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Natural killer (NK) cells are innate lymphoid cells important for host defense against pathogens and mediate antitumor immunity.
Cytokine receptors transduce important signals that regulate proliferation, survival, activation status, and trigger effector functions.
Here, we review the roles of major cytokines that regulate human NK cell development, survival, and function, including IL-2,
IL-12, IL-15, IL-18, and IL-21, and their translation to the clinic as immunotherapy agents. We highlight a recent development
in NK cell biology, the identification of innate NK cell memory, and focus on cytokine-induced memory-like (CIML) NK cells
that result from a brief, combined activation with IL-12, IL-15, and IL-18. This activation results in long lived NK cells that exhibit
enhanced functionality when they encounter a secondary stimulation and provides a new approach to enable NK cells for enhanced
responsiveness to infection and cancer. An improved understanding of the cellular and molecular aspects of cytokine-cytokine
receptor signals has led to a resurgence of interest in the clinical use of cytokines that sustain and/or activate NK cell antitumor
potential. In the future, such strategies will be combined with negative regulatory signal blockade and enhanced recognition to

comprehensively enhance NK cells for immunotherapy.

1. Introduction

This review focuses on our current understanding of
cytokine-cytokine receptor interactions on human NK cells
and how these signals might be used to promote antitumor
immunity by NK cells. A brief introduction provides the
framework for discussing the impact of cytokines on NK cells
and for highlighting the salient features of NK cell biology
for effective antitumor responses—NK cell development,
subsets, education/licensing, target recognition, trafficking,
and effector functions. We discuss the cytokine biology of IL-
2, IL-15, IL-12, IL-18, and IL-21 related to NK cells, as well as
their translation to the clinic as antitumor immunotherapy.
We also highlight a relatively new concept in NK cell biology,
innate NK cell memory. As the first form of innate memory
directly translated into cancer immunotherapy clinical trials,
we focus in depth on cytokine-induced memory-like (CIML)
NK cells. Importantly, utilizing cytokines to enhance NK cell
functionality is only one part of a comprehensive approach
to enhance NK cell antitumor activity, with others including
blockade of inhibitory signals/cells, and enhancement of NK

cell recognition of tumor target cells (Figure 1). The future of
NK cell based therapeutics will involve manipulation of all
three intertwined aspects of NK cell biology.

L1, Human NK Cells. NK cells were originally identified
based on their ability to kill tumor target cells in the
absence of prior sensitization [1, 2], distinguishing them from
adaptive T cells. Over the past 4 decades, it has become
clear that NK cells perform more functions than “natural
killing” and participate in multiple ways during host immune
defense. Human NK cells are defined phenotypically by
the presence of CD56 and lack of T and B cell specific
markers (CD3/TCR and CDI19) and comprise 5-20% of
peripheral blood lymphocytes in normal individuals [3].
Morphologically, resting human NK cells have been identi-
fied as large granular lymphocytes, although this description
reflects the major CD56"™ NK cell subset in peripheral

blood, while CD56""¢" NK cells are small lymphocytes. The
NK cell activating receptor NKp46 (Ncrl) is highly specific
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FIGURE 1: General strategy to optimize NK cell immunotherapy. A three-tiered approach to comprehensively modify NK cells for optimal
antitumor responses. (1) Enhance NK cell recognition and triggering while providing enhanced specificity, (2) augment functional status using
cytokines, immunomodulatory drugs, or prior viral infection, and (3) remove inhibitory signals that include inhibitory KIR/NKG2A/PD-1,
block Treg mediated regulation, and block NK cell suppressive cytokines.

for NK cells, providing an additional marker that is used in
both humans and mice to clearly identify NK cells [3-5].
NK cells are further defined by their functional attributes,
including proliferation, production of cytokines/chemokines,
natural killing, lymphokine-activated killing, and antibody-
dependent cellular cytotoxicity (ADCC) via CD16/FcyRIIIa
[6]. They are found in most tissues in the body but are
enriched in the spleen, blood, bone marrow, liver, and lymph
nodes [7]. This lymphocyte lineage represents one of the
first members of a diverse set of recently defined innate
lymphoid cells (ILCs) that have distinct transcription factor
requirements and differing roles in normal physiology and
host defense [8].

The clinical importance of NK cells to normal host
defense in humans has been demonstrated in patients that
are selectively deficient in NK cells, who develop recurrent,
often fatal, viral infections [9]. Further, in rare immunod-
eficient patients who lack T and B adaptive lymphocytes,
NK cells are able to mount an effective antiviral response to
cytomegalovirus [10]. In addition, one large epidemiologic
study found that low NK cell cytotoxicity predicted an
increased risk of developing cancer, suggesting a role in
cancer immunosurveillance in humans [11]. Moreover, ther-
apeutic monoclonal antibodies used in cancer patients often
mediate their actions via ADCC, with NK cells one effector
cell important for such cytotoxicity [12]. More recently,
allogeneic NK cells have been utilized to induce cancer remis-
sions and participate in the graft-versus-leukemia effect vital

to effective allogeneic hematopoietic stem cell transplantation
(13, 14]. Thus, the normal properties of NK cells may be
harnessed as antitumor immunotherapy strategies [15].

1.2. NK Cell Development and Education. Human NK cells
develop from progenitors in the bone marrow and complete
their differentiation and maturation in peripheral organs,
especially lymphoid tissues [16, 17]. A number of human
NK cell differential intermediates have been identified, most
readily isolated from tonsil, lymph nodes, or bone marrow
[18-20]. NK cells are thought to become tolerant of normal
host tissues through an education process that occurs during
development termed licensing [21, 22] but exhibits plasticity
depending on the environment the NK cell resides [23, 24],
with most of the key aspects of this process defined primarily
in model organisms. This results in mature and functional
NK cells that are inhibited by germline encoded receptors
that recognize self-MHC or related ligands and can effectively
sense the loss of such self-ligands or increased expression
of activating receptor ligands [25, 26]. A subset of CD56%™
NK cells identified in humans, which fail to express KIR that
recognize self-HLA ligands, was found to be hypofunctional,
suggesting a lack of education and anergy [27].

A number of cytokines have also been implicated in
promoting different stages of NK cell progenitor, precursor,
and mature NK cell differentiation and survival, especially
early acting kit ligand, flt3 ligand, and later acting IL-15
[3, 16, 28, 29]. Cytokines are also responsible for supporting
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NK cell homeostasis, similar to other hematopoietic lineages.
As expanded on below, cytokines may also influence the
activation state of NK cells, providing a microenvironment-
based cue to augment or diminish the threshold required for
triggering NK cells through surface receptors, for example, in
the setting of inflammation or upon exogenous provision as
immunotherapy [6, 30-34]. Each of these processes is crucial
to understand, since the ability to enhance NK cell triggering,
augment functionality, and enhance homeostasis may inform
translational NK cell based immunotherapy.

