement of antigen internalization was
observed upon stimulation of different TLRs including TLR2
[120, 129]. Also demonstrating a TLR2 role in antigen
internalization, Schjetne et al. [130] showed that targeting
TLR2 with an anti-TLR2 monoclonal antibody leads to
the internalization of the ligand into endosomes and its
presentation under MHC class II.

4.2. Antigen Processing and Presentation in the Context of
MHC Class II. Although still controversial [131–133], grow-
ing evidences support a determinant role of TLR activation
in the control of phagosome maturation, with consequent
impact on the regulation of antigenic presentation by APCs.
Studies developed by the groups of Blander and ofMedzhitov
sustain the existence of twomodes of phagosomematuration,
one constitutive and the other inducible and controlled by
TLR signalling [134–136]. According to these studies, the
phagocytosis of bacteria leads to a phagolysosomal fusion
rate superior to that observed in phagocytosis of apoptotic
cells. This difference is only observed in the presence of
TLR signalling and involves activation ofMAPK p38 through
MyD88 activation. Notably, this control of maturation occurs
autonomously in the phagosome; that is, the inducible mode
is only observed at the phagosomes containing TLR ligands.
In addition, TLR activation has been shown to control

autonomously the MHC class II loading in the phagosome
[136] and to stabilize MHC class II at the cell surface
[137]. This autonomous control of phagosome maturation
and MHC class II loading may contribute to explain the
enhancement of specific immune responses when the antigen
is covalently linked to the TLR ligands or is incorporated
in the same physical particle [138–141]. The TLR2-targeting
formulations inwhich the antigen is chemically linked to lipid
moieties or expressed as fusion with a bacterial lipoprotein
ensure TLR activation inside the same phagosomes that
contain the antigen and thus are particular interesting tools to
modulate antigen processing and presentation. In fact, clearly
increased antibody and cellular responses were observed in
vivowhen the antigens were covalently linked to lipopeptides
or lipoproteins in comparison to admixed formulations [140,
142, 143].

For the development of an effector response by CD4+ T
cells, the recognition of a peptide in the context ofMHC class
II must be accompanied by the engagement of costimulatory
molecules expressed at theDC surface, like CD80, CD86, and
CD40. In the absence of costimulation, T cells are instructed
towards a regulatory or anergic phenotype, resulting in
tolerance to the presented antigen [144]. The upregulation of
these molecules and of MHC class II at the surface of DCs
is generally induced through TLR activation [121]. TLR2 is
not an exception. In several studies, the activation of APCs
with synthetic lipopeptides and recombinant lipoproteins
resulted in cell maturation, with upregulation of MHC and
costimulatory molecules (e.g., [99, 142, 145–152]). Moreover,
the presentation ofMHC class II epitopes to specific T cells by
DCs has been demonstrated to be enhanced in the presence
of TLR2 agonists [129, 149].

4.3. CD4+ TCell Polarization. Thefate ofCD4+ Tcells is a key
issue for the type of immunity elicited upon immunization
and its adequacy to the challenge is of capital importance for
the success of a vaccine. In this respect, the consequence of
TLR activation is not the same for the different TLR ligands
and this is probably the most controversial point regarding
TLR2 activation and the use of TLR2-targeting formulations
in vaccination.

Some authors associate the activation through TLR2 with
the induction of Th2 responses [151–155]. According to the
model proposed by Dillon et al. [151], the activation via this
receptor induces a high level of ERK1/2 signalling resulting in
the stabilization of the transcription factor c-Fos suppressing
IL-12(p70) production and promoting IL-10 secretion, thus
favouring Th2 type responses. Moreover, Gautier et al. [156]
attribute the secretion of IL-12(p70) by DCs, essential for
Th1 polarization, to an autocrine-paracrine loop of type I
interferon (IFN) initiated in response to TLR activation.
Stimulation via TLR2 induces the activation of a MyD88-
dependent signalling pathway, with activation of NF-𝜅B and
the MAPK pathway, resulting, among other effects, in the
production of proinflammatory cytokines but not of type I
IFN. This would justify the incapacity to polarize responses
towards Th1 type via TLR2.

