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We present an evolutionary method for finding the low-energy
conformations of polypeptides. The application, called FoLbAwaAy, is
based on a generic framework and uses several evolutionary
operators as well as local optimization to navigate the complex
energy landscape of polypeptides. It maintains two complemen-
tary representations of the structures and uses the cHARMM force
field for evaluating the energies. The method is applied to unsol-
vated Met-enkephalin and Ac-(Ala- Gly-Gly)s-Lys*H+. Unsolvated
Ac-(Ala-Gly-Gly)s-Lys*H* has been the object of recent experimen-
tal studies using ion mobility measurements. It has a flat energy
landscape where helical and globular conformations have similar
energies. FOLDAWAY locates several large groups of structures not
found in previous molecular dynamics simulations for this peptide,
including compact globular conformations, which are probably
present in the experiments. However, the relative energies of the
different conformations found by FoLbAwAYy do not accurately
match the relative energies expected from the experimental
observations.

he problem of determining the native three-dimensional

structure of a polypeptide based only on information about
the amino acid sequence is one of the most challenging problems
in contemporary computational chemistry. Approaches to this
problem are typically divided into three different classes: se-
quence homology modeling, structural similarity recognition
(threading), and nonempirical search techniques. Homology
modeling takes advantage of empirical relationships between
sequence and three-dimensional structure by using a database of
known structural motifs. Threading also employs a database in
an effort to find and superimpose structural templates onto the
target sequence. In this way, threading measures sequence-
structure compatibility rather than mere sequence similarity.

In contrast to these methods, no a priori structural knowledge
is required for the nonempirical techniques (1). Instead, the
physical relevance of a structure is expressed by means of a
potential energy function according to some representation of
the polypeptide geometry. According to Anfinsen’s thermody-
namic hypothesis (2), the native structure of a naturally occur-
ring protein or large polypeptide is simply the conformation for
which the free energy attains its global minimum. Therefore, the
problem of determining the native structure (ignoring entropic
contributions) can be formulated as a global optimization prob-
lem, namely, to determine the global minimum of the potential
energy function used to model the polypeptide (3, 4).

The two standard approaches for finding minima on large-
molecule potential surfaces are molecular dynamics (MD) and
Monte Carlo (MC) (5, 6). MD solves Newton’s equations,
whereas MC randomly samples and selects new geometries based
on criteria by using energy. Both MC and MD are used broadly
and are very useful, but both can fail to find minima, especially
for dense, compact molecular structures.
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Because of the complicated nature of polypeptide potential
energy functions, finding potential energy minima is a highly
nonlinear and quite complex global optimization problem (7).
Many different approaches have been developed to address this
type of global optimization problem, including deterministic
branch-and-bound (8), probabilistic brute-force sampling (9),
and pivot algorithms (10). Among the more successful ap-
proaches, several are based on the use of genetic algorithms
(11-13). Genetic algorithms (14-17) and evolutionary compu-
tation (18) are methods that use simulated evolution processes
to solve complicated problems. In contrast to most other prob-
lem solving techniques, they operate on a pool of individuals,
each of which is a solution candidate with an associated fitness
that gives a measure of the quality and allows one to rank and
compare the solutions to each other. By using different evolu-
tionary operators, the individuals in the parent pool are allowed
to breed and mutate, giving a new generation of solution
candidates that (in the case of evolutionary progress) will exhibit
proportionally better fitness than in the previous generation.
This process continues until some stop criterion is reached.

There are many incentives for using this evolutionary frame-
work. First, it is applicable to all optimization problems where
representation, modification, and comparison of the quality of
solutions are possible. Besides being versatile, this approach is
especially efficient for very complex (NP-complete) problems
that are difficult to attack with deterministic and conventional
methods. Specialized methods may be more efficient computa-
tionally, but they are often difficult to implement and have
limited applicability.

Methods

Methodology. The application, FOLDAWAY, described in this
article uses an evolutionary approach to find the low-energy
conformations of peptides. FOLDAWAY is built by using a gen-
eralized framework for evolutionary computation called SOLU-
TION EVOLUTION (19), and uses several key evolutionary tech-
niques available in the framework, such as adaptive operator
rates and control parameters. We have also made use of an
operator in the framework that automatically refines solutions by
using local optimization. Thus, new structures generated by the
evolutionary operators are subjected to a local optimization
procedure. The use of optimization in this way is reminiscent of
the MC with optimization approach of Li and Scheraga (20). Our
approach also has much in common with the conformational
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space-annealing (CSA) method of Lee et al. (21, 22). Although
CSA is, strictly speaking, a simulated annealing approach, it
resembles a genetic algorithm in that it operates on a bank of
solutions designed to cover the conformational space. Compared
with CSA, our approach is less specialized and no physical
intuition is used to generate the starting structures. CSA is also
implemented with the ECEPP force field, which does not include
bond-distance and bond-angle terms in the potential, so these
parameters are constrained during optimization (21, 22).