1.3. NK Cell Receptor-Based Recognition of Targets. NK cells
do not express a dominant, clonally rearranged antigen spe-
cific receptor, clearly differentiating this lymphocyte lineage
from adaptive T and B cells. Instead, during surveillance
NK cells integrate signals from a diverse set of germline
DNA encoded activating and inhibitory cell surface recep-
tors [24, 35-37]. In humans, NK cell receptors include
killer cell immunoglobulin-like receptors (KIR), C-type
lectins (CD94/NKG2A/NKG2C), natural cytotoxicity recep-
tors (NCR; NKp44, NKp30, and NKp46), CD16/FcyRIIIa,
NKG2D, and integrin/adhesion molecules. Best studied, the
KIR genes are highly polymorphic and segregate indepen-
dently from MHC class I, and KIR genotypes impact on
NK cell antitumor responses [13, 38]. When inhibitory MHC
class T ligands are lost or absent (missing self), inhibitory
KIR are not engaged, reducing the signal threshold for
triggering. Further, when activating ligands are increased
(induced or abnormal self), activation predominates and in
some circumstance results in NK cell triggering without loss
of MHC class I [39, 40]. When deciding whether to respond
to a target cell or not, these signals are combined, including
integration of the NK cell activation status influenced by
cytokine priming [30, 31, 41, 42] or other events, such as latent
viral infection [43]. Recently, prior exposure to CMV and
Hantavirus infection has been linked to altered populations of
human NK cells, resulting in an expanded NKG2C" NK cells
that exhibit enhanced functionality upon restimulation [44-
46]. While not a focus of this review, such prior experience
of CMV results in a functionally enhanced NKG2C™ NK cell
population in solid organ or bone marrow transplantation
patients [44, 45]. Once appropriately triggered, the NK cell
responds by killing the target [47] and producing cytokines
including IFN-y, TNF-«, GM-CSE, MIP-1«, and others [3].
Thus, the activation of NK cells is complex, with influences
provided by germline encoded receptors interacting with
targets (such as KIR) and also NK cell’s microenvironment
and prior exposure to viruses and cytokine receptor signals,
all of which provide translational opportunities.

1.4. Human NK Cell Subsets. Two phenotypically and func-
tionally distinct subsets of NK cells have been well defined
in human peripheral blood [48-53]. CD56""" NK cells
are numerically minor subset, comprising 1-15% of the
total NK cell population in blood. These NK cells have
no or low CDI16 expression, generally lack KIR receptors,
express inhibitory CD94/NKG2A, are poorly cytotoxic at
rest, express distinct chemokine and cytokine receptors, and

prefer secondary lymphoid tissue, compared to CD564™ NK
cells. This subset of NK cells has been implicated in a wide
variety of physiologic roles in health and disease, including
production of effector cytokines in response to accessory
cell cytokines [51], control of EBV [54], immunoregulation
[55], and networking between adaptive and innate immu-
nity [50, 56]. CD56%™ NK cells express high levels of
CD16 (CD16™8") and mediate ADCC, contain abundant
cytotoxic granules loaded with perforin/granzyme, express
KIR [51], and respond more robustly to surface-receptor
mediated activation when interacting with potential target
cells [57, 58]. CD56%™ NK cells can be further subdivided
into less mature (CD94+NKG2A+CD57-) and more mature
(CD94-NKG2A-CD57+NKG2C+) subsets [59-61]. Thus,
due to CD56%™ NK cell abundance and their functional
properties, this subset has been the focus of most studies
evaluating anticancer properties of NK cells. More recent
evidence suggests that cytokine priming allows for robust
antitumor response by CD56"¢" NK cells, opening up the
possibility that this NK cell subset is also significant for
immunotherapy [62]. It has been reported that CD56™8™
NK cells may differentiate into CD56*™ NK cells [63-
65]. However, in vitro differentiation systems from CD34"
hematopoietic progenitors typically yield CD56™¢" type NK
cells with a lower percentage of NK cells with CD56%™
attributes (e.g., KIR and CD16), and patients with mutant
GATA2 have a selective loss of CD56%8" NK cells [66];
thus it remains plausible that these two NK cell subsets have
distinct ontogeny. Regardless of their direct development
relationship, each subset also clearly retains its own unique
biology in the form of receptor repertoires, preferred modes
of stimulation, tissue localization, and primary effector func-
tions and should be evaluated in the context of NK cell
responses to malignancy.

2. How NK Cells Functionally Contribute to
Antitumor Immunity

2.1. NK Cell Cytotoxicity. Triggering resting NK cells to
kill occurs through integration of activating and inhibitory
receptor signals, which is referred to as natural killing [35].
Stimulation with IL-2 or IL-15 for several days results in
lymphokine-activated killer (LAK) cells, which have the
capacity to kill additional targets that are resistant to resting
blood NK cells [67]. For human NK cells, CD16 (the FcyRIIIa
receptor) is a major activating receptor that recognizes
antibody-coated target cells, and killing through this acti-
vation mode is referred to as antibody-dependent cellular
cytotoxicity (ADCC) [3]. An NK cell utilizes two main
mechanisms to kill tumor cells, following these triggering
recognition events: granule exocytosis and death receptors.
For granule exocytosis, cytotoxic granules that contain per-
forin, granzymes, and other effector proteins of cytotoxicity
are released into a tight cytotoxic synapse [47, 68]. Perforin
facilitates granzyme entry into the target cells, where these
serine proteases cleave targets to induce an apoptotic-like cell
death. A second pathway for inducing cell death is using cell



surface receptors, most commonly Fas ligand and TRAIL.
Finally, secreted TNF-a and IFN-y may induce a senescent
tumor cell death, especially when coordinately secreted [69].
Importantly, activation through cytokine receptors may aug-
ment all of these mechanisms of NK cell killing.

2.2. NK Cell Cytokine Production and Immune Networking.
One major function of NK cells is production of cytokines
and chemokines following either cytokine- or activating
receptor stimulation on the NK cell surface. The prototype
effector cytokine produced by NK cells is IFN-y, which has
pleotropic effector actions on other immune cells, antigen
presenting cells, and virally infected or malignant target cells.
Additional cytokines (GM-CSF and TNF-«) and chemokines
(MIP-1er, MIP-1$3, and RANTES) are also produced, which
depends on the NK cell stimulation type and the time
course after activation [6]. Through cytokines NK cell may
impact other immune responders, including T cells, and
influence adaptive immunity by activating antigen presenting
cells [34]. Indeed, it is thought that NK cells participate
in a complex interaction network with other lymphocytes,
dendritic cells, and macrophages to effectively control infec-
tion. For antitumor immunity, NK cells may promote Thl
type T cells responses, activate antigen presenting cells, and
induce tumor cell death to facilitate antigen presentation.
Thus, immunotherapy approaches should not only focus
on the ability of NK cells to degranulate and kill tumor
targets in vitro but also enhance antitumor immunity through
such indirect mechanisms. This remains a challenge in the
evaluation of human NK cell antitumor responses in patients,
since it is not clear that sampling the peripheral blood yields
the most relevant information to infer activities at the site of
the tumor or elsewhere such as secondary lymphoid organs.
While such studies are technically (and financially) challeng-
ing and require careful consideration of potential risks by
physicians and patients, expanded sampling including the
site of the tumor/metastasis and lymphoid organs would be
highly informative for a more complete picture of NK cell
responses in vivo.