However, other authors pointed TLR2 stimulation or the
use of adjuvants composed of TLR2 ligands as an efficient
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strategy to induce Th1 responses through APC activation
[87, 117, 143, 157–163]. Moreover, according to Imanishi et al.
[164], the stimulation of mouse Th1 cells by TLR2 ligands
directly induces IFN-𝛾 production, as well as cellular survival
and proliferation in the absence of TCR stimulation. The
same is not observed for ligands of other TLR receptors,
suggesting an important role of TLR2 activation in the
promotion and maintenance of Th1 responses.

In other experimental conditions, the induction of Th17
polarization by IL-1𝛽, TGF-𝛽, and IL-23 produced by human
Langerhans cells stimulated via TLR2 was reported [165].
Synthetic lipopeptides or bacterial lipoproteins have also
been shown to induceTh1/Treg differentiation and inhibition
of Th2 responses, suggesting a potential application in the
treatment of asthmatic diseases [147, 166, 167]. In fact, a
regulatory role has been attributed to TLR2 in several studies
and its targeting for the induction of tolerogenic responses
has also been proposed [168–172, 191]. However, experimental
evidences support that the direct activation of Tregs by the
TLR2/1 ligand Pam

3
CSK
4
, together with stimulation through

TCR in the presence of IL-2, induces proliferation and
temporary loss of suppressive properties, which is restored
after removing the stimulus [173, 174]. Furthermore, the same
TLR2 ligand was reported to exert antitumor effects, either
through the reduction of the suppressive function of Tregs
[175] or by the enhancement of the resistance of T effector
cells to Treg suppression [176].

The observations supporting divergent TLR2 polarizing
properties were obtained from distinct models, using various
TLR2 ligands and looking at different levels of the immune
response, from the molecular signaling level up to in vivo
context. As underlined by Mele andMadrenas [192] and sup-
ported by other studies [171], it is clear that TLR2 plays both
proinflammatory and regulatory roles and that throughTLR2
activation, alone or in combination with other stimuli, both
effector and regulatory immune mechanisms can be elicited
in vivo depending on not yet completely clarified factors.
To focus on understanding these discrepancies should be a
priority for rationally exploring TLR2 stimulation in vaccine
development.

4.4. Cross-Presentation and CD8+ T Cell Cytotoxicity. TLR
activation has been also implicated in the induction of cross-
presentation of antigens by DCs as consequence of enhanced
antigen internalization and delivery to the cytosol as well as
increase inTAPandproteasome activity [128, 129]. AMyD88-
dependent cross-presentation mechanism that requires the
dislocation of TAP to the early endosomes was also reported
[193], suggesting a spatial separation between endogenous
MHC class I-restricted antigen presentation and cross-
presentation of exogenous antigens, the latter being biased
toward antigens containing PAMPs. Cross-presentation and
in vivo induction of CTL by TLR activation are usually
attributed to TLR ligands high inducers of type I IFN [126,
194, 195], which is not the case of TLR2 ligands. However,
different studies demonstrate the induction of these mech-
anisms by antigens conjugated with TLR2 ligands [140, 146,
157, 177, 178]. In fact, this has been from the beginning one
of the most appealing characteristics of these immunogenic

formulations [81, 196]. Initially, it was suggested that this
capacity could be due to the access of lipidated peptides
to the cytoplasm of APC, facilitated by the interaction of
the membrane lipids with those of the lipoprotein, with
consequent entering in the MHC class I processing pathway
[179]. Another explanation resided in the physical properties
conferred to the formulations by the lipids, for example,
the possible formation of micellar structures and the con-
sequent processing by APCs identical to that observed with
particulate antigens [180]. Although these mechanisms are
fundamentally of physical nature and TLR-independent, the
activation of these receptors also plays an important role in
the induction of CTL responses. In fact, Khan et al. [181]
showed that 𝑆 and 𝑅 glycerol configurations of Pam

3
CSK
4

are equally internalized by DCs but diverge at their capacity
to induce cytokines and maturation markers on these cells,
as well as on the induction of CTL responses in vivo. This
suggests a determinant role of TLR2 activation on promoting
the CTL immune mechanisms. Additionally, it was demon-
strated that DC stimulation with the TLR2 ligand MALP-2
induces the expression of proteins of the immunoproteasome
LMP2, LMP7, andMECL and an increasing in the proteolytic
activity and thus the antigenic processing, suggesting that
lipopeptides may indirectly increase the responses restricted
to MHC class I [149].