We have tested the methodology described here by using it to
determine the low-energy conformations of Met-enkephalin and
Ac-(Ala-Gly-Gly)s-LysH". Met-enkephalin (Tyr-Gly-Gly-Phe-
Met) is a small neurotransmitter peptide that has been the object
of many computational searches directed at identifying its
low-energy conformations (13, 23-25). Thus Met-enkephalin
should provide an ideal benchmark to test the ability of FOLD-
AWAY to search the conformational space and locate the global
minimum. The conformations adopted by the Ac-(Ala-Gly-
Gly)s-LysH™* peptide in the gas phase have recently been studied
experimentally by using ion-mobility measurements (26). In
these experiments, electrosprayed peptide ions are directed
along a drift tube filled with helium buffer gas by a uniform
electric field. The time it takes to travel along the drift tube is
related directly to the average collision cross section of the ion
with the buffer gas. Compact conformations undergo fewer
collisions and travel more rapidly through the buffer gas than
more open conformations (27-30). Therefore, the cross section
can be used as a metric, albeit somewhat limited in its resolution,
for determining the structure of an unsolvated peptide ion. The
features observed in the experiments are assigned by comparing
their collision cross sections with those calculated for trial
geometries (which are usually obtained from MD simulations).
Studying unsolvated peptides allows one to examine issues like
helix propensities in the absence of a solvent (31), so that the
intramolecular interactions can be better characterized, and the
role of the local environment can be inferred (32-36).

The Ac-(Ala-Gly-Gly)s-LysH™* peptide was designed to have
aflat energy landscape with a marginally stable helical state (37).
The Ala residues and the C-terminal lysine stabilize the helical
conformation (38), whereas the Gly residues destabilize it. Two
main conformations were observed for this peptide in the
ion-mobility measurements at low temperature (<250 K), which
were assigned to an a-helix and a globule (a compact random-
looking three-dimensional structure). As the temperature is
raised, the a-helix converts into the globular conformation, and
at >280 K, only the globule remains.| The MD simulations were
not able to reproduce the cross section for the globule; even
when MD was coupled with simulated annealing, the resulting
conformations were not compact enough to match the experi-
mental results. Furthermore, the lowest-energy conformation
found in the MD simulations was not the helix or the globule but
an unusual, N-terminally untwisted helical conformation with a
C-terminal B-turn-type structure (see below), for which the cross
section did not match either of main conformations found in the
experiment (26). The current studies were motivated by the
expectation that a more complete conformational search may
yield results in better agreement with the experiment.

The Evolutionary Algorithm (EA) FoLbAwAY. FOLDAWAY is based on a
generalized EA framework, SOLUTION EVOLUTION (19). SOLU-
TION EVOLUTION was first tested on a completely unrelated
problem, the optimization of robot welding sequences (39). It has

lit was reported in ref. 26 that a shoulder appeared on the peak assigned to the globule at

~330-370 K. In subsequent work (M.R.H., B.S.K., and M.F.J., unpublished data), it was
shown that this shoulder was due to an artifact (probably a multiply charged multimer with
the same nominal mass/charge ratio as the singly charged peptide).
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also been tested by searching for the global minima of Lennard—
Jones clusters and the energy minimization of spherically dis-
tributed charges. As with all EAs, the basic principle behind the
method is the development of a population of solutions, which
are continually selected and enhanced according to their success
in solving the problem at hand. Solutions change, interact, and
recombine, exchanging favorable characteristics among them-
selves. Application-specific control parameters and operator
rates can be modified adaptively, enabling a dynamic approxi-
mation of the optimal settings throughout and allowing syner-
gistic effects to emerge among the operators.

As a specialization of the generic framework, FOLDAWAY is
able to take advantage of the well tested generalized methods
and also implement operators that are specific to the problem of
optimizing the energy of polypeptide structures. The specializa-
tion process requires the defining of a “solution” and a fitness
function, as well as the defining of various operators to modify
solutions.