3. General Concepts: Cytokine
Receptors on Human NK Cells

Cytokine receptors are important for a wide variety of
NK cell events, including development, proliferation, home-
ostasis, and activation status—key aspects of biology for
immunotherapy. Human NK cells have been shown to con-
stitutively express a number of cytokine receptors, which
transduce signals when ligated through a number of intra-
cellular signaling pathways (Table 1). In addition, selected
cytokine receptors or subunits may be induced or their
expression may be enhanced upon activation, providing one
mechanism of synergy between different cytokines. Further,
it is known that combined signals through multiple types
of cytokine receptors, or cytokine plus activating NK cell
receptors, result in the most robust NK cell effector responses.
In this fashion, NK cells may sense differing extents of
inflammation and respond with a continuum of intensity,
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providing a mechanism for tuning the extent of a response
to the pathogenic situation. For example, IFN-y is produced
at very low amounts when IL-2/IL-15, IL-12, or IL-18 recep-
tors are individually activated; however, with combinatorial
stimulation there is a dramatic, cytokine dose-dependent,
and synergistic effect on NK cell IFN-y secretion [70]. While
challenging to definitively address via experimentation, this
may be most relevant in vivo when cytokine concentra-
tions are limiting, and therefore NK cells are exposed to
suboptimal cytokine receptor stimulation. Further, cytokine-
based signals may also alter the rules for receptor-based
licensing, for example, in the setting of ongoing infection or
inflammation [71], an area that is relatively unexplored in NK
cell responses to tumors. While negative cytokine regulation
of NK cell activation is not a focus of this review, there are
clear examples where anti-inflammatory cytokines “turn oft”
NK cells, such as TGF- that rapidly inhibits multiple aspects
of NK cell functionality [72]. In some situations including the
tumor microenvironment, TGF-f effects may be reversed,
suggesting that inhibitory cytokine blockade may be feasible
as an approach to enhanced NK cell responses [73]. NK
cell cytokine receptors activate a wide variety of intracellular
signaling pathways, providing one mode of cooperation and a
method to separate induction of different NK cell functional
programs. The role of IL-2, IL-15, IL-12, IL-18, and IL-21 in
human NK cell biology is reviewed in the following sections,
with emphasis on newer findings, followed by translational
studies in cancer patients (Table 2). It is important to note that
investigation of human NK cells in vivo is difficult and that
early phase clinical trials provide a useful platform to advance
our knowledge of how cytokines impact human NK biology
in health and disease.

4. IL-2 and IL-15: Basic Biology

IL-2 and IL-15 represent the best studied cytokine activators
of NK cells and have a number of positive functional
effects on NK cells to enhance antitumor responses [28,
29, 74, 75]. Signals downstream of the IL-2/15R have been
extensively characterized and include activation of the Jak1/3
and STAT3/5, the PI3K pathway, the MAPK pathway, and
ultimately NF-xB. These signals through the IL-2/I5R are
central for NK cell development and homeostasis, induce
proliferation, costimulate cytokine production, and enhance
cytotoxic effector mechanisms [28, 29, 74, 75]. IL-2 and IL-15
share the IL-2/15R and y. as the primary signaling subunits
and interact with this heterodimer with intermediate affinity
(IA), requiring nanomolar concentrations. CD56™8" NK
cells constitutively express CD25/IL-2Ra«, which forms a high
affinity heterotrimeric IL-2Rafy that responds to picomolar
concentration of IL-2 [76, 77]. CD25 and the high affinity
(HA) receptor can be induced on both CD56"#" and
CD56%™ NK cells following combined cytokine activation
with IL-12+IL-15+IL-18 and to a much lesser extent following
IL-2 or IL-15 activation [78-80]. The IL-15R« is primarily
expressed on dendritic cells and macrophages, has high
affinity for IL-15 as a single subunit, and transpresents bound
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TaBLE 1: Cytokine receptors on human NK cells.

Receptor Components NK subset Signaling Functions Source
IL-2Raf3y: Cytoki ducti
IL-2Rat CD56" M Jak1/3, STAT3/5 oo ne production
IL-2R IL-2/15RB IL-2RBy: PI3K Sli?vll\?:f ron T cell
bright
Ye ggggd‘m and Ras/Raf/MAPK Enhanced cytotoxicity
IL-12R IL-12Rbl CD56b_right and Jak2/Tyk2 and Cytokine production DC
IL-12Rb2 CD56%™ STAT4 Enhanced cytotoxicity Mg
_ Jakl/3 and Cytokine production
IL-15R ﬁ_gﬁ(XR 8 CD56b_rlght and STAT3/5 Proliferation II\)/[C
CDs6%™ PI3K Survival BN stroma
Ye Ras/Raf/MAPK Enhanced cytotoxicity
4 MyD88,
IL-1SR IL-18Ra/R1 CD56h_rlght and IRAK4/TRAFe6, Cytokine production DC
IL-18RB/RAP CD56%™ MAPK, and Proliferation Mg
NFkB
Enhanced
} bright Jak1/3 and cytotoxicity
IL-21R H-2IR Dsem STATI/3/5 Enhanced ADCC T cell
Ye Cytokine production

Limits proliferation

IL-15 to the IL-15Rfy. complex on NK cells [29, 75]. IL-
2 is produced by activated T cells, and IL-2Rafy has been
shown to facilitate cytokine-based crosstalk with T cells [50],
especially during an active immune response. IL-15Ra/IL-
15 is produced by a number of APCs and likely represents
the central pathway whereby IL-2/15R signals are triggered
during normal physiology [34]. This is supported by the NK
cell phenotypes of the relevant knockout mice: IL-27/~ and
IL-2Ra /™ have an intact NK cell compartment, whereas IL-
15Ra’~ and IL-15"/" mice have a marked (>20-fold) reduc-
tion in NK cells [28, 75]. In vitro, nanomolar concentrations
of IL-2 or IL-15 both activate the IL-2/15Rpfy, and have
similar functional effects. In vivo, it is critical to parse whether
IL-2 doses are low (picomolar) and only sufficient to ligate
IL-2R«fy or intermediate/high (nanomolar) which can ligate
the TA IL-2/15Rpy.. IL-2 has been extensively studied in
cancer patients [29, 74] and overall yielded unexpectedly few
clinical responses as a single agent, likely due to simultaneous
induction of regulatory T cells, which can limit NK cell
responses. Recently, IL-15 has entered clinical trials and has
promised to modulate NK cells (and effector T cells) in the
absence of Treg induction. These cytokines are also used in
ex vivo activation and/or expansion of NK cells for adoptive
immunotherapy and to support the expansion and function
of NK cells after infusion.