Monoacylated lipopeptides, lipidated through the cova-
lent binding of palmitic acid to the lateral chain of lysine,
induce CD8+ T cell responses [180, 182] and, although
monoacylation do not correspond to the native struc-
ture of bacterial lipoproteins, Zhu et al. [117] found that
these molecules enhance internalization and DC maturation
through TLR2. Zhang et al. [187] also demonstrated the
induction of herpes simplex virus (HSV)-2-specific memory
CD8+ CTL both locally and systemically after intravaginal
immunization with a peptide extended by a lipid moiety
with three palmitic acids and showed that this response
was significantly lower in TLR2−/− and MyD88−/− mice. The
inoculation of ovalbumin (Ova) peptides together with BPP,
a synthetic derivative of theMALP-2, induced CTL responses
which were much higher when the peptides were directly
linked to the TLR2 ligand comparing to admixed antigens
and adjuvants [150].

4.5. Induction of NK Cells Activity. TLR2-dependent NK
cell activation was demonstrated to play a role in the
immune response against different virus and bacteria [197–
201] suggesting the possibility to explore TLR2 ligands as
inducers of NK cell activity in therapeutic or prophylactic
immunomodulation. The activation of NK cells by differ-
ent TLR2 agonists has been demonstrated, although the
requirement for accessory cells, namely DCs, and accessory
cytokines is still debatable [202–204]. Also, variations in the
capacity to stimulate NK cells were found among different
TLR2 ligands. For example, the activation of NK cells by
MALP-2 through stimulation of TLR2 on bone marrow-
derived DCs is much less effective than Pam

2
CSK
4
[184] and

the peptide primary sequence in synthetic Pam
2
C lipopep-

tides has been demonstrated to influence the capacity for
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NK activation, both directly through TLR2 on NK cells and
via DCs [183].

In vivo, the subcutaneous injection of Pam
2
CSK
4
around

NK sensitive B16D8 tumor cells led to tumor retardation
and this activity was abrogated by injection of asialoGM-1
antibodies, while this antitumor activity was not observed
for MALP-2 ligand which was less effective in inducing
NK activity [184]. However, in another study, the admin-
istration of diacylated lipopeptides (MALP-2 and different
Pam
2
peptides) in mice induced IL-10 and Treg cells that

prevented effective antitumor therapeutic responses [172].
The authors also reported the production of IL-10 by NK cells
stimulated by the TLR2 agonists in vitro. In an antitumor
prophylactic immunization, Kiura et al. [154] reported that
coadminisration of tumor associated antigens with the dia-
cylated lipopeptide FSL-1 could induce antitumor antibody
dependent cellular cytotoxicity (ADCC) by NK cells.

The role of TLR-mediated activation of NK cells in
immune responses against infectious and tumor disease
is now emerging [205]. TLR2-mediated activation of NK
activity for the shaping of the adaptive response, as well
as the activation of NK activity in the context of a recall
response, will certainly be an interesting research field for the
development of future prophylactic vaccines.

4.6. Induction of AntibodyResponses. Antibody titres, affinity,
avidity, and neutralizing capacity are for many diseases the
best correlative of protection and to elicit a proper and
long-lasting antibody response is thus frequently a desirable
achievement in vaccination.

The role of TLR activation in antibody responses and its
longevity is a theme of actual research. Pasare andMedzhitov
[206] showed that the generation of T-dependent antigen-
specific antibody responses requires activation of TLRs in
B cells. Kasturi et al. [207] have shown that administration
of Ova in synthetic nanoparticles together with the TLR4
ligand monophosphoryl lipid A (MPL) and, simultaneously,
with the TLR7 ligand R837 leads to synergistic increases in
the anti-Ova antibody response and provides a sustained
memory for 1.5 years. This was dependent on DCs, Th cells,
and the direct TLR stimulation on B cells.