A solution in FOLDAWAY is a set of coordinates defining,
unambiguously, a conformation of the polypeptide in space. To
allow the various genetic operators to operate on the optimal
representation of the peptide, each peptide structure is main-
tained in two complementary representations, (i) external Car-
tesian coordinates for all atoms and (if) and an internal coor-
dinate set consisting of torsion angles, bond angles, and bond
lengths. The external coordinates are the preferred basis for the
force field implementation (translational and rotational opera-
tors) and the geometry optimizers. The internal coordinates are
used mainly in the evolutionary operators. Although available to
the evolutionary operators, the w-backbone torsion angles, bond
angles, and bond lengths are not actually modified by them.
Conformations are converted between the two representations
as needed.

The fitness of a conformation is determined by a single
objective, the CHARMM force field (21.3 parameter set) (40) as
implemented in the MACSIMUS suite of programs (J. Kolafa;
available at www.icpf.cas.cz/jiri/macsimus/default.htm). The
CH, CH;, and CH3 groups are treated as united atoms.

Before the framework can begin evolving structures, an initial
population must be generated. Of the many different ways to
accomplish this population generation, the one used here is to
take a fully extended conformation and perform a large number
of mutations (random changes to the ¢, ¥, and y torsion angles),
followed by a local minimization. This process is repeated for
each initial conformation. A small number of these random
conformations are also added into the population at each
generation as a way of introducing diversity.

After the initial population has been generated, all subsequent
populations are produced by using a combination of the follow-
ing operations. First, as mentioned above, a small number of
random configurations are added to each new population.
Second, the most-fit (lowest-energy) conformations from the
previous population are retained in the new population. Third,
and the largest contributor of new conformations, are structures
evolved by recombination and mutation. Two conformations are
chosen from the previous generation, and their genetic infor-
mation (in this case their geometric coordinates) is combined to
form two new conformations. These new conformations may
then undergo mutations (random changes to ¢, §, and y torsion
angles) and are then optimized by using a local minimization
procedure. An example of this process is presented schematically
in Fig. 1. The chance of an individual conformation being chosen
as a parent is based on its fitness. The more fit (lower in energy)
that a conformation is, the more likely it is to be used as a parent.
Typically, 10% of the population of each generation results from
random conformations, 10% are the most fit (lowest-energy)
solutions retained from the previous generation, and 80% result
from recombination and mutation.

Damsbo et al.
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Fig. 1. Schematic representation of how the recombination, mutation, and
optimization operators work in FOLDAWAY by using the Ac-(Ala-Gly-Gly)s-
LysH* polypeptide. Images were produced by using WesLAB viewer (Molecular
Simulations, San Diego). The darker region of the structure on the bottom left
is a-helical according to the viewer.

Recombination, or crossover (the process of joining two
conformations into one), is the main feature that distinguishes
EAs from regular MC techniques and other methods that evolve
only a single solution. These operations allow the great leaps
through configuration space, and they use information from
contemporary and previous conformations to do so. Devising
efficient recombination operators for polypeptides requires pre-
serving certain characteristics of the structure. If the crossover
is performed in the Cartesian representation, the effect will be
too disruptive to be beneficial. Because the internal represen-
tation is set up in a residue-by-residue manner, the most efficient
recombination can be realized by placing all crossover points
along the polypeptide backbone between residues (i.e., at the
peptide bond). During the recombination procedure, certain
residues or groups of residues are randomly selected and then the
internal coordinate information for those residues is swapped
between the two conformations.

As mentioned above, when structures have been altered by the
evolutionary operators (recombination and/or mutation), they
are subjected to local optimization. Thus, the algorithm is not
actually wandering around in configuration space but is instead
looking at the various wells on the potential energy surface and
determining which conformations are lowest in energy. This
scheme has been successful in other related applications with the
SOLUTION EVOLUTION framework used here, such as the opti-
mization of homogenous Lennard-Jones clusters and the energy
minimization of spherically distributed charges. Several local
optimization techniques were tried. The most efficient method
found, and the one used for all results presented here, was the
limited-memory quasi-Newton (L-BFGS) method of Liu and
Nocedal (41). This method uses the gradient of the potential
function to build iteratively a better approximation to the inverse
Hessian of the function. It is important that the local optimizer
used is as efficient as possible because the algorithm spends a
large fraction of its time in this optimization step.

Damsbo et al.

A FOLDAWAY trial typically consisted of 25 runs each of 300
generations. A population size of 30 proved to be a good
compromise between execution time and the ability to explore
structures. A run was interrupted, if the best solution (the
lowest-energy structure) found in that run was not improved
above its fifth significant digit, for 20 consecutive generations.