5. IL-2 and IL-15: Translation

IL-2 was one of the first cytokines used clinically, with
hopes of inducing antitumor immunity. The clinical use of
recombinant human (rh)IL-2 has been reviewed extensively
[29, 81] (Table2). As a single agent at high dose IL-2
induces remissions in a minority of patients with renal

cell carcinoma (RCC) and metastatic melanoma, with an
unclear mechanism of action [81]. Presumably, ligation of the
IL-2/15Ryp. on immune cells is contributing to the clinical
activity and substantial toxicity associated with this rhIL-2
dose. A detailed characterization of the effects of high dose
IL-2 on the NK cell compartment in vivo has not been
reported. Following the experience with high dose IL-2,
low dose IL-2 was investigated and aimed at selectively
ligating the HA IL-2Raf3y in an effort to reduce toxicity
while maintaining biological activity [82]. At the time, these
studies resulted in the expansion of CD56"CD3~ NK cells
(~400-900% increase) predominantly from the CD56""™
CDI16" NK cell subset [83-87]. While these NK cells were
active against NK cell sensitive targets (K562) and could
mediate ADCC, they required additional stimulation with
high dose IL-2 to mediate LAK activity against NK cell
resistant tumors. This was consistent with the serum levels of
IL-2 achieved in vivo of 25-77 picomolar, indicating selective
stimulation of IL-2Raf3y. Later studies suggested that low
dose IL-2 facilitated CD56" 8" NK cell differentiation from
progenitors and survival in vivo, with minimal impact on
peripheral proliferation [88]. Additional studies explored low
dose IL-2 therapy in combination with intermediate dose
“pulses” to first expand and then activate NK cells in vivo,
which effectively enhanced NK cell function in vivo [86]. This
approach was also combined with antitumor monoclonal
antibodies, which appeared safe and resulted in some clinical
responses in early phase studies [89]. Subsequent to these
clinical studies, the biology and the central role of IL-2 for
regulatory T cell homeostasis and function were defined [90].
Follow-up studies demonstrated that low dose IL-2 therapy
also expanded regulatory T cells, which are known to limit
NK cell responses, in addition to effector T cells [91-93].



cytotoxic activity of the NK cells

6 Scientifica
TABLE 2: Summary of selected cytokine clinical trials and major findings.
Cytokine fg‘iil:lonal Disease Major biologic effects Outcomes Reference
L2* Post NK cell gg% ’;ﬁ’ In vivo activation and expansion of the CR in some of the [153]
infusion > NK cells in some of the patients AML patients
melanoma
Post NK cell Minimal expansion of the adoptively Prolonged
1L-2 . . AML persistence of CR [154]
infusion transferred NK cells . .
in some patients
L2 Sézlﬁrlili:ll CD20" NHL Preferential expansion of recipient .Induction of CR [156]
P regulatory T cells in some patients
infusion
No major
responses noted;
phase II part
1L-12 None RCC Profound increases in serum IFN-y terminated due to [109]
major toxicities
including 2
deaths
Transient decrease in CD8* and CD16* .
lymphocytes in peripheral blood and Decrease in the
IL-12 None Melanoma ymp yt Periphera size of tumors in [110]
neutrophils along with high serum levels .
of IFN-y and IL-10 some patients
RCC Transient decrease in T cells, B cells, and No major
mela;loma NK cells. Transient increase in the responses with
IL-12 None CC. and ’ expression of CD2, CDlla, and CD56 on IL-12 therapy [111]
oth’ers NK cells. Increase in the cytotoxic activity reported in this
of the NK cells trial
Transient decrease in lymphocytes
(CD4*, CD8", NK, and NKT cells, but
most profoundly in the NK cells).
RCC, Increased Fas ligand on NK cells, CD8" T Partial response [166]
1L-18 Rituximab melanoma, cells, and NKT cells. Increased serum in fi t’p ¢ (123]
and HL levels of IFN-y, GM-CSE, IL-18 binding 1 few patients
protein, and soluble Fas ligand. Some
patients (38%) developed antibodies to
rhIL-18
Transient lymphopenia (CD4" T cells, No maior
CD8" T cells, and NK cells) which respon)s o
Advanced correlated with the expression of CD69. reported though
IL-18 None melanoma Increased plasma concentrations of the drug was well [125]
g
and RCC INF-y, GM-CSE TNF-a, CXC tolerated without
chemokine IP-10, and CC chemokine or sid
MCP-1. Antibodies against hrIL-18 a?fy major side
developed in 32% of the patients effects
Opverall response
Transient lymphopenia with undetectable ratoe of around
Advanced circulating B cells. Increase in plasma 26%, complete
1L-18 Rituximab g. P response rate of [124]
CD20* NHL concentrations of IFN-y, GM-CSE, 1% d vartial
TNE-a, MIG, IP-10, and MCP-1 o> and partia
response rate of
16%
Transient increase in the serum levels of
. sCD25 (an immune activation marker). Response seen
Metastatic . R .
IL-21 None melanoma Perforin-1 and granzyme B expression in only in one [135]
CD8" T cells and NK cells. Increase in patient
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TABLE 2: Continued.
Cytokine aAg(ii{[tlonal Disease Major biologic effects Outcomes Reference
Increased serum levels of sCD25 and
Metastatic increased CD25 expression on NK cells Clinical response
IL-21 None and CD8" T cells. Increased expression of seen only in two [136]
melanoma . . .
IFN-y, perforin, and granzyme B in NK patients
cells and CD8" T cells
Decreased number of NK cells, CD8" T
Metastatic cell.s,.and B cells. Increase in Fhe cytotoxic Stable disease was
. activity of NK cells. Increase in the .
1L-21 Cetuximab colorectal . reported in 60% [138]
carcinoma absolute number and the expression of of the patients
CD64 (FcyRI). Increased serum levels of P
sCD25
Overall response
rate was 23% and
median overall
survival of 12.4
months in these
IL-21 None Metastatic Increase in the serum sCD25 levels patients [137]
melanoma compared

favorably with a
median survival
of 8.4 months
predicted from
historic controls

*This table included IL-2 provided in the context of allogeneic NK cell infusions, while early studies of IL-2 have not been included in this table and have

previously been reviewed [29], [74], [81].

Indeed, low dose IL-2 has recently been more studied to
control immune-based diseases through Treg augmentation,
such as graft-versus-host disease. Thus, while initial studies
suggested CD56"CD3~ NK cell functional modulation, the
potential for antitumor immunity was likely limited by Treg
expansion, which remains a concern for NK cell adoptive
transfer approaches that use rhIL-2 postinfusion to support
NK cells. While rhIL-2 is routinely administered to patients
following NK cell adoptive immunotherapy, modulation of
regulatory T cells is a substantial concern for this practice,
and if used combinations with anti-Treg therapy are likely
warranted. Further, alternative cytokines (such as IL-15)
that do not augment Treg number and function should be
explored.