The specific role of TLR2 in the development of anti-
body responses is now emerging. TLR2 has been recently
demonstrated to be involved in the generation and longevity
of antibody secreting cells (ASC) [185] and the addition of
CD40 signalling to TLR1/2 and TLR2/6 agonists have been
shown to stimulate differentiation of B cells into ASC [186].
Moreover, lipidated formulations targeting TLR2 are widely
described as good inducers of antibody responses (e.g., [99,
117, 143, 146, 154, 155, 159]).

4.7. Mucosal Immune Responses. Many of the most relevant
diseases of humans and veterinary animals are caused by
infectious and parasitic agents entering the target hosts
through mucosae. Immunization via different mucosal
surfaces using TLR2-targeting formulations has been
demonstrated to induce strong immune responses, including
mucosal IgA and serum IgG as well as local and systemic

CD8+ CTL [124, 146, 187–189]. Efficient induction of mucosal
immune responses is not usually achieved by parenteral
administration of vaccines, requiring the presentation of
antigens directly at the mucosal surfaces. However, TLR2/1
signals, but not signals from other TLRs, have been shown
to be capable of educating extraintestinal DCs with gut-
specific imprinting properties [190]. Considering that an
immune response elicited apart from the strongly regulatory
mucosal environment may be more freely modulated, this
capacity of localizing immune responses at the mucosal level
through nonmucosal immunizationmay open the possibility
to better tailor the adaptive mucosal immunity. For this
purpose, TLR2-targeting formulations are particularly
interesting tools.

5. Immunomodulation through TLR2 for
Veterinary Vaccines

For the veterinary species, the modulatory effect of TLR2
activation on immune response is much less characterized
than in humans or in themousemodel.However, in vitro acti-
vation of APCs or PBMCs by TLR2 ligands was demonstrated
for different species as it was the adjuvanticity of TLR2-
targeting formulations when inoculated in vivo. Evidences
on the capacity to elicit CTL responses were also obtained
but information on the immune response profiles is sparse.
Here, we compile some of the most relevant studies available
regarding immunomodulation through TLR2 in veterinary
species.

5.1. Ruminants. In ovine, stimulation of bone marrow-
derived DCs by LTA resulted in upregulation of MHC class
II in the CD11bdull subset, which acquired strong capacity
of stimulating CD4+ T cells in allogenic assays [208]. In
bovine, Pam

3
CSK
4
stimulation of monocyte-derived DC

also induced DC maturation, with upregulation of MHC
class I, MHC class II, CD40, CD80, CD86, and CD1b
molecules, and lead to the production of IL-12 and TNF-
𝛼. In addition, stimulated DCs promoted IFN-𝛾 secretion
when cocultured with allogeneic PBMCs [209]. In contrast,
the stimulation of macrophages lead to the downregulation
of MHC expression and to an almost null effect on IL-12
and TNF-𝛼 production and on IFN-𝛾 secretion in mixed
leukocyte reaction [209]. However, Franchini et al. [210]
reported that bovinemacrophages produce nitric oxide (NO)
and TNF-𝛼 in response to TLR2 activation and that this
production is strongly increased by costimulation with IFN-
𝛾.

Nelson et al. [211] have shown the possibility to induce
active vitamin D

3
(1𝛼,25-dihydroxyvitamin D3) in bovine

monocytes through TLR4 and TLR2 activation. Notably, in
the mouse, the induction of vitamin D3 in APCs was shown
to be related with the imprinting of skin-tropism by APCs in
T cells [212]. How this could be exploited for the induction of
skin-tropic responses in farm animals remains to be studied.
More recently, it was reported that bovine 𝛾𝛿 T cells directly
respond to TLR2 ligands with increased proliferation and
cytokine production in a TCR-independent manner [213].
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Investigating the potential of Mycobacterium bovis anti-
gens to stimulate delayed-type hypersensitivity (DTH)
response in cattle, Whelan et al. [214] have shown that
the combination of Pam

3
CSK
4
lipopeptide with the ESAT-

6 antigen allowed the induction of DTH in experimentally
infected calves which did not occur when the antigen was
used alone. In vitro, the authors showed the induction of
TNF-𝛼 production by bovine DCs stimulated by Pam

3
CSK
4

and pointed this induction of proinflammatory cytokines as
a possible explanation for what was observed in vivo.