We are interested not only in finding the lowest-energy
conformation but in examining the other low-energy conforma-
tions that are adopted by the peptides. Conformations are saved
in a solution pool throughout the entire simulation (all 25 runs).
The solution pool contains the lowest-energy structure found so
far, along with other representative solutions. A solution is
added to the pool based on both its fitness (energy) and its
dissimilarity to the other solutions in the pool. If a prospective
solution is considered unacceptably similar to another solution
already in the pool, only the one with the better fitness is kept.
The pool has a maximum size (specified at run time), which is
maintained by removing the solution with lowest fitness when-
ever a new solution is added to the pool.

In the present work, we used two metrics of the similarity
between the conformations in the solution pool. The first one
used was energy. In other words, diversity in the solution pool
was enforced by maintaining an energy gap between the solu-
tions. It should be obvious that energy is not a true measure of
structural similarity. However, this measure was used only for
determining which structures were stored, not which structures
were actually produced during the simulation.

The second form of similarity used was a Euclidean distance
using the ¢ and ¢y angles as coordinates. This dependence can be
expressed mathematically as:

N — 1

2 (Wi —

=2

) + (i1 — ). (1]

Similarity =

In this equation, N is the number of residues, and s and ¢; are
the ¢ and ¢ backbone angles of peptide i. The first and last
residues were skipped because the ¢ and s angles are not well
defined for them. The difference between the angles takes into
account that 180° = —180°.

Our choice for the similarity formula was guided by realizing
that when we compare two structures in a viewer with a colored
ribbon along the backbone, we are actually comparing the
backbone torsion angles. The importance of these torsion angles
has been recognized in the past (42). This formulation of
similarity is more relaxed than the coordinate root mean square
deviation (RMSD) method (9, 43, 44), which requires one to
determine the optimal rigid-body overlap. Such an inflexible
definition is not needed here, and the simple similarity formula
seemed to be more appropriate. However, some limitations were
seen with the formula when comparing very compact structures,
with which it is possible that an RMSD or some other method
might work better.

To aid the analysis of the results from FOLDAWAY simulations,
we implemented a standard data-mining algorithm called K-
MEANS (45) to sort the conformations into clusters of similar
structures. The K-MEANS algorithm was implemented in a pro-
gram called MOTIFFINDER. The distance criterion for the K-
MEANS algorithm is the similarity criterion mentioned above. For
the results presented here, the MOTIFFINDER program was used
only as an initial tool, requiring a human to optimize the
parameters and the results.

Results

Met-Enkephalin. The technique, using FOLDAWAY, was tested on
the penta-peptide Met-enkephalin (Tyr-Gly-Gly-Phe-Met).
There have been many studies (13, 21, 23-25) directed at
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Table 1. Dihedral angles of the lowest-energy conformation of
each motif found for Met-enkephalin

Residue Angle 1,GGIl 2, GFI' 3,GFV 4, GFI' 5 GG
Tyr o -157 ~156 —98  —154 154
Tyr " -180 135 -15 122 —67
Tyr w -178  —-175  —-178 178 174
Tyr X' 61 —158 60  —164 -168
Tyr X2 90 83 85 -89 81
Tyr ¥ 1 ~174 0 9 -175
Gly o -60 -95 142 -128 56
Gly " 124 59 110 70 a4
Gly w -175 179 —-17 177 -178
Gly o 93 78 81 73 92
Gly W -93 -88 -90 -99 -60
Gly w 175 173 167 174 176
Phe o -90  —108 -83 -73 -76
Phe " 130 -12 144 —24 176
Phe w 177 180  —179 170 176
Phe X' -78 65  —176 67 60
Phe X2 -75 -81 72 -78 89
Met b -88 -88  —110 -85 -79
Met " 0 0 0 0 0
Met X' -59 —61 —56 -69 -61
Met X2 -60 178 -58 178 -61
Met e 171 -65 171 -67 179
Met ¥ 60 60 60 60 60

Motifs are given as motif number and turn type (where G is Gly, and F is
Phe). Energy (kJ'mol~")is 0.0, 4.912, 12.242, 12.623, and 12.853 for motifs 1-5,
respectively.

characterizing low-energy conformations of this peptide with
computational methods. These studies make Met-enkephalin a
suitable subject to test the performance of FOLDAWAY in finding
the global minimum energy structure as well as its ability to
identify other low-energy conformations across the energy land-
scape. Perez et al. (25) have performed a conformational search
for the global energy minimum for the canonical form of
Met-enkephalin by using a scheme that used an initial confor-
mational search with the ECEPP potential (46), followed by an
interactive cycle of minimization and MD simulations with the
CHARMM force field. Calculations were performed with a dis-
tance-dependent dielectric constant (¢ = r) and separately with
e =10 and & = 80. A conformation with a g-II'-type turn around
Gly-3 and Phe-4 was found to be the global minimum energy
structure for all environments.