IL-15 was initially viewed as very similar to IL-2 in
its cytokine biology, and while its ability to stimulate
NK cell development, homeostasis, and functionality
was remarkable, it was not initially pursued with rhIL-2
already clinically available [28, 29, 74]. Clinical interest
in IL-15 was rekindled when the Treg effects of rhIL-2
were unraveled, and the distinct IL-15 receptor biology
was reported [94]. Based on effects of both T and NK
cells, rhIL-15 (in the absence of the IL-15R«) is under
clinical investigation in solid tumors (melanoma, renal cell
carcinoma: NCT01021059, NCT01369888; advanced cancers
NCT01572493, NCT01727076) and to support NK cells after
adoptive transfer in leukemia patients (NCT01385423).
Studies performed in nonhuman primates at the NIH
administering subcutaneous rhIL-15 intermittently every

3 days demonstrated low toxicity with expansion of NK
cells (in addition to CD8 memory and CD4+ T cells) in
the absence of Treg expansion in vivo [95]. Interestingly,
daily administration for 14 days resulted in reversible
toxicities in two macaques consisting of neutropenia with
a hypocellular bone marrow and anemia with a lymphoid
infiltrate in the bone marrow, coinciding with a marked
peripheral lymphocytosis. Of note, plasma concentrations
were sustained with 15mcg/kg rhIL-15 predose levels
of 66-456pg/mL and peak levels of 1283-4387 pg/mL.
Pharmacokinetic analysis of interrupted doses indicated
clearance of rhIL-15 prior to each dose (<10 pg/mL), with
peak levels variable (278-5766 pg/mL) depending on the
IL-15 dose (2.5, 5, or 10 mcg/kg) administered. Preliminary
reports from a phase 1 study of rhIL-15 in AML patients
following an allogeneic NK cell infusion suggest that
rhIL-15 given as an IV bolus 3 times weekly results in
allogeneic NK cell expansion, and the expanded NK cells
are functional [96]. The results of these initial clinical
trials will inform future approaches as an NK cell and
antitumor immunity modulator. Thus, IL-15 remains highly
interesting as an NK cell modulator for immunotherapy
but will likely have non-NK cell immune effects that will
require close monitoring, with the potential for toxicity
distinct from rhIL-2. Further, there is the potential to
simultaneously augment both NK cell and T cell functions,
which may result in crosstalk that further enhances antitumor
immunity, compared to modulation of NK cells or T cells
in isolation. This cytokine was identified as a top priority



by the NCI sponsored Immunotherapy Agent Workshop
(https://dcb.nci.nih.gov/Reports/Documents/immunother-
apyagentworkshop/Final NCI_Workshop_Proceedings_
230ct07.pdf), but currently access remains limited for
clinical trial investigation.

Since IL-15 requires IL-15Re for efficient ligation of the
IL-2/15RBy. in vivo, several studies evaluated coadminis-
tration of IL-15/IL-15Ra complexes on NK cells [97, 98].
These resulted in enhanced in vivo activity, and the use of
IL-15/IL-15R complexes or fusion proteins remains highly
promising as an IL-15 immunotherapy. One approach uses
fusion of an IL-15 mutein with higher affinity, coupled
to the IL-15R« sushi domain, fused to an Fc domain to
stabilize the complex (ALT-803) [99, 100]. This results in
an IL-15 mimic with prolonged in vivo half-life that self-
transpresents to IL-2/15Ra [100]. Preclinical studies of ALT-
803 are promising with prolonged in vivo persistence after a
single injection, and early stage clinical trials are in progress
to evaluate safety and immunomodulation in advanced
melanoma (NCT01021059) and relapsed malignancies after
allogeneic SCT (NCT01885897) using a weekly schedule. A
detailed comparison of ALT-803 to rhIL-15 for human NK
cell stimulation and function has not been reported. It is
likely that the dose of ALT-803 will be critical, considering
its pharmacokinetics, to avoid the potential toxicity observed
with daily rhIL-15 in macaques. If effective and safe, this
approach would provide a more practical administration
approach for IL-15 and the potential for expanded clinical
trials to combine with monoclonal antibodies or NK cell
infusions for a variety of malignancies.

6. IL-12 Basic Biology

IL-12 is a heterodimeric cytokine composed of p35 and p40
subunits (IL-12« and f3 chains), originally identified as “NK
cell stimulatory factor (NKSF)” based on its ability to enhance
NK cell cytotoxicity [101]. Upon encounter with pathogens,
IL-12 is released by activated dendritic cells and macrophages
and binds to its cognate receptor, which is primarily expressed
on activated T and NK cells [102]. Subsequent dimerization
of the IL-12Rf31 and IL-12R2 subunits of the IL-12 receptor
transduces signals through Janus family kinases (JAK2 and
TYK2) and STAT family members, including STAT3, 4, and
5 [101]. The primary effects of IL-12 on NK cells, including
IFN-y and TNF-« production, have primarily been attributed
to STAT4-mediated signaling. Initial studies provided evi-
dence that rhIL-12 augmented human NK cells cytotoxicity
and proliferation [103]. Notably, the IL-12R is expressed on
resting NK cells, thereby facilitating rapid immune responses
without prior activation [104]. Evidence provided by in vitro
and in vivo studies of synergism between IL-12 and other
activating stimuli suggests that IL-12 likely acts on NK cells in
concert with other cytokines, such as IL-2 and IL-18, or with
receptor-based interactions from pathogenic cells [104, 105].

7. IL-12 Translation

Numerous preclinical studies suggested that IL-12 had
antitumor potential, including IFN-y dependent antitumor
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responses against melanoma and renal cell carcinoma (RCC)
cell lines in mice [106, 107]. In the first phase I study
Atkins et al. used a regimen with a 2-week “rest period”
between first and subsequent intravenous bolus doses of
rhIL-12 and determined 500 ng/kg as the maximal tolerated
dose (MTD) [108]. Biologic effects in these patients with
advanced malignancies included dose-dependent increases
in IFN-y and IL-12-induced lymphopenia in the peripheral
blood (T and NK cells). In this study few patients had
tumor response and some patients had stable disease and
therefore demonstrate safety and potential clinical utility of
this cytokine. However, a subsequent phase II study by the
same group in patients with advanced renal cell carcinoma
IV bolus dose of 500 ng/kg of rhIL-12 was associated with
severe toxicities and two patients died [109]. This phase
II study had not used a rest period between first and
subsequent consecutive daily dosing. This alteration in the
rhIL-12 regimen was thought to be responsible for causing
these severe toxicities as the use of single IL-12 injection prior
to subsequent consecutive daily dosing protected mice and
cynomolgus monkeys from acute toxicity [109]. In a pilot
study Bajetta et al. treated 10 metastatic melanoma patients
with fixed dose of thIL-12 (0.5 ug/kg) on days 1, 8, and 15 [110].
This regimen was overall well tolerated with few patients
demonstrating reduced tumor size. In another study, Robert-
son etal. used an IV bolus regimen of rhIL-12 in patients with
advanced malignancies and found transient increase in the
cytotoxic activity and expression of CD2, CDl1la, and CD56
on NK cells, in addition to causing transient lymphopenia
which was particularly marked for NK cells [111]. No major
responses were seen in this study of refractory solid tumor
patients. In a phase II randomized control trial, Motzer et
al. compared rhIL-12 with interferon-a (IFN-«) in patients
with previously untreated but advanced renal cell carcinoma
[112]. In this study rhIL-12 was given subcutaneously and
was well tolerated but trial was terminated before completion
due to low response rates in the rhIL-12 arm. More recent
preclinical studies have highlighted the potential for IL-12
to costimulate NK cell IFN-y production in combination
with antitumor monoclonal antibodies [105, 113, 114]. These
findings have been translated into several phase 1 and 2
clinical trials of IL-12 administered in concert with antitumor
monoclonal antibodies in head and neck carcinoma [115,
116] and lymphoma [117]. Importantly, correlative studies in
one trial associated NK cell IFN-y production ex vivo with
clinical responses. Addition of IL-12 to rituximab resulted in
a modest response rate (37%), while provision of IL-12 after
progression on single agent rituximab failed to induce any
responses [117]. An ongoing multicenter trial is investigating
subcutaneous rhIL-12 administered in combination with
cetuximab for patients with relapsed/refractory head and
neck cancer (NCT01468896).