Aiming at optimizing the protective efficacy ofMycobac-
terium bovis BCG, Wedlock et al. [215] tested combina-
tions of BCG with culture filtrate proteins formulated with
a depot adjuvant and mixed with different stimulatory
molecules: MPL, a synthetic mycobacterial phosphatidyli-
nositol mannoside-2 (PIM2) and Pam

3
CSK
4
. Evaluating dif-

ferent pathological and microbiological disease parameters,
such as the proportion of animals with tuberculous lesions
in the lungs and lymph nodes and the number of M. bovis
culture-positive lymph nodes, the inclusion of Pam

3
CSK
4

in the vaccine formulation was shown to induce the best
protection.

The potential to use lipopeptides for vaccination against
foot-and-mouth disease was tested using seven peptides con-
taining FMDV-specific B-cell linear epitopes from structural
and nonstructural proteins, synthesized with a Pam

3
C moi-

ety, and delivered intramuscularly emulsifiedwithMontanide
ISA 9 [216]. Twenty days after a single immunization, the
animals were challenged and four of the seven immunized
animals were protected. No correlation was found between
protection and antibody titre or virus-specific proliferation
but all protected animals showed a strong T-cell response
against at least one of the peptides used for immunization.

Also in cattle, lipopeptides with a palmitic acid coupled
to the NH

2
-terminal amino acid and delivered in Freund’s

adjuvant were used to boost an anti-Neospora caninum SRS2
(NcSRS2) DNA immunization [217]. Lipopeptide boosting
induced strong immune response, characterized by increased
NcSRS2-specific lymphocyte proliferation, IFN-𝛾-secreting
cells, and levels of specific IgG1 and IgG2a antibodies. Regard-
ing these parameters, this immunization strategy reproduced
the immune response observed against N. caninum infection
in cattle.

5.2. Horse. Stimulation of equinemonocytes with Pam
3
CSK
4

induced the production of TNF-𝛼, IL-6, IL-1𝛽, and IL-10
[218], and in awhole blood assay TNF-𝛼, IL-6, and IL-1𝛽were
also induced by PGN and LTA [219]. Using equine infectious
anemia virus (EIAV) CTL epitopes synthesized on multiple
antigenic peptide (MAP) system linked to Pam

3
C, Ridgely

and McGuire [220] demonstrated the capacity to stimulate
CTL activity in vitro on PBMCs obtained from horses of dif-
ferent ELA-A haplotypes chronically infected.The stimulated
cells were able to specifically lyse EIAV-infected target cells.
In addition, immunization of horses with a Pam

3
C-MAP-

CTL epitope induced transitory peptide and virus-specific
CTL and, although it neither prevented infection nor affected
viral load, it induced a protective effect against develop-
ment of clinical disease following virus challenge, in which

vaccinated horses showed less severe fever and thrombo-
cytopenia and did not develop anemia during the first 2
months after infection [221]. In another approach for anti-
EIAV immunization with lipopeptides, Fraser et al. [222]
inoculated horses with a pool of peptides containing Th
and CTL epitopes extended by a palmitic acid molecule
to each of the free NH

2
groups. The immunized horses

showed significant postimmunization proliferative responses
toTh peptides but no evident CTL response. After challenge,
the immunized group also had a significant increase in
the proliferative response to the Th peptides and PBMCs
from four of five immunized horses showed CTL activity
when stimulated 2 weeks later. Nonetheless, no significant
protection was observed considering level and course of viral
load, the platelet counts, or fever.

5.3. Swine. Immunizing pigs against mouse IgG, an increase
in the anti-mouse IgG titres was observed by targeting the
antibody to TLR2 [223]. In this work, it was also shown
that the in vitro proliferative response of PBMCs obtained
from pigs immunized with mouse IgG was enhanced when
restimulation was performed using an anti-TLR2 mouse
monoclonal antibody comparing with restimulation with an
isotype-matched control.