We performed 100 FOLDAWAY simulations on a Linux-based
system with 1.7-GHz processors (Advanced Micro Devices,
Sunnyvale, CA). Each simulation (25 runs of 300 generations)
took an average of 2.05 h. Preliminary data suggest quadratic
scaling of computational effort with peptide size. The calcula-
tions were performed by using the CHARMM force field (21.3
parameter set) with a dielectric constant (¢) of 10. We saved 50
structures from each simulation in the solution pool, and the
similarity criterion (see above) was used to determine which
structures remained in the pool. After the simulations were
finished, the solution pools were combined and MOTIFFINDER
was used to search for different structural motifs. Five distinct
structural motifs were found; all of them are B-turns. In order of
increasing energy, starting from the lowest, the motifs are GG
B-11, GF gB-1I', GF B-V, GF B-II', and GG B-I', where the first
two letters give the location of the turn (G is Gly, and F is Phe),
and the second part of the label gives the type of turn. The
dihedral angles and energies for these motifs are summarized in
Table 1.
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The lowest-energy structure found in the FOLDAWAY simula-
tions (which has an energy of —8,418 kJ-mol~') has a B-II-type
turn around Gly-2 and Gly-3. This motif was found to be the
lowest-energy in all 100 FOLDAWAY simulations. The global
minimum energy conformation found here is not identical to
that found by Perez et al. (25). The lowest-energy structure from
Perez et al. was a B-1I'-type turn around Gly-3 and Phe-4. Perez
et al. also found a B-I-type turn around Gly-3 and Phe-4 (only
slightly higher than their p-II'-type), which we did not find.
These discrepancies probably result from the use of different
versions of the CHARMM force field. After minimizing the
lowest-energy Perez structures (B-II" and B-I) with the version
of CHARMM used in this study, we found their energies to be
higher than for the lowest-energy conformations found in the
FOLDAWAY simulations (by 10.46 kJ-mol~! and 3.77 kJ-mol !,
respectively). We identified fewer distinct conformations (mo-
tifs) than Perez et al. (who identified 50 unique minima within
21 kJ-mol~! of their global minimum energy conformation)
because our automated approach (MOTIFFINDER) is set up to
identify distinctly different conformations.

Ac-(Ala-Gly-Gly)s-LysH*. The polypeptide chosen as the first test of
the ability of FOLDAWAY to simulate experimental data was
Ac-(Ala-Gly-Gly)s-LysH*. The structures of this peptide have
been characterized in the gas phase both experimentally and by
using MD simulations (26). Experimental information about the
conformations was obtained from ion-mobility measurements,
which can separate the different conformations and provide
their average collision cross sections. For Ac-(Ala-Gly-Gly)s-
LysH™", two conformations were identified in the experiments;
these conformations were assigned to a helix and a globule. The
helix has a significantly larger cross section than the globule.

FOLDAWAY simulations were performed by using the CHARMM
force field (21.3 parameter set) with the dielectric constant & =
1 (which is appropriate for small peptides in vacuo). The
protonation site in the Ac-(Ala-Gly-Gly)s-Lys peptide is as-
sumed to be the lysine side chain (as indicated by experimental
observations) (26). Two sets of FOLDAWAY simulations were
performed. One simulation used the energy criterion to select
solutions retained in the solution pool, whereas the other
simulation used the similarity criterion (see above). When the
energy criterion was used, the solution pool was limited to 20
structures separated by 5 kJ-mol~!. When the similarity criterion
was used, the solution pool was expanded to contain 50 struc-
tures, and at the end of these simulations, the energy spread of
the 50 structures was generally <100 kJ-mol™!' (the energy
spread used by using the energy criterion). When the FOLDAWAY
simulations were completed, each structure in the solution pool
was subjected to 55 ps of MD to equilibrate it to 300 K,
facilitating comparison with the experimental results. The tem-
perature in the MD was maintained by rescaling the kinetic
energies every 0.1 ps. The average potential energy of each
structure was determined from the last 35 ps of the MD
simulation. The average collision cross section for the final
structure from the MD run was then calculated by using an
empirical correction to the exact hard-spheres scattering
model (47).