Based upon the early inflammatory toxicity and minimal
response rates observed in several different early phase stud-
ies, commercial clinical development of rhIL-12 as a single
agent is unlikely. However, several more recent early phase
studies have identified a dose and a schedule to combine
IL-12 with antitumor monoclonal antibodies, suggesting that
safe administration is possible and modulation of NK cell in
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vivo is achieved. Future strategies could alternatively include
fusing IL-12 to an antitumor monoclonal antibody, poten-
tially in the context of trispecific reagent that also engaged
CD16, which would allow combined IL-12/CD16-mediated
activation of NK cells at a tumor site. Based primarily on
its potential as a vaccine adjuvant, IL-12 was also identified
as a priority cytokine for clinical development by the NCI
Immunotherapy workshop; however, access for new clinical
trials remains limited.

8. IL-18 Basic Biology

IL-18 is a member of the proinflammatory IL-1 family and,
like IL-12, is secreted by activated phagocytes [118]. In
contrast to other cytokines that transduce signals through
the JAK-STAT pathway, the IL-18 receptor (IL-18R) primarily
transduces signals through the adapters MyD88 and TRAF6
leading to MAP kinase and NF-kB activation, although minor
activation of STAT3 has been reported [119]. In NK cells,
IL-18 has traditionally been described as a costimulatory
cytokine that functions synergistically with IL-12 and IL-
15 [70, 120], particularly because IL-12 signaling upregulates
IL-18R expression in T cells [121]. However, the IL-18R« is
constitutively expressed on unstimulated NK cells and can
induce NK cell proliferation alone, although the addition
of IL-15 greatly enhances proliferation [120]. Other distinct
roles for IL-18 include reports that dendritic cell-derived
IL-18 primes NK cells to produce more IFN-y during later
stimulation [42]. Additionally, NK cells from IL-18 deficient
mice have impaired cytotoxicity and IFN-y production,
indicating the importance of this cytokine to NK mediated
host defense [122].

9, IL-18 Translation

Despite having demonstrated significant antitumor activity
in preclinical animal models, rhIL-18 has been studied in
only few clinical trials to date [123-125]. Robertson et al.
in a phase I study demonstrated the relative safety of using
rhIL-18 in patients with advanced malignancies but no
major clinical responses were seen in these patients [123].
In another study by the same group, patients with advanced
metastatic melanoma and renal cell carcinoma were treated
with escalating doses of rhIL-18 [125]. In this study doses as
high as 2,000 ug/kg bw were relatively well tolerated but again
no major responses were seen. In a recent study, rhIL-18 was
used in combination with rituximab for patients with CD20*
B cell non-Hodgkin’s lymphomas to potentially augment the
ADCC function induced by rituximab [124]. Again no dose
limiting toxicity was observed when used in combination
with rituximab and some responses were seen in 5 patients (2
complete and 3 partial responses). In all of these studies, rhIL-
18 administration led to transient lymphopenia along with
markers of NK cell activation like increased plasma levels
of IFN-y, TNF-«, and GM-CSF which were observed. rhIL-
18 treatment led to the development of antibodies against
IL-18 in some of these patients. Currently rhIL-18 is being
studied in combination with ofatumumab which is a fully
human monoclonal antibody against CD20 and known to

mediate more potent ADCC against CD20" lymphoma cells
(NCT01768338). In the absence of tumor responses in early
stage clinical studies, continued commercial development of
rhIL-18 as a single agent drug appears unlikely.

10. IL-21 Basic Biology

The IL-21 receptor is predominantly expressed on T, B,
and NK cells and binds to IL-21 produced by activated T
cells [126]. The IL-21 receptor forms a heterodimer with the
common cytokine-receptor y-chain. Binding of IL-21 to NK
cells induces the phosphorylation of STAT1, 3, and 5, although
STAT3 has been shown to be the dominant transducer fol-
lowing receptor engagement [127]. Minor engagement of the
PI3-kinase and MAP kinase pathways by STAT-independent
activation has also been reported [127]. Downstream effects
in lymphocytes, including T and B cells, have implicated
IL-21 in the negative regulation of cell survival [128, 129],
alterations in immunoglobulin isotype switching [130], and
promotion of Th17 development [131]. Although IL-21R™/~
mice have normal NK cell numbers, treatment of murine
NK cells in vitro with IL-21 reduces NK cell proliferation
and survival in the presence of IL-2 or IL-15 but induces
terminal differentiation and enhances NK cell cytotoxicity
against tumor lines [132]. Further studies have shown that IL-
21s effects on tumor protection were dependent on NKG2D-
mediated recognition of tumor cells by NK cells [133].

11. IL-21 Translation

Due to its ability to stimulate NK cells and CD8" T cells,
IL-21is an attractive cytokine for antitumor immunotherapy.
For ex vivo NK cell expansion, membrane bound IL-21
has been expressed in K562 stimulator cells, with effective
results [134]. Davis et al. demonstrated that rhIL-21 was
safe and well tolerated in a phase I study in patient with
metastatic melanoma [135], although clinical efficacy was
limited to one partial response. rhIL-21 was also shown to
increase soluble CD25 and induce expression of perforin
and granzyme B on CD8" cells. A phase Ila trial in patients
with untreated metastatic melanoma also showed safety and
minimal adverse events, and several clinical responses were
reported [136]. Immune correlative studies showed that rhIL-
2l increased soluble CD25 and increased expression of CD25,
IFN-y, perforin, and granzyme B in both CD8" T cells and
NK cells. In a recent phase II study by Petrella et al., rhIL-
21 treatment of patients with metastatic melanoma induced
an overall response rate of 23% and their median progression
free and overall survival also favored the historic controls
[137]. Based upon the rationale that rhIL-21 augments ADCC
function, Steele et al. recently reported the use of rhIL-21 in
combination with cetuximab in a phase I trial in patients
with stage IV colorectal cancer [138]. The combination was
well tolerated and 9/15 patients exhibited stable disease with
therapy, but the study was prematurely terminated due to
a sponsor decision. Analysis of correlative studies in these
patients showed not only a drop in blood NK cells but also
an increased cytotoxic functionality of NK cells against K562
targets. In vitro studies indicate that IL-21 augments NK cell
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FIGURE 2: Overview of human cytokine-induced memory-like NK cells. Human NK cells preactivated with IL-12+IL-15+IL-18 for 16 hours
return to a basal activation status. Weeks later CIML NK cells have evidence of proliferation and increased expression of CD69, NKG2D,
granzyme B, and CD25, compared to control IL-15 preactivated NK cells. When CIML NK cells are restimulated, they exhibit enhanced
functional responses, including cytokine production and cytotoxicity against leukemia targets. Similar results are observed when preactivated

or control human NK cells are adoptively transferred into immunodeficient NOD-SCID-y,

persistence and enhanced functionality.