Using outer membrane preparations from bacteria
expressing African swine fever virus (ASFV) antigens
in fusion with the OprI lipoprotein, the entering of the
antigens in the class I pathway of antigen presentation
and the possibility to identify ASFV epitopes specifically
recognised by porcine CTL [196] as well as to stimulate
specific CTL activity in vitro [106] were demonstrated. In
a different study [224], with the purpose to test OprI as an
adjuvant for a subunit vaccine against classical swine fever
(CSF), it was shown that this lipoprotein activated porcine
monocyte-derived DCs, upregulating CD80/86 and MHC
class II expression, as well as proinflammatory cytokines.
The antigenic restimulation of lymphocytes obtained from
CSFV-immune pigs cocultured with autologous monocyte-
derived dendritic cells was also enhanced by OprI, as
measured by proliferation and IFN-𝛾 production. In vivo,
a subunit vaccine adjuvanted with OprI induced partial
protection against CSFV infection but less effective than a
water-oil-water adjuvanted vaccine tested in parallel.

5.4. Chicken. Stimulation of chicken splenocytes with
Pam
3
CSK
4
upregulated not only Th1-associated cytokines

IFN-𝛾 and IL-12 but also the Th2-associated cytokine IL-4
[225]. The direct stimulation of chicken CD4+ T cells by
Pam
3
CSK
4
also significantly upregulated IFN-𝛾 but not IL-4,

IL-13, and IL-10 [226]. In a study comparing the effect of three
different TLR2 ligands on chicken splenocytes, the results
observed suggest different kinetics in the production of pro-
inflammatory cytokines. Pam

3
CSK
4
induced high IL-1𝛽

response, while FSL-1 induced an early and prolonged
expression of IL-8. The three TLR2 ligands, Pam

3
CSK
4
, FSL-

1, and lipomannan, induced a mixed Th profile with
upregulation of IFN-𝛾, IL-12, IL-4, and IL-13 [227].
Stimulating chicken monocytes, He et al. [35] demonstrated
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the induction of iNOS mRNA and of NO production by
LTA but not by Pam

3
CSK
4
. Erhard et al. [228] tested the

adjuvant effect of Pam
3
CSK
4
and Pam

3
CS linked to Th

epitopes when administered together with different antigens.
Although varying with the antigen, the antibody responses
were enhanced and in certain cases the combination of more
than one adjuvant induced even better responses. Testing
two lipoproteins from Pasteurella multocida as vaccine
antigens, Wu et al. [109] report high protection rates in
chicken immunized with E. coli expressed lipoprotein E after
inoculation in double emulsion adjuvant. OprI lipoprotein
was shown to bind in vitro and in vivo to epithelial cells of
the trachea and the small intestine of chickens suggesting
its potential use as a carrier for antigen delivery at mucosal
surfaces [229].

Based on previous demonstration of the immunostim-
ulatory properties of protozoan HSP70 through TLR2 and
TLR4, Zhang et al. [90] investigated if Eimeria tenellaHSP70
could enhance the immunity elicited by E. tenella antigen
microneme protein 2 (EtMIC2) against avian coccidiosis.
EtHSP70 induced the production of IL-12 and IFN-𝛾 in
chicken embryo fibroblasts and when inoculated in vivo
together with EtMIC2 resulted in increased body weight
gains, decreased oocyst shedding, and increased antibody
responses. Levels of IL-12, IFN-𝛾, and IL-17 were also higher
comparedwith the inoculation of the antigen alone. Chickens
immunized with EtHSP70 alone also revealed a protective
effect against E. tenella infection.