The results are summarized in Fig. 2, which shows plots of the
average collision cross section against energy. The black points
are local minima from the FOLDAWAY simulations, and the red
points are local minima from reported MD simulations (26)
(which include extended 300-K simulations and simulated an-
nealing runs started from helical and fully extended conforma-
tions). Fig. 2 Upper shows results obtained by using the energy
criterion to select solutions retained in the solution pool, and Fig.
2 Lower shows results obtained by using the similarity criterion.
We performed 100 FOLDAWAY simulations (25 runs of 300
generations) by using the energy criterion and 200 simulations by

Damsbo et al.
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Fig. 2. Plots of the average energy against cross section for the FoLbAwAY

runs (black points) and previously reported MD simulations (red points) for
Ac-(Ala-Gly-Gly)s-LysH™. Upper shows the FOLDAWAY results obtained by using
the energy criterion to determine which structures are retained in the solution
pool. The FOLDAWAY results shown in Lower were obtained by using the
similarity criterion. Bars show the expected positions of the globular and
helical conformations identified in the experiments.

using the similarity criterion. The bars toward the bottom of the
plots labeled “Helix” and “Globule” show the expected locations
of these conformations from the experimental measurements.
Measured and calculated cross sections are expected to agree to
within 2% if the conformation used to calculate the cross section
is correct. The bars representing the helix and globule incorpo-
rate the experimental peak width along with this uncertainty.

The final structures from the previously reported MD simu-
lations (red points in Fig. 2) were very much dependent on the
initial conditions and the temperature schedule that were used
during the simulations. This necessity reflects the limited ability
of MD to cover the available conformational space. By contrast,
all of the FOLDAWAY runs were initiated from a fully extended
conformation. Runtime parameters were changed only to im-
prove the efficiency of the algorithm in finding low-energy
structures and not to affect its ability to move and find new areas
of conformational space. In Fig. 2, essentially each MD structure
below —2,250 kJ'-mol~! in energy is surrounded by several
FOLDAWAY structures, indicating that the EA is capable of
finding all low-energy minima found by MD.

Another important aspect of the results shown in Fig. 2 is the
presence of compact, low-energy structures. The most compact
structure found by the MD simulations has a cross section of
229.5 A% and a relatively high energy of —2,239 kJ-mol~!. The
lower energy compact conformations found in the MD simula-
tions have cross sections that are on the extreme upper edge of
the range expected from the experimental measurements. Con-
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formations with cross sections as small as 220.0 A2 were found
in the FOLDAWAY simulations (Fig. 2). Furthermore, a plethora
of low-energy conformations with cross sections that fall close to
the middle of the range expected from the experiments were
found.

It is evident from Fig. 2 that the two different methods used
to select solutions retained in the solution pool lead to slightly
different results. The results obtained with the energy criterion
(Fig. 2 Upper) contain more elongated helices (low-energy
conformations with cross sections >270 A2) than were found
with the similarity criterion (Fig. 2 Lower). However, the simi-
larity criteria appear to have generated more lower-energy
compact globular conformations (structures with cross sections
~225 A?) than were found with the energy criterion. The reason
that more elongated helices were found by using the energy
criterion is not obvious. The similarity criterion is expected to
result in a more diverse selection of conformations than the
energy criterion. Although the differences between the dihedral
angles of different helical conformations can be quite small, it is
not clear whether this similarity restriction alone should lead to
the absence of the elongated helices from the solution pool.

The enormous number of conformations generated by FOLD-
AWAY precludes the possibility of examining them all individu-
ally. Thus, the MOTIFFINDER application described above was
applied to all of the structures generated in the two sets of trials.
The goal of this data-mining approach is to cluster the low-
energy conformations into groups or motifs containing similar
structures. To simplify the process further, we considered only
clusters containing at least one structure with an energy less than
—2,280 kJ-mol. For the results obtained by using the similarity
criterion, data mining yielded ~100 clusters containing five or
more structures of which ~30 clusters contained =10 structures,
and ~15 clusters contained =15 structures. All 100 clusters were
analyzed. In some cases, two or more clusters contained similar
structures. For example, several clusters contained only helices
that tended to differ in the arrangement at the C terminus. Some
were slightly unraveled at the C terminus (which enhances
hydrogen bonding to the charged lysine side chain), whereas in
others, the C terminus remained more helical. These clusters
were combined into one helical motif. Ultimately, the number of
clusters was reduced to nine main structural motifs. For the data
obtained by using the energy criterion, data mining yielded four
different structural motifs, all of which were found also in the
data set obtained with the similarity criterion.