ADCC against CLL cells in vitro, in addition to direct effects
on CLL cells [139]. Clinical studies have explored rhIL-21
in combination with rituximab for NHL with a 42% overall
response rate, and in vivo activation of NK cells was observed
based on the surrogate marker CD69 (NCT00347971). Thus,
rhIL-21 appears to have modest clinical effects on solid
tumors, favorable toxicity profile, and evidence of biological
modulation in vivo in patients. Based on this potential for
augmented ADCC, clinical development will likely continue.

12. Cytokine-Induced Memory-Like
NK Cells: Basic Biology

NK cells are traditionally considered members or the innate
branch of the immune system that respond rapidly but lack
immunologic specificity in the form of a clonal antigen recep-
tor and memory of prior activation. Recently several groups
have challenged this paradigm of NK cells as pure innate
lymphocytes and demonstrated memory-like functions in
NK cells [140-143]. The von Adrian group first reported recall
responses in cells exhibiting an NK cell phenotype to haptens
during delayed hypersensitivity reactions in Ragl™/~ mice
[141]. The Lanier group demonstrated enhanced function
by Ly49H" NK cells upon Ly49H-based restimulation in
mice after resolution of an acute MCMYV infection [140].
Cooper et al, in the Yokoyama lab, described cytokine-
induced memory-like (CIML) NK cell functions in mice
defined by initial combined cytokine activation, a subsequent
return to the resting state after adoptive transfer in vivo, and

_/_

c

mice and evaluated 7 days later for in vivo

an enhanced functionality with later restimulation [142, 144].
Murine NK cells which had previously been activated with
IL-12, IL-15, and IL-18 exhibited increased IFN-y response
upon their cytokine restimulation, compared to IL-15 alone,
for 1-4 months after adoptive transfer [142]. This enhanced
functionality was accompanied by extensive proliferation and
passed on following cell division, suggesting a durable change
in the NK cell program. This was not simply an alteration in
the transcription of the IFN-y locus or IFN-y mRNA stability,
since IFN-y mRNA levels were not different in mouse CIML
and control NK cells. Further, CIML NK cell activity persisted
after extensive homeostatic proliferation in immunodeficient
Rag™/ 7)1;/ "~ recipients for at least 1 month [145]. Studies
from the Cerwenka lab demonstrated that a single infusion
of IL-12, IL-15, and IL-18 preactivated NK cells protected
against established tumor cell line implant (B16 melanoma
and RMA-S lymphoma). In this system, CIML NK cell
responses required CD4+ T cell-derived IL-2. More recently,
mouse memory NK cells that arise after an acute MCMV
infection require proinflammatory cytokines, including IL-
12, that suggests a similar mechanism of differentiation in
these two types of innate NK cell memory [146]. Thus, CIML
NK cells are able to remember prior activation (at least for
months) and persist in the host with an enhanced functional
capacity.

Our group first demonstrated that a brief cytokine pre-
activation of human NK cells with IL-12, IL-15, and IL-18
or other combinations (e.g., IL-15+IL-18) induces human
CIML NK cells (Figure 2) [147]. Following preactivation with
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control (IL-15 only) or CIML-inducing (IL-12+IL-15+IL-18)
cytokines for 16 hours, purified NK cells (>95% CD56"CD3")
were washed and rested in low dose IL-15 to maintain
survival. Human CIML NK cell that rested for 1-2 weeks
exhibited increased IFN-y production, compared to control
NK cells, after restimulation with cytokines (IL-12+IL-15) or
triggering by leukemia cell targets. In addition, coculture
of IL-12, IL-15, and IL-18 preactivated NK cells with other
PBMC resulted in long lived (6 weeks) functionally enhanced
NK cells. Similar to the murine studies, human CIML
NK cells maintained their enhanced functionality following
extensive cell division, suggesting a sustained change to key
aspects of the NK cell molecular program [147]. Both flow
sorted (>98% pure) CD56™#" and CD56%™ human NK cell
subsets exhibited a memory-like functionality, although the
magnitude of CIML responses appeared modestly higher in

CD56°8" NK cells. Several surface markers were increased
on CIML NK cells, CD94/NKG2A, CD69, and NKp46,
compared to controls. For CD56%™ NK cells, there appeared
to be enrichment of memory-like function in NK cells
with expression of CD94, NKG2A, NKG2C, and CD69 and
those that lacked KIR and CD57. More recent studies have
demonstrated that human CIML NK cells express increased
granzyme B protein and increased cytotoxic function against
leukemia target cells, compared to control NK cells from the
same donor. Further, these CIML NK cells responded more
robustly to allogeneic AML blasts, suggesting the potential for
immunotherapy of AML and potentially other malignancies
[148]. From a physiologic viewpoint, human CIML NK cells
may arise in the setting of infection or inflammation, and in
this situation it is likely that dendritic cells or macrophages
are the source of combined cytokine activation.

Both human and mouse CIML NK cells have an increased
expression of CD25 (IL-2Ra), a key component of the high
affinity heterotrimeric IL-2 receptor (IL-2Raf3y receptor)
[149, 150]. For human NK cells [150], this induction is highly
robust on both CD56"8" and CD56%™ NK cells after 16—
24 hours and is maintained for at least 1 week. Induction
of CD25 results in a signal-competent IL-2Rafy, since
CIML NK cells exhibit enhanced STAT5 phosphorylation in
response to picomolar concentrations of IL-2 compared to
controls. Further, picomolar concentrations of IL-2 are able
to selectively impact CIML NK cells in vitro via enhanced
costimulation of IFN-y, cytotoxicity against leukemia targets,
and proliferation. CIML NK cells also exhibit preferential
expansion and maintenance of their enhanced functionality
following adoptive transfer into immunodeficient NSG mice
with rhIL-2 administration. Thus, enhanced responsiveness
to IL-2 is another attribute of CIML NK cells and may provide
a clue to their interactions with T cells and the ability of
exogenous low dose IL-2 (in addition to IL-15) to support
their expansion and function in vivo. Recently, mouse NK
cells were shown to be modulated by Treg sequestration of
IL-2 in vivo [151], and we hypothesize that CIML NK cells,
through expression of IL-2Raf3y at a high density, may more
effectively compete for IL-2 than naive NK cells and may be
resistant to this mode of Treg suppression.