6. Concluding Remarks

Vaccination in veterinary animals is a cost-effective strategy
to promote animal health and may have an important impact
on public health by contributing in reducing the use of
antibiotics and controlling zoonotic diseases. The develop-
ment of new vaccines largely relies on the understanding
of how activation of innate immunity through PRRs shapes
the subsequent adaptive immune response. The possibility of
enhancing antigen presentation by covalently linking TLR2
ligands to the antigen and the particular TLR2 properties at
influencing the type and localisation of specific immunity
are interesting features that can help at solving some of
the present vaccine challenges. However, considering the
inconsistencies in results regarding the profile of immune
responses, it is of major relevance to address how the
specific immune mechanisms elicited upon immunization
targeting TLR2 are affected by different factors, such as type
of ligand, route of administration, doses, and synergies with
other innate stimuli. To extend these studies to the field of
veterinary vaccinology further implies to address species-
specificities. Clarifying these aspects will allow us in the
future to make the innate stimulus adequate for a particular
challenge in a given species.
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C. V. Martins, “Development of new cloning vectors for the
production of immunogenic outer membrane fusion proteins
in Escherichia coli,” Bio/Technology, vol. 14, no. 2, pp. 203–208,
1996.

[94] C. R. Rioux, H. Bergeron, L. Lin, S. Grothe, M. O'Connor-
McCourt, and P. C. K. Lau, “A fusion plasmid for the synthesis
of lipopeptide-antigen chimeras in Escherichia coli,” Gene, vol.
116, no. 1, pp. 13–20, 1992.

[95] P. A. Cullen, M. Lo, D. M. Bulach, S. J. Cordwell, and B. Adler,
“Construction and evaluation of a plasmid vector for the
expression of recombinant lipoproteins in Escherichia coli,”
Plasmid, vol. 49, no. 1, pp. 18–29, 2003.

[96] S. Kamalakkannan, V. Murugan, M. V. Jagannadham, R.
Nagaraj, and K. Sankaran, “Bacterial lipid modification of
proteins for novel protein engineering applications,” Protein
Engineering, Design and Selection, vol. 17, no. 10, pp. 721–729,
2004.

[97] B. Wang, M. Henao-Tamayo, M. Harton et al., “A toll-like
receptor-2-directed fusion protein vaccine against tuberculo-
sis,”Clinical andVaccine Immunology, vol. 14, no. 7, pp. 902–906,
2007.

[98] Z. Yang, Q. Liu, Q.Wang, andY. Zhang, “Novel bacterial surface
display systems based on outer membrane anchoring elements
from the marine bacterium Vibrio anguillarum,” Applied and
Environmental Microbiology, vol. 74, no. 14, pp. 4359–4365,
2008.

[99] H.-W. Chen, S.-J. Liu, H.-H. Liu et al., “A novel technology
for the production of a heterologous lipoprotein immunogen
in high yield has implications for the field of vaccine design,”
Vaccine, vol. 27, no. 9, pp. 1400–1409, 2009.

[100] J. V. Sabio, F. Bigi, O. Rossetti, and E. Campos, “Expression
of MPB83 from Mycobacterium bovis in Brucella abortus
S19 induces specific cellular immune response against the
recombinant antigen in BALB/c mice,” Microbes and Infection,
vol. 12, no. 14-15, pp. 1236–1243, 2010.

[101] H. Tokuda, “Biogenesis of outer membrenes in gram-negative
bacteria,” Bioscience, Biotechnology and Biochemistry, vol. 73,
no. 3, pp. 465–473, 2009.

[102] K. Remans, K. Pauwels, P. van Ulsen et al., “Hydrophobic Sur-
face Patches on LolA of Pseudomonas aeruginosa are Essential



18 Journal of Immunology Research

for Lipoprotein Binding,” Journal of Molecular Biology, vol. 401,
no. 5, pp. 921–930, 2010.

[103] A. P. Basto, J. Piedade, R. Ramalho et al., “A new cloning system
based on the OprI lipoprotein for the production of recom-
binant bacterial cell wall-derived immunogenic formulations,”
Journal of Biotechnology, vol. 157, no. 1, pp. 50–63, 2012.

[104] C.-Y. Chiang, M.-H. Huang, C.-H. Pan et al., “Induction of
robust immunity by the emulsification of recombinant lipidated
dengue-1 envelope protein domain III,”Microbes and Infection,
vol. 15, no. 10-11, pp. 719–728, 2013.