Fig. 3 shows the different structural motifs plotted on the
energy-versus-cross section graphs for each FOLDAWAY data set.
The different colors indicate the different structural motifs. The
structural motifs, along with their corresponding colors, are
shown in Fig. 4.

The motif shown in black is due to helices. It was found in both
of the FOLDAWAY data sets. The helices are mostly a-helices with
a partial 0-helix close to the C terminus (see Fig. 4). This
arrangement is favored in the simulations because it allows more
backbone carbonyl groups to interact with the charged lysine side
chain that caps the C terminus. Helices with smaller cross
sections tend to have a larger proportion of partial 0-helix,
whereas helices with larger cross sections tend to have a larger
proportion of a-helix and a more unraveled and extended C
terminus. It is evident that the helices with the larger cross
sections are in better agreement with the measured cross sec-
tions (see “Helix” bar in Fig. 4), suggesting a preference for
helical conformations with a larger proportion of a-helix. This
finding is consistent with previous results for polyalanine-based
peptides (38) and recent theoretical studies, which indicate that
the cHARMM force field is too flat along the a-helix-0-helix
coordinate (48), and therefore the 0-helical regions found in the
simulations may be at least partly a force field artifact.
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Fig. 3.  Structural motifs found by using MOTIFFINDER (see text). Different
motifs are represented by different colors. Upper shows results obtained by
using FOLDAWAY with the energy criterion, whereas Lower shows results ob-
tained by using the similarity criterion. The structural motifs are shown in
Fig. 4.

Fig. 4 shows four examples of helices from the motif shown in
black. The black-motif helix at the upper left (which has a cross
section of 271 A2 and an energy of —2,296 kJ-mol~!) lies close
to the center of the range of cross sections expected from the
experimental data. It was found by using the energy criterion.
The other black-motif helices are shown to give an idea of the
structural diversity in this motif. The black-motif helix at the
lower left is a 8-helix with a cross section of 260 A2 and an energy
of —2,294 kJ-mol~!. The black-motif helix at the upper right has
a cross section of 266 A2 and an energy of —2,297 kJ-mol !,
whereas the black-motif helix at the lower right has a cross
section of 263 A2 and an energy of —2,296 kJ-mol ..

The light-blue motif was also found in both FOLDAWAY data
sets as well as in the previously reported MD simulations. This
motif includes the lowest-energy structure found by MD (26) and
FOLDAWAY by using the energy criterion. As shown in Fig. 4, this
structure is a partially unraveled helix with a row of backward-
pointing hydrogen bonds. Arrows point to the backward-pointing
carbonyl groups. The cross sections of these structures do not
match the cross section of the features seen in the experiments.

The orange motif was found in both FOLDAWAY data sets, but
it was not found in the MD simulations published previously. It
is related to the light-blue motif in that it is also a partially
unraveled helix with one row of hydrogen bonds facing in the
reverse direction. However, in this motif the first backward-
pointing carbonyl group is the third residue from the C terminus,
whereas in the light-blue motif, the carbonyl group of the C
terminus residue was facing backwards. The extra torsional strain
at the C terminus and the slight unraveling of the N terminus
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Fig.4. Structures of each motif shown in Fig. 3 along with their color codes.

The images were produced by using wWeBLAB viewer (Molecular Simulations).
The darker region of the black-motif structure in Left is a-helical according to
the viewer.

cause this motif to be slightly higher in energy than the previous
motif. The cross sections of these structures also do not match
the features observed in the experiments.

There are two varieties of the red motif shown in Fig. 4. This
structure is basically a partial helix with both the N- and
C-termini unfolded. The red structure Fig. 4 Right has its termini
extended in a B-sheet arrangement. This structure was found by
FOLDAWAY by using both difference criteria, whereas the other
variety was only found by using the similarity criteria. The red
structure Fig. 4 Left has its termini folded back on top of the
helix. This motif makes more compact structures, which have
cross sections that lie toward the middle of the range expected
for the globule. The less-compact arrangement has cross sections
that lie on the upper end of the globule range. No low-energy
conformations of either type were found in the MD simulations.

Several other motifs were found from the FOLDAWAY data set
obtained with the similarity criterion. The green motif includes
the lowest-energy conformation found for Ac-(Ala-Gly-Gly)s-
LysH™" in these studies (the green motif on the left in Fig. 4). The
N-terminal end of this conformation is helical with two hydrogen
bonds pointing in the reverse direction. The N terminus, how-
ever, is unfolded and consists of a B-sheet like structure. The
cross section of this conformation falls outside the range ex-
pected for the globule. Note the way that the C-terminal loop is
coiled around, maximizing the number of carbonyl groups that
interact with the charged amino group of the lysine. Another,
higher-energy example of the green motif is shown in Fig. 4 Right.
This motif shows the same basic pattern with an a-helical N
terminus with a B-sheet arrangement at the C terminus.