1

Innate NK cell memory is a relatively new field with
a lack of studies on the mechanisms that underlie their
differentiation. For CIML NK cells, while the cell biology has
been functionally characterized in vitro, there remain many
questions on how these cells are generated and their relative
importance in host defense. Open questions remain about
the molecular mechanisms regulating their enhanced func-
tionality that warrant studies of their mRNA, microRNAs,
protein, phosphorylation, and epigenetic profiles, compared
to naive NK cells. The relationship of CIML to memory NK
cells that arise after MCMYV infection requires clarification.
The identification of a specific cell surface marker or group
of markers that clearly distinguish CIML from naive NK cells
will facilitate their study in healthy and diseased individuals.
How are CIML NK cells generated in vivo? We hypothesize
that accessory cells (e.g., dendritic cells), which are equipped
to produce IL-12, IL-15, and IL-18 and interact with NK cells,
represent a physiologic CIML NK cell inducer population.
While their ability to control transferred tumor cells is
provocative, it remains untested whether CIML NK cells are a
vital component of the normal host defense against infections
or not. Importantly, while these remain fundamental ques-
tions about their biology, our current knowledge of CIML
NK cells allows for their rapid translation to the clinic as
immunotherapy effectors against cancer.

13. CIML NK Cell Translation

NK cells have increasingly been recognized as important
contributors to the graft-versus-leukemia effect following
allogeneic HSCT, where MHC haploidentical NK cells were
identified as alloreactive to myeloid leukemia blasts that
lacked the corresponding HLA ligand for at least one KIR
receptor and were associated with protection against relapse
[152]. Additional potential benefits of NK cells in the context
of HSCT have been suggested, including limiting graft-
versus-host disease by elimination of recipient dendritic
cells [152]. More recently, NK cell adoptive immunotherapy
platforms have been established to facilitate infusion of
allogeneic NK cells enriched from a haploidentical donor
leukapheresis [153-155]. The NK cell translation group at Uni-
versity of Minnesota was the first to demonstrate adoptive NK
cell feasibility and identified lymphodepleting fludarabine-
cyclophosphamide (Flu-Cy) preparative chemotherapy as a
critical component of NK cell expansion, in part through
induction of endogenous IL-15. As part of this approach,
enriched CD3-CD19- PBMC that contain approximately
50% NK cells (and very few T cells) are activated overnight
with high dose IL-2, washed, and infused into the patient.
These NK cells are supported by intermediate dose rhIL-
2 for approximately 2 weeks following transfer. Using this
approach, patients with relapsed or refractory AML obtained
complete remissions that correlated with NK cell expansion
in vivo, strongly suggesting an NK cell versus leukemia
effect; however these remissions were achieved in a minority
of patients and did not appear durable. More recently,
feasibility of this approach has been shown in other types of
cancer, for example, lymphoma patients in combination with
the anti-CD20 mAb rituximab [156]. Alternative approaches



12

in clinical testing include exposure to “priming” tumor cell
lysates to activate NK cells prior to adoptive transfer into
AML patients in complete remission [157] (NCT01520558).
Additional small studies have been reported, including those
that include selection of KIR-KIR ligand mismatched NK
cells [154, 155]. In another report, purified CD56+CD3- NK
cells were administered to pediatric patients with favorable or
intermediate risk AML in complete remission (not candidates
for immediate allogeneic HSCT), without IL-2 exposure in
vitro, but with rhIL-2 administered after transfer [155]. While
none of the 10 patients who received NK cell infusions in
that pilot study relapsed, direct demonstration of the NK cell
antileukemia response will require treatment of patients with
active disease, or a large randomized study demonstrating
improvements in progression free survival. Further, several
groups have also infused mature activated NK cells early
after allogeneic HSCT to provide NK cell antitumor and anti-
GVHD effects [158-161]. Several groups have developed ex
vivo expansion protocols to help expand and activate NK
cells prior to their adoptive transfer into patients [134, 162
165]. One such approach involves genetically modified K562
based feeder cell system with membrane bound IL-21 (mbIL-
21) leading to a remarkable NK cell expansion (more than
30-thousand-fold by day 21) and without loss of telomere
length reported in some previous studies [134]. While such
cells are uniformly highly functional in vitro, clinical trials
in patients are required to define the persistence and activity
in vivo. Collectively, while all of these varying approaches
demonstrate some degree of safety and feasibility, clinical
studies are required to definitively show that allogeneic NK
cells provide clinical benefit to cancer patients, many of which
are in development or ongoing.

We hypothesized that human CIML NK cells, based on
their enhanced persistence and function against leukemia,
will safely provide improved results following adoptive trans-
fer, compared to IL-2-activated or naive NK cells. To test
this hypothesis, we are performing first in human phase
1 study of HLA haploidentical CIML NK cells in patients
with relapsed or refractory AML (NCT01898793), building
upon established NK cell adoptive immunotherapy platforms
and Flu-Cy conditioning. Haploidentical donors will undergo
leukapheresis, followed by selection of CD56+CD3— NK
cells, preactivation with IL-12, IL-15, and IL-18 overnight
in a GMP facility, extensive washing to remove cytokines,
and infusion into the patient. Further, based on the clear
preclinical data demonstrating a high affinity IL-2Raf3y on
CIML NK cells, low dose (1 x 10°TU [92]) rhIL-2 will
be administered for two weeks to support CIML NK cell
expansion and functionality. Initial doses will be 5-10-fold
lower than typical NK cell infusions to assess for safety of this
highly activated NK cell product, followed by dose escalation
if well tolerated. While the primary objective of this phase 1
study is safety of the NK cell product, leukemia clearance and
responses will be assessed providing some ability to discern
NK cell antitumor responses in these patients, especially at
the maximal tolerated dose. Further, correlative studies will
evaluate key aspects of CIML NK cell biology, providing a
unique view of human CIML NK cell biology in vivo.
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14. Conclusions

NK cell immunotherapy has undergone a renaissance over
the past decade, with enticing evidence of graft-versus-
leukemia/lymphoma effect in the setting of HSCT and
evidence of leukemia clearance after adoptive transfer. To
date, IL-2 remains the main cytokine utilized in these
approaches for in vitro activation and postinfusion main-
tenance, although rhIL-15 and IL-15 mimics are now in
clinical testing, and both commercial and NCI/NIH-based
productions appear to be expanding. IL-15 has the benefit
of activating NK cells without augmenting regulatory T cell
function. IL-21 remains highly interesting as an NK cell acti-
vator in vivo, especially in combination with approaches that
facilitate NK cell recognition such as monoclonal antibodies,
and continues in phase 2 clinical development for multiple
malignancies. An ex vivo approach to utilize K562 leukemia
targets with membrane bound IL-21 also appears promis-
ing. While rhIL-12 as injected cytokine therapy appeared
promising based on preclinical data and early phase clinical
studies, rhIL-12 is primarily being evaluated in combination
with monoclonal antibodies in solid tumors, anticytokine
antibodies do occur, and access for clinical trials is limited.
It seems likely that continued noncommercial development
will be required to further pursue these cytokines as anti-
cancer drugs administered to patients. rhIL-18 appeared well
tolerated, but a lack of responses has likely stalled clinical
development as a single agent. New approaches to harness the
potential of cytokine activation include highly translatable
and abbreviated ex vivo use, exemplified by our own approach
with CIML NK cells. The use of cytokines to function-enable
and support NK cells for immunotherapy will require com-
binatorial approaches that also limit NK cell functionality
(anti-KIR/anti-PD1 monoclonal antibodies, Treg depletion)
and enhance tumor cell recognition (monoclonal antibodies,
bi/trispecific targeting reagents, chimeric antigen receptors).
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