[105] Y. Kwok, W.-C. Sung, A. L.-H. Lin et al., “Rapid isolation
and characterization of bacterial lipopeptides using liquid
chromatography and mass spectrometry analysis,” Proteomics,
vol. 11, no. 13, pp. 2620–2627, 2011.

[106] A. Leitão, A. Malur, C. Cartaxeiro et al., “Bacterial lipoprotein
based expression vectors as tools for the characterisation of
African swine fever virus (ASFV) antigens,”Archives of Virology,
vol. 145, no. 8, pp. 1639–1657, 2000.

[107] C.-H. Leng, H.-W. Chen, L.-S. Chang et al., “A recombinant
lipoprotein containing an unsaturated fatty acid activates NF-
𝜅B through the TLR2 signaling pathway and induces a dif-
ferential gene profile from a synthetic lipopeptide,” Molecular
Immunology, vol. 47, no. 11-12, pp. 2015–2021, 2010.

[108] A. A. Lugade, A. Bianchi-Smiraglia, V. Pradhan, G. Elkin, T. F.
Murphy, and Y. Thanavala, “Lipid motif of a bacterial antigen
mediates immune responses via TLR2 signaling,” PLoS ONE,
vol. 6, no. 5, Article ID e19781, 2011.

[109] J.-R. Wu, J.-H. Shien, H. K. Shieh, C.-F. Chen, and P.-C. Chang,
“Protective immunity conferred by recombinant Pasteurella
multocida lipoprotein E (PlpE),” Vaccine, vol. 25, no. 21, pp.
4140–4148, 2007.

[110] M. E. Embers and S. Narasimhan, “Vaccination against Lyme
disease: past, present, and future,” Frontiers in Cellular and
Infection Microbiology, vol. 3, article 6, 2013.

[111] W. Zeng, E. M. Eriksson, A. Lew, and D. C. Jackson, “Lipidation
of intact proteins produces highly immunogenic vaccine candi-
dates,”Molecular Immunology, vol. 48, no. 4, pp. 490–496, 2011.

[112] P. M. Moyle, J. Hartas, A. Henningham, M. R. Batzloff, M. F.
Good, and I. Toth, “An efficient, chemically-defined semisyn-
thetic lipid-adjuvanted nanoparticulate vaccine development
system,” Nanomedicine: Nanotechnology, Biology, and Medicine,
vol. 9, no. 7, pp. 935–944, 2013.

[113] P.M.Moyle and I. Toth, “Self-adjuvanting lipopeptide vaccines,”
Current Medicinal Chemistry, vol. 15, no. 5, pp. 506–516, 2008.

[114] M. Zaman and I. Toth, “Immunostimulation by synthetic
lipopeptide-based vaccine candidates: structure-activity rela-
tionships,” Frontiers in Immunology, vol. 4, 2013.

[115] K. S. M. Phillipps, M. N. Wykes, X. Q. Liu, M. Brown, J.
Blanchfield, and I. Toth, “A novel synthetic adjuvant enhances
dendritic cell function,” Immunology, vol. 128, no. 1, supplement,
pp. e582–e588, 2009.

[116] M. Zaman, A.-B. M. Abdel-Aal, Y. Fujita et al., “Immunological
evaluation of lipopeptide groupA streptococcus (GAS) vaccine:
structure-activity relationship,” PLoS ONE, vol. 7, no. 1, Article
ID e30146, 2012.

[117] X. Zhu, T. V. Ramos, H. Gras-Masse, B. E. Kaplan, and L.
BenMohamed, “Lipopeptide epitopes extended by an NE-
palmitoyl-lysinemoiety increase uptake andmaturation of den-
dritic cells through a Toll-like receptor-2 pathway and trigger
a Th1-dependent protective immunity,” European Journal of
Immunology, vol. 34, no. 11, pp. 3102–3114, 2004.

[118] E. Caproni, E. Tritto, M. Cortese et al., “MF59 and Pam3CSK4
boost adaptive responses to influenza subunit vaccine through
an IFN type I-independent mechanism of action,” Journal of
Immunology, vol. 188, no. 7, pp. 3088–3098, 2012.
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