The brown motif is similar to the red motif but has a central
portion that is more unfolded. Two examples are shown in Fig.
4. Some of the members of this motif have cross sections that fall
in the range expected for the globule. The brown motif spans
~25 A2, All of the structures have at least one large, centralized,
helical turn. The 25-A2 range appears to result from the ar-
rangement of the ends, but the charged lysine side chain is always
positioned central to the helical turn.

The yellow motif is partially helical with an unfolded N
terminus. This motif also has some members with cross sections
that fall within the range expected for the globule, including the
lowest-energy conformation found within this range (the orange
structure in Fig. 4 Left). The yellow motif has features in
common with the green motif. In both motifs the charge is
self-solvated by a loop, whereas the N terminus retains a helical
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character. The yellow motif, however, is obviously more globular
than the green motif.

The blue motif is fully unfolded and resembles (slightly) a
script “G”. These 20 conformations also have cross sections that
lie within the range expected for the globule.

In some cases, the structural motifs have a well defined
structure and a well defined structural boundary in Fig. 3. The
light-blue motif is an example. In other cases, for example the
yellow and brown motifs, the members are interdispersed with
other motifs and span relatively large cross sections and energy
ranges. It is also evident that some of the motifs share common
features. The yellow motif, for example, is similar to the green
motif. The red motif has features in common with the brown
motif.

Concluding Remarks

We have introduced a generalized EA approach for exploring
the energy landscape of unsolvated peptides. The application
uses the CHARMM potential as the objective and uses a dual
representation of the conformations. Most of the genetic oper-
ators act on the internal (¢, ¢) representation, whereas the
L-BFGS algorithm and the CHARMM potential use the external
Cartesian coordinates. This dual representation and the use of
local minimization differentiate this application from previous
attempts at using EAs to fold peptides and proteins (7-9). The
EA application FOLDAWAY was tested on Met-enkephalin. The
lowest-energy conformation found was a B-II-type turn around
Gly-2 and Gly-3.

Unlike MD and such approaches as stochastic difference
equations (49) or following an assumed progress variable
through configuration space (50), EA schemes do not attempt to
follow either physical process or causal equations. EA is an
optimization technique (not an equation of motion solution),
which is both its strength and its weakness. By permitting
mutation, recombination, and optimization steps, EA schemes
avoid both the local minimum and high barrier problems that can
ensnare MD trajectories and the sterically constrained, dense
van der Waals repulsion surfaces that can render Metropolis MC
ineffective. EA can search in a more global fashion by effectively
taking long leaps in configuration space and sampling many
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structures simultaneously. These attributes account for the much
larger set for EA minima than for MD minima shown in Fig. 3;
because EA is an ideal optimization scheme, it finds optimal
(lowest potential energy) structures very well. But it does not
help at all in understanding dynamics; how peptides fold into the
motifs in Fig. 4 or the structures in Fig. 3 is beyond EA, just as
it is beyond MC.

FOLDAWAY found large groups of structures not found in the
previously reported MD simulations, and most notable are the
compact low-energy structures that fall in the range expected
for the globule. Most of the low-energy conformations were
found multiple times in the FOLDAWAY simulations. However,
some conformations (including the one with the lowest en-
ergy), were found only once. For the conformations that were
found multiple times, the surrounding conformational space is
most likely funnel-like, whereas for conformations found only
once, the surrounding conformational space is most likely golf
course-like (flat with sharp, deep minima that are difficult to
find). The fact that the lowest-energy conformation was found
only once raises the possibility that there are other even
lower-energy conformations that have not been found in these
simulations. The lowest-energy conformations that have been
found so far still lie outside the range expected for the globule,
so the possibility that there are still lower-energy compact
structures to be found remains real. However, even if these
conformations do exist, they most likely will not be important
entropically, so there still appears to be a substantial discrep-
ancy between the experimental results and the theoretical
predictions. The most likely cause of this discrepancy now
appears to be the force field; in other words, the force field fails
to predict the relative energies of the low-energy conforma-
tions for the Ac-(Ala-Gly-Gly)s-LysH* peptide. However,
unsolvated Ac-(Ala-Gly-Gly)s-LysH* has a flat energy land-
scape, and the energy differences between the low-energy
conformations are small, so this peptide provides a severe test
of accuracy of the force field.